The line AB and CD are parallel. Then it is impossible that the line AB intersects the line CD.
What are parallel lines?When the distance between the lines is constant, then the lines are called parallel lines. The lines do not intersect when they are separated from each other. And the slope of the lines is equal.
Given that ∠ABC = 70° and ∠BCD = 110°.
Then the line AB and the line CD makes the same angle with the line BC.
Hence, the line AB and CD are parallel.
Then it is impossible that the line AB intersects the line CD.
More about the parallel lines link is given below.
https://brainly.com/question/16701300
#SPJ1
The mass varies directly as the Kinetic energy (K) and inversely as the square of the velocity (V). if the kinetic energy is 80 Joules and the velocity is 4 meters per second, then the mass is 10 kilograms. Express the mass as a function of kinetic energy and velocity.
Answer:
m = [tex]\frac{2K}{v^2}[/tex]
Step-by-step explanation:
Given mass (m ) varies directly as K and inversely as v² then the equation relating them is
m = [tex]\frac{kK}{v^2}[/tex] ← k is the constant of variation
To find k use the condition m = 10 when K = 80 and v = 4 , then
10 = [tex]\frac{80k}{4^2}[/tex] = [tex]\frac{80k}{16}[/tex] ( multiply both sides by 16 to clear the fraction )
160 = 80k ( divide both sides by 80 )
2 = k
m = [tex]\frac{2K}{v^2}[/tex] ← equation of variation
The expression of mass as a function of kinetic energy and velocity is m = 2K/V².
What is an expression?Expressions are defined as mathematical statements that have a minimum of two terms containing variables or numbers.
We have been given that the mass varies directly as the Kinetic energy (K) and inversely as the square of the velocity (V).
m ∝ K/V²
m = cK/V²
Here c is the constant of variation,
If the kinetic energy is 80 Joules and the velocity is 4 meters per second, then the mass is 10 kilograms.
We have to determine the value of c
Here m = 10 , K = 80 and V = 4 , then
Substitute the values in m = cK/V²
10 = c(80)/4²
10 = c(80)/16
10 = 5c
c = 10/5
c = 2
Substitute the value of c = 2 in the equation of variation,
⇒ m = 2K/V²
Hence, the expression of mass as a function of kinetic energy and velocity is m = 2K/V².
Learn more about the expressions here:
brainly.com/question/13947055
#SPJ2
translate this into an expression: the quotient of a number, x, and 8, could you please explain it to me?
Answer:
x/8
Step-by-step explanation:
First, we are given "the quotient of...". This means that we are dividing something/something else. If two numbers are given in the phrase "something and something else", the first number given will be the something, and the second number will be the something else.
The first number listed is x. Therefore, we have
x/something else.
Next, we are given "and 8", so we have x/8 as our expression
In empty set, n (A) = ………
Answer:
answer is
In empty set, n(A) = { }.
Which points lie on the graph of f(x) = loggx?
Check all that apply.
Step-by-step explanation:
f(x)=log(x)
=d(log(x)/dx)
=>y=1/x
8-2 3/4 =
show the work
ANSWER
8-2........3/4 but you have you ADD some people dont know that 8-2= 6
and so 6/1 + 3/4 is 24/4
Need the help thanks guys
Answer:
1/4
Step-by-step explanation:
x^2 - x
Take the coefficient of x
-1
Divide by 2
-1/2
Square it
(-1/2)^2 = 1/4
Add it
x^2 -x +1/4
Erica’s family is moving away from California. They decided to have a moving sale and sell each item for 70% off the price they originally paid for it. The sofa had an original price of $799, and the love seat had an original price of $549. What is the total cost of both items after the discount?
Find the sale price by multiplying the original price by 70% then add the two prices together to get the total.
799 x 0.70 = 559.30
549 x 0.70 = 384.30
Total: 559.30 + 384.30 = $943.60
A region c
B region d
C region a
D region b
Answer:
Region C
Step-by-step explanation:
y ≤ ¼ x + 3 maps the areas C and D including the common boundary line
y ≥ -x + 5 maps the areas B and C including the common boundary line
The common area mapped is C plus its boundaries
A 33-m tall building casts a shadow. The distance from the top of the building to the tip of the shadow is 37-m.
. Find the length of the shadow.
Answer:
[tex]\sqrt{280}[/tex] = 2[tex]\sqrt{70}[/tex]
37^2 = 1369
33^2 =1089
1369-1089 = 280
Step-by-step explanation:
Cho hai tập hợp A={1;2;3;4},B={2;4;6;8} . Tập hợp nào sau đây bằng tập hợp A ∩B ?
Answer:
A∩B ={2;4}
Step-by-step explanation:
Chúc bạn học tốt
Restate the number 4,587,902.453.
Expanded form:
Written form:
Answer:
Expanded form: 4,000,000 + 500,000 + 80,000 + 7,000 + 900 + 2 + 0.4 + 0.05 + 0.003
Word form: Four million, five hundred eighty-seven thousand, nine hundred two and four hundred fifty-three thousandths.
Can someone help me? I don’t know how to solve the rest. I am struggling and I would be so happy if any of you helped me. Thank you for your help!
which polygon will NOT tessellate a plane?
Step-by-step explanation:
the answer is regular octagon
i think
Circled one I need help with thank you!!
Formula-
If a set has “n” elements, then the number of subset of the given set is 2n and the number of proper subsets of the given subset is given by 2n-1. Consider an example, If set A has the elements, A = {a, b}, then the proper subset of the given subset are { }, {a}, and {b}
Symbol that can be used-
The symbol "⊆" means "is a subset of". The symbol "⊂" means "is a proper subset of".
Hope it helps you... pls mark brainliest if it helped you.
a coin is tossed succesively three times times . determine tje probabiliy of getting all three heads
Answer:
Answer : 1/8.
Step-by-step explanation:
Hey there!
Please see the attached picture for your answer.
Hope it helps!
Based on a random sample of 50, a 95% confidence interval for the population proportion was computed. Holding everything else constant, which of the following will reduce the length of the confidence interval by half? (CHECK ALL THAT APPLY): A. Quadruple the sample size. B. Change the confidence level to 68%. C. Double the sample size. D. Change the confidence level to 99.7%. E. Decrease the sample proportion by half.
The length of the confidence interval is the margin of error, which is the ratio of the standard deviation and the square root of sample size. Hence, to reduce the length of confidence interval by half, Quadruple the sample size.
Recall :
Margin of Error = σ/√nEvaluating an hypothetical scenario :
Let standard deviation, σ = 2
Sample size = 50
Margin of Error = 2/√50 = 0.554
Using Quadruple of the sample size : (50 × 4) = 200 samples
Margin of Error = 2/√200 = 0.277(0.227 ÷ 0.554) = 0.5
Therefore, increasing the sample size, reduces the margin of error. Hence, using quadruple the sample size, will reduce the margin of error by half.
Learn more : https://brainly.com/question/13403969
Name the indicated geometric figures for the figure shown. Be sure to use correct notation
A Name a point.
B Name a ray through Y.
C Name a line through Z.
D Name a plane.
9514 1404 393
Answer:
see below
Step-by-step explanation:
[tex]\text{A. point: }X\\\\\text{B. ray through Y: }\overrightarrow{XY}\\\\\text{C. line through Z: }\overleftrightarrow{XZ}\\\\\text{D. plane: plane } XYZ[/tex]
__
Additional comment
When you don't have the benefit of typesetting, you can refer to the geometry by name: ray XY, line XZ,
Which piecewise function represents the graph?
the function that connects the point (0;1) with the point (-1;0) is the graph
What is the common ratio for this geometric sequence?
27, 9, 3, 1, ...
Answer:
a multiple of 3.
Step-by-step explanation:
1x3=3
3x3=9
9x3=27
Abigail plans to repaint some classroom bookcases. She has 6/25
gallons of paint. All of the bookcases are the same size and each requires 2/3
gallon of paint. How many bookcases will the custodian be able to repaint with that amount of paint?
Answer:
Step-by-step explanation: Hello! Do
Alan's aunt gave him $95 to spend on clothes at the mall. He bought 5 shirts that cost $6 each and a pair of pants that cost $17. How much money does Alan have left to buy more clothes? (one more)
Answer:
he has 48 dollars left to spend on clothes
2.
The reflector of a satellite dish is in the shape of a parabola with a diameter of 4 feet and a depth of 2 feet. To get the maximum reception we need to place the antenna at the focus.
a. Write the equation of the parabola of the cross section of the dish, placing the vertex of the parabola at the origin. Convert the equation into standard form, if necessary. What is the defining feature of the equation that tells us it is a parabola?
b. Describe the graph of the parabola. Find the vertex, directrix, and focus.
c. Use the endpoints of the latus rectum to find the focal width.
d. How far above the vertex should the receiving antenna be placed?
Answer:
Step-by-step explanation:
Assume the dish opens upwards. The cross-section through the vertex is a parabola. You know three points on the parabola: (0,0), (2,2), and (-2,2). Plug the points into y = ax² + bx + c to get a system of three equations where a=0.5, b=c=0.
Equation of parabola: y = 0.5x²
:::::
Vertex (0,0)
Focal length = 1/(4×0.5) = 0.5
Focus (0,0+0.5) = (0, 0.5)
Directrix y = 0-0.5 = -0.5
:::::
At endpoints of latus rectum, y = 0.5
x = ±√0.5 = ±√2/2
Focal width = 2×√2/2 = √2
:::::
Place antenna at focus, (9,2)
Which expression is equivalent to (4x^(3)y^(5))(3x^(5)y)^(2)
Answer:
[tex](4x^3y^5)(3x^5y)^2 = 36*x^{13}y^7[/tex]
Step-by-step explanation:
Given
[tex](4x^3y^5)(3x^5y)^2[/tex]
Required
The equivalent expression
We have:
[tex](4x^3y^5)(3x^5y)^2[/tex]
Expand
[tex](4x^3y^5)(3x^5y)^2 = 4x^3y^5*9x^{10}y^2[/tex]
Further expand
[tex](4x^3y^5)(3x^5y)^2 = 4*9*x^3*x^{10}y^5*y^2[/tex]
Apply laws of indices
[tex](4x^3y^5)(3x^5y)^2 = 36*x^{13}y^7[/tex]
I need help ASAP please
Answer:
yes how can I help you???
The number of dollars in x quarters
Answer:
There are four quarters in one dollar, so 4x quarters in x dollarsWhich graph corresponds to the following inequality? -2x-3y<6
Answer:
A) It’s the First graph
Step-by-step explanation: hope this helps!
The graph corresponds to the inequality -2x - 3y < 6 is option A.
How to find the value of x?To estimate the value of x and y, bring the variable to the left side and bring all the remaining values to the right side. Simplify the values to estimate the result.
Given: -2x - 3y < 6
then -2x - 3y = 6
Put the value of y = 0, then
[tex]$-2x-3*0=6[/tex]
-2x = 6
x = -6/2 = -3 and
-2x - 3y = 6
Put the value of x = 0, then
[tex]$-2*0-3y=6[/tex]
-3y = 6
y = -6/3 = -2
The value of x = -3 and y = -2.
Therefore, the correct answer is option A.
To learn more about inequality refer to:
https://brainly.com/question/12170562
#SPJ2
factor the expression completely. -30+36x
Answer:
6 (-5 + 6x)
Step-by-step explanation:
Rewrite the number 30 as 6×5 and 36 as 6×6
Factor out the common number, which is 6
so, 6 (-5 + 6x)
Answer:
-6(5-6x).
Just factor out -6 from the expression. Thank you!
what is the tan invers of 3i/-1-i
z = 3i / (-1 - i )
z = 3i / (-1 - i ) × (-1 + i ) / (-1 + i )
z = (3i × (-1 + i )) / ((-1)² - i ²)
z = (-3i + 3i ²) / ((-1)² - i ²)
z = (-3 - 3i ) / (1 - (-1))
z = (-3 - 3i ) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(z) and Im(z) are negative. But arctan only returns angles between -π/2 and π/2. So we have
arg(z) = arctan((-3/2)/(-3/2)) - π
arg(z) = arctan(1) - π
arg(z) = π/4 - π
arg(z) = -3π/4
where I'm taking arg(z) to have a range of -π < arg(z) ≤ π.
An article describes an experiment to determine the effectiveness of mushroom compost in removing petroleum contaminants from soil. Out of 155 seeds planted in soil containing 3% mushroom compost by weight, 74 germinated. Out of 155 seeds planted in soil containing 5% mushroom compost by weight, 86 germinated. Can you conclude that the proportion of seeds that germinate differs with the percent of mushroom compost in the soil
Solution :
Let [tex]p_1[/tex] and [tex]p_2[/tex] represents the proportions of the seeds which germinate among the seeds planted in the soil containing [tex]3\%[/tex] and [tex]5\%[/tex] mushroom compost by weight respectively.
To test the null hypothesis [tex]H_0: p_1=p_2[/tex] against the alternate hypothesis [tex]H_1:p_1 \neq p_2[/tex] .
Let [tex]\hat p_1, \hat p_2[/tex] denotes the respective sample proportions and the [tex]n_1, n_2[/tex] represents the sample size respectively.
[tex]$\hat p_1 = \frac{74}{155} = 0.477419[/tex]
[tex]n_1=155[/tex]
[tex]$p_2=\frac{86}{155}=0.554839[/tex]
[tex]n_2=155[/tex]
The test statistic can be written as :
[tex]$z=\frac{(\hat p_1 - \hat p_2)}{\sqrt{\frac{\hat p_1 \times (1-\hat p_1)}{n_1}} + \frac{\hat p_2 \times (1-\hat p_2)}{n_2}}}[/tex]
which under [tex]H_0[/tex] follows the standard normal distribution.
We reject [tex]H_0[/tex] at [tex]0.05[/tex] level of significance, if the P-value [tex]<0.05[/tex] or if [tex]|z_{obs}|>Z_{0.025}[/tex]
Now, the value of the test statistics = -1.368928
The critical value = [tex]\pm 1.959964[/tex]
P-value = [tex]$P(|z|> z_{obs})= 2 \times P(z< -1.367928)$[/tex]
[tex]$=2 \times 0.085667$[/tex]
= 0.171335
Since the p-value > 0.05 and [tex]$|z_{obs}| \ngtr z_{critical} = 1.959964$[/tex], so we fail to reject [tex]H_0[/tex] at [tex]0.05[/tex] level of significance.
Hence we conclude that the two population proportion are not significantly different.
Conclusion :
There is not sufficient evidence to conclude that the [tex]\text{proportion}[/tex] of the seeds that [tex]\text{germinate differs}[/tex] with the percent of the [tex]\text{mushroom compost}[/tex] in the soil.
. A customer surveys the stock of gluten-free
breads sold in three different grocery stores.
At each grocery store, the customer counts
the number of different gluten-free breads
and compares it to the number of breads
that are not gluten-free. The table below
shows the results of this survey.
This is a relative frequency question. Applying the concept, we get that the relative frequency of gluten free breads sold at store A compared to those sold at all stores combined is 0.1667.
Relative frequency:
The relative frequency of a to b is given by a divided by b.
In this question:
a: Gluten free breads sold at store A
b: Gluten free breads sold at all stores combined.
2 + 7 + 3 = 12 gluten free breads sold.
2 sold at store A, so:
[tex]\frac{2}{12} = \frac{1}{6} = 0.1667[/tex]
Thus, the relative frequency of gluten free breads sold at store A compared to those sold at all stores combined is 0.1667.
Another example of a problem involving relative frequency you can check at https://brainly.com/question/20630951
Relative Frequency:
The relative frequency of gluten-free breads sold at Store A compared to those sold at all the stores combined is:
= 0.167
Data and Calculations:
Gluten-Free Breads at Different Stores
Gluten-Free Not Gluten-
Breads Free Breads
Store A 2 4
Store B 7 10
Store C 3 12
Since we are only considering Gluten-Free Breads at the three stores, we take the relevant data to calculate and compare their frequencies as follows:
Gluten-Free Relative
Breads Frequency
Store A 2 0.167 (2/12) = 17%
Store B 7 0.583 (7/12) = 58%
Store C 3 0.250 (3/12) = 25%
Total Gluten-free 12 1 = 100%
Thus, the relative frequency of gluten-free breads sold at Store A compared to those sold at all the stores combined is 0.167.