Answer:
2.13 mol Al2O3
Explanation:
mol of Al=
115g/ 26.9 g/mol
4.275 mol of Al
The multiply by mol ratio
4.275 * 1 mol al2o3/2 mol Al
2.13
Which of the following are end-products of glycolysis except?a. CO2CO2 and H2OH2Ob. Pyruvate, CO2CO2, and ATPc. Pyruvate, NADH, and ATPd. Acetyl CoA, CO2CO2, and NADHe. Citrate, H2OH2O, and FADH2
The anaerobic breakdown of glucose in these organisms results in the formation of lactic acid and ethanol, respectively.
Hence, option c. (Pyruvate, NADH, and ATP) is the correct answer.
Glycolysis is the process of breaking down glucose molecules into pyruvate, ATP, and NADH molecules.
Pyruvate and ATP are the end-products of glycolysis except for CO2.
Therefore, option B (Pyruvate, CO2, and ATP) is incorrect as CO2 is not the end product of glycolysis.
Thus, the correct option is c. (Pyruvate, NADH, and ATP) where Acetyl CoA, CO2, and NADH are not the end products of glycolysis.
The breakdown of glucose molecules during glycolysis results in the formation of two molecules of pyruvate, which is the end product.
In the presence of oxygen, pyruvate undergoes oxidative decarboxylation to produce Acetyl CoA, which enters the citric acid cycle.
The formation of NADH and ATP during glycolysis is the result of the oxidation of glucose to produce energy.
The NADH formed during glycolysis and other reactions enters the oxidative phosphorylation pathway, where the energy released is used to produce ATP.
The ATP produced during glycolysis is used for several cellular processes such as movement, metabolism, and division.
Glycolysis is the first step in the process of cellular respiration, and it occurs in the cytoplasm of all cells.
The process of glycolysis is essential for energy production in organisms that do not have access to oxygen, such as bacteria and yeast.
For similar question on glycolysis.
https://brainly.com/question/1966268
#SPJ11
Consider the reaction below:A(ag) 2 B(ag) AGrxn = 4.00 kJ A1 M solution of A was heated at 73.3 °C for several hours. After some time the concentration of A was determined. Answer the following questions:a) What is the maximum amount of work (AG) from/for this reaction when [A] = 0.96 M? AG(kJ) number (rtol=0.05, atol=1e-08)b) What is the concentration of B when AG = –3.80 kJ? Вм — number (rtol=0.03, atol=1e-08) c) Determine Q when AG = -8.00 kJ? number (rtol=0.03, atol=1e-08)d) If the equilibrium mixture contains [A] = 0.39 M at 165.5 °C. What is AH° and AS° of this reaction? AHkJ/mol) number (rtol=0.02, atol=1e-08) (J/mol.K) number (rtol=0.03, atol=1e-08)
a) The maximum amount of work (AG) from/for this reaction when [A] = 0.96 M is -4.00 kJ (atol=1e-08).
b) When AG = –3.80 kJ, the concentration of B is 0.18 M (rtol=0.03, atol=1e-08).
c) When AG = -8.00 kJ, the reaction quotient (Q) is 0.036 (rtol=0.03, atol=1e-08).
d) At equilibrium, when [A] = 0.39 M and the temperature is 165.5 °C, the enthalpy (AH°) of the reaction is -11.10 kJ/mol (rtol=0.02, atol=1e-08) and the entropy (AS°) of the reaction is -0.53 J/mol.K (rtol=0.03, atol=1e-08).
Read more about the topic of reactions:
https://brainly.com/question/25769000
#SPJ11
In this exercise, we will use partition functions and statistical techniques to charaterize the binding equilibrium of oxygen to a heme protein. The equilibrium that we study is O2(gas, 310K)↔O2(bound, 310K). Give all answers to three significant figures.Part ACalculate the thermal wavelength (also called the deBoglie wavelength) Λ for diatomic oxgen at T=310K.1.75×10−11 mSubmitMy AnswersGive UpCorrectPart BCalculate the rotational partition function of oxygen at T=310K. Remember, O2 is a homonuclear diatomic molecule. Assume the roational temperature of O2 is θ rot=2.07K.q_{rot} = 74.9SubmitMy AnswersGive UpCorrectPart CCalculate the bond vibrational partition function of oxygen gas at T=310K. Assume the vibrational temperature of oxygen gas is θvib(gas)=2260K.q(vib,gas) = 2.61×10−2SubmitMy AnswersGive UpCorrectPart DAssume when oxygen attaches to a heme group it attaches end-on such that one of the oxygen atoms is immobilized and the other is free to vibrate. Calculate the vibrational temperature of heme-bound oxygen.1600 KSubmitMy AnswersGive UpCorrectPart EUsing the result from part D, calculate the vibrational partition function for oxygen bound to a heme group at T=310K.q(vib,bound) = 7.63×10−2SubmitMy AnswersGive UpCorrectPart FAssume the oxygen partial pressure iis PO2=1.00 atm and T=310K. Assuming the O=O bond energy De does NOT change when O2 binds to the heme group, calculate the binding constant K. Assume the oxygen molecule forms a weak bond to the heme group for which the energy is w=-63kJ/mol.At T=310K and P=1.00 atm K = SubmitMy AnswersGive UpPart GIn reality, the oxygen partial pressure is much lower than 1.00 atm in tissues. A typical oxygen pressure in the tissues is about 0.05 atm. Calculate the equilibrium constant for oxygen binding in the tissues where P=0.05 atm and T=310K.At T=310K and P=0.05atm K= SubmitMy AnswersGive UpPart HCalculate the standard Gibbs energy change ΔGo for the binding of oxygen to the heme group at P=0.05 atm and T=310K.SubmitMy AnswersGive UpPart IAssume an oxygen storage protein found in the tissues has a single heme group which binds a single oxygen molecule. Use your value of K at T=310K and P=0.05 atm to calculate the fraction of sites bound on the protein fB.f_B =
A) Thermal wavelength (or de Broglie wavelength) of diatomic oxygen at T=310K is 1.75 x 10⁻¹¹ m. B) q_rot = 74.9. C) q_vib= 2.61 x 10⁻². D) θ_vib(bound) = 1600 K ; E) q_vib = 7.63 x 10⁻². ; F) K = 3.34 x 10⁵; G) ΔG°= 50.7 kJ/mol. H) ; ΔH° = -28.6 kJ/mol. ; I) fB = 8.95 x 10⁻⁹.
What is partial pressure?Partial pressure is the pressure that gas, in a mixture of gases, would exert if it alone occupied the whole volume occupied by mixture.
Part A) As λ = h / (mv) and PV = nRT
v = √(3RT/M) = √((3 x 0.08206 x 310) / 5.31 x 10⁻²⁶) = 464.5 m/s
λ = 6.626 x 10⁻³⁴ J s / (5.31 x 10⁻²⁶ kg x 464.5 m/s) = 1.75 x 10⁻¹¹ m
Therefore, thermal wavelength (or de Broglie wavelength) of diatomic oxygen at T=310K is 1.75 x 10⁻¹¹ m.
Part B) As q_rot = (T / θ_rot) / [1 - exp(-T/θ_rot)]
θ_rot is the rotational temperature, h is Planck's constant, I is moment of inertia of the molecule, and kB is the Boltzmann constant. For O2, I = 1.94 x 10⁻⁴⁶ kg m² and θ_rot = 2.07 K.
q_rot = (310 K / 2.07 K) / [1 - exp(-310 K / 2.07 K)] = 74.9
Therefore, the rotational partition function of oxygen at T=310K is 74.9.
Part C) q_vib = 1 / (1 - exp(-θ_vib/T))
θ_vib is the vibrational temperature of the molecule.
q_vib = 1 / (1 - exp(-2260 K / 310 K)) = 2.61 x 10⁻²
Therefore, the bond vibrational partition function of oxygen gas at T=310K is 2.61 x 10⁻².
Part D) μ = m_O2 x m_heme / (m_O2 + m_heme)
μ = 32 amu x 600 amu / (32 amu + 600 amu) = 31.2 amu
ν = 1 / (2πc) x √(k / μ)
ν = 1 / (2π x 2.998 x 10⁸ m/s) x √(500 N/m / 31.2 amu) = 1.45 x 10¹³ Hz
θ_vib(bound) = hν / kB
θ_vib(bound) = (6.626 x 10⁻³⁴ J s x 1.45 x 10^13 Hz) / (1.381 x 10⁻²³ J/K) = 1600 K
Therefore, vibrational temperature of heme-bound oxygen is estimated to be 1600 K, which is lower than vibrational temperature of free oxygen gas (θ_vib(gas) ≈ 2260 K).
Part E) q_vib = 1 / (1 - exp(-θ_vib(bound)/T))
q_vib = 1 / (1 - exp(-1600 K / 310 K)) = 7.63 x 10⁻²
Therefore, vibrational partition function for oxygen bound to a heme group at T=310K is 7.63 x 10⁻².
Part F) K = (P_O2 x q_vib x exp(-w/(RT))) / Λ
K = (1.00 atm x 7.63 x 10⁻² x exp(-(-63 kJ/mol)/(8.314 J/(mol K) x 310 K))) / (1.75 x 10⁻¹¹ m) = 3.34 x 10⁵
Therefore, binding constant for the weak bond formed between oxygen and the heme group is 3.34 x 10⁵ .
Part G: K = (P_O2 x q_vib x exp(-ΔG°/(RT))) / Λ
ΔG° = -RT ln K
ΔG° = - (8.314 J/(mol K) x 310 K) x ln (3.34 x 10⁵ / (0.05 atm x 7.63 x 10⁻² x 1.75 x 10⁻¹¹m)) = -50.7 kJ/mol
Therefore, standard Gibbs energy change for binding of oxygen to the heme group at P=0.05 atm and T=310K is -50.7 kJ/mol.
Part H) ΔG° = ΔH° - TΔS°
ΔH° = ΔG° + TΔS°
ΔH° = -50.7 kJ/mol + (310 K x 70 J/(mol K)) = -28.6 kJ/mol
Therefore, standard enthalpy change for binding of oxygen to heme group at P=0.05 atm and T=310K is -28.6 kJ/mol.
Part I) As fB = [O2]/([O2] + K)
= (0.003 mol/L) / (0.003 mol/L + 3.34 x 10⁵ L/mol) = 8.95 x 10⁻⁹
Therefore, fraction of binding sites on the protein that are bound to oxygen is 8.95 x 10⁻⁹.
To know more about partial pressure, refer
https://brainly.com/question/19813237
#SPJ1
An acid donates a proton to form its ________ , which therefore has one less _______ , and one more _______ than its acid.
conjugate base, hydrogen atom, negative charge
An acid donates a proton to form its conjugate base, which therefore has one less hydrogen atom and one more negative charge than its acid. The strength of an acid depends on its ability to donate a proton to form its conjugate base. The weaker the acid, the stronger the conjugate base, and the stronger the acid, the weaker the conjugate
base.The conjugate base of a strong acid is weak because it has a very low ability to accept another proton since it is already carrying a negative charge. A weak acid has a strong conjugate base since it has a high ability to accept
another proton. Thus, an acid and its conjugate base are related to each other in terms of their ability to donate or accept a proton. For example, hydrochloric acid (HCl) dissociates in water to form H+ and Cl-. Its conjugate base is
chloride (Cl-) which is strong since it cannot accept another proton to form HCl again.
For more similar questions on topic Acid-base chemistry.
https://brainly.com/question/22101058
#SPJ11
If 50 grams of sodium chloride are mixed with 100 grams of water at 80°C, how much will not dissolve?
To determine how much sodium chloride will not dissolve, we need to know the solubility of NaCl at 80°C. At 80°C, the solubility of NaCl in water is 37.8 g/100 mL.
We have 100 grams of water which is equivalent to 100/1000 = 0.1 L of water.
The maximum amount of NaCl that can dissolve in 0.1 L of water at 80°C is:
37.8 g/100 mL x 0.1 L = 0.378 x 10 g = 3.78 g
Since we have 50 grams of NaCl, which is greater than the maximum amount that can dissolve, the excess amount that will not dissolve is:
50 g - 3.78 g = 46.22 g
Therefore, 46.22 grams of NaCl will not dissolve.
The thioketal product of a certain reaction is given below. Draw the structure of: the organic reactant the protecting group reactant H r
Answer: The organic reactant is 1,3-propanedithiol. This molecule contains two thiol groups (-SH) separated by a three-carbon chain. In the presence of iodine, the thiol groups are oxidized to the corresponding disulfide (-S-S-) bonds. One of the thiol groups can then be protected with a suitable reagent such as acetone or dimethoxyethane to give a thioketal.
Protecting groups are commonly used in organic synthesis to selectively mask certain functional groups. They allow for specific reactions to occur at desired sites without interfering with other functional groups present in the molecule. In the case of the thioketal product shown, the protecting group used is likely an acetone ketal. This involves reacting one of the thiol groups with acetone in the presence of acid to form a ketal, which protects the thiol from further reaction while allowing the other thiol to react with iodine.
Know more about acetone ketal here:
https://brainly.com/question/14789253
#SPJ11
determine the limiting reactant, amounts of each product formed, and the amount by which the excess reactant is for a reaction between 12.0 grams of nh3 and 15.0 grams of o2.
To determine the limiting reactant, amounts of each product formed, and the amount by which the excess reactant is for a reaction between 12.0 grams of NH₃ and 15.0 grams of O₂, the balanced chemical equation and stoichiometry must be used.
The balanced chemical equation for the reaction between NH₃ and O₂ is:
4NH₃ + 5O₂ → 4NO + 6H₂O
To determine the limiting reactant, the amounts of reactants must be converted to moles. The molar mass of NH3 is 17.03 g/mol and the molar mass of O₂ is 32.00 g/mol.
12.0 g NH₃ × (1 mol NH3/17.03 g NH₃) = 0.705 mol NH
315.0 g O₂ × (1 mol O2/32.00 g O₂) = 0.469 mol O₂
The stoichiometry of the balanced chemical equation indicates that 4 moles of NH₃ reacts with 5 moles of O₂. The mole ratio of NH₃ to O₂ is 4/5 or 0.8. Since the mole ratio of NH₃ to O₂ is greater than the actual mole ratio of 0.705/0.469 or 1.50, NH₃ is the excess reactant and O₂ is the limiting reactant.
To determine the amount of each product formed, the mole ratio of products to limiting reactant must be used. The mole ratio of NO to O₂ is 4/5 or 0.8, and the mole ratio of H₂O to O₂ is 6/5 or 1.2. Since O₂ is the limiting reactant, the amount of NO and H₂O that can be produced is based on the mole ratio to O₂.
0.469 mol O₂ × (4 mol NO/5 mol O₂) × (30.01 g NO/1 mol NO) = 0.601 g NO
0.469 mol O₂ × (6 mol H₂O/5 mol O₂) × (18.02 g H₂O/1 mol H₂O) = 0.674 g H₂O
The amount of excess NH₃ is determined by subtracting the moles of NH₃ used from the moles of NH₃ added.
0.705 mol NH₃ − (0.469 mol O₂ × 4 mol NH₃ / 5 mol O₂) = 0.408 mol NH₃
Thus, the limiting reactant is O₂, 0.601 g NO and 0.674 g H₂O are produced, and there is 0.408 mol of excess NH₃.
Learn more about limiting reactant: https://brainly.com/question/12741756
#SPJ11
for 280.0 ml of a buffer solution that is 0.225 m in hcho2 and 0.300 m in kcho2, calculate the initial ph and the final ph after adding 0.028 mol of n
The amount of salt in the buffer solution will rise by 0.028 mol since the added Na is a salt. The amount of acid present won't alter. Consequently, the finished pH of the As a result, the buffer solution's final pH may be determined as follows: pH = 4.74 + log((0.300 + 0.028)/0.225) = 5.11.
The Henderson-Hasselbalch equation, which asserts that pH = pKa + log([salt]/[acid]), may be used to determine the initial pH of a buffer solution. HCHO2 and KCHO2 have pKas of 4.74 and 9.31, respectively. Consequently, the following formula may be used to determine the buffer solution's starting pH: pH = 4.74 + log(0.300/0.225) = 4.98.
The buffer solution will become more basic as a result of the addition of hydroxide ions after adding 0.028 mol of Na. With the revised salt and acid concentrations, the Henderson-Hasselbalch equation may still be used to determine the buffer solution's ultimate pH.
Learn more about buffer solution at:
https://brainly.com/question/31367305
#SPJ12
Democritus and dalton both proposed that matter consists of atoms. How did their approaches to reaching that conclusion differ
Dalton employed the scientific method—reasoning based on the findings of experiments—whereas Democritus exclusively relied on his own logic and mental inferences.
Democritus developed his ideas about atoms by intellectual inquiry, whereas Dalton developed his ideas through experimentation and meticulous assessment. Democritus had no verifiable truths to support his beliefs and no means of testing them because he relied solely on ideas and did not conduct controlled tests.
Dalton tested his theories and took exact measurements to refine them. Democritus lacked empirical evidence to back up his beliefs and no way to test them because he relied solely on intellect and did not conduct scientific experiments.
To know more about Dalton's theory, visit,
https://brainly.com/question/17771833
#SPJ4
Rank the following items in order of decreasing radius: K, K^+, and K^-. Rank from largest to smallest radius. To rank items as equivalent, overlap them.
K, K^+, and K^-
Largest radius Smallest radius
______________ ______________
In isoelectronic species, the species that have the least number of electrons will have the smallest radius. Therefore, K+ has the smallest radius amongst K, K+ and K-.The order of the radius of the given species can be given as follows:
K > K⁻ > K⁺
The effective nuclear charge experienced by the K atom is +1, as it has one valence electron which can shield 18 electrons. Therefore, the attraction between the valence electron and the nucleus is weak which makes the atomic size larger than that of K- and K+.
The effective nuclear charge experienced by the K-atom is +1, as it has one valence electron which can shield 17 electrons. The attraction between the valence electron and the nucleus is stronger than in K due to less screening effect by electrons. Therefore, the atomic size is smaller than that of K.
The effective nuclear charge experienced by the K⁺ atom is +1, as it has one valence electron which can shield 19 electrons. The attraction between the valence electron and the nucleus is maximum in K+ due to the absence of one electron from the 4s orbital. Therefore, the atomic size is the smallest among the given species.
To know more about isoelectronic species:
https://brainly.com/question/30633067
#SPJ11
Determine the overall reaction and its standard cell potential at 25 �C for the reaction involving the galvanic cell made from a half-cell consisting of a silver electrode in 1 M silver nitrate solution and a half-cell consisting of a zinc electrode in 1 M zinc nitrate. Is the reaction spontaneous at standard conditions?
The reaction involved in the galvanic cell made from a half-cell consisting of a silver electrode in 1 M silver nitrate solution and a half-cell consisting of a zinc electrode in 1 M zinc nitrate is given as follows:2 Ag(s) + Zn2+ (aq) → Zn(s) + 2 Ag+ (aq)The standard cell potential at 25 °C for the given reaction can be determined using the following formula: E°cell
= E°cathode - E°anodeHere, the E°cathode and E°anode represent the standard reduction potentials of cathode and anode respectively. The values of these standard reduction potentials can be obtained from the standard reduction
potentials table.Using the values of standard reduction potentials from the table, we have:E°cell = E°Ag+ / Ag - E°Zn2+ / Zn= +0.80 V - (-0.76 V)= +1.56 VThe reaction is spontaneous at standard conditions because the calculated standard
cell potential is positive (+1.56 V). Therefore, the reaction will proceed spontaneously from left to right direction.The bolded non-consecutive keywords are: spontaneous, standard conditions, galvanic cell, reduction potentials.
For more similar questions on topic Electrochemistry.
https://brainly.com/question/20513633
#SPJ11
What is the PH of a solution if [H3O]= 1. 7×10-3 M
Answer: 2.77
Explanation: pH=-log[H+] (=-log[H3O+])
pH=-log[1.7*10^-3]=2.77
Water-cooled West condensers are typically used to condense solvent vapors while heating reactions under reflux. Select the proper inlet port for the coolant water Either port is acceptable to use as the inlet port. The bottom port is the proper inlet The top port is the proper inlet. Water should be introduced into the condenser through both ports simultaneously
The proper inlet port for the coolant water in a water-cooled West condenser is the bottom port.
The bottom port of the condenser is designed to be the inlet for the coolant water as it allows for proper flow and distribution of the water throughout the condenser. The top port is usually used for venting purposes and should not be used as an inlet port. It is important to introduce water into the condenser through the proper inlet port to ensure efficient cooling of the solvent vapors and to prevent any potential damage to the condenser.
To know more about coolants, here
brainly.com/question/31182856
#SPJ4
Pls help if u cannn!!
Answer:
proofs attached to answer
Explanation:
proofs attached to answer
WILL GIVE BRAINLIEST ANSWER AND 5 STAR RATING HELP ASAP
if a pipet bulb contains 5 ml of hydrogen gas, how many mL of oxygen gas would be needed to make the optimum mixture?
Answer:
To determine the volume of oxygen gas needed to make an optimum mixture with 5 mL of hydrogen gas, we need to know the ratio of hydrogen to oxygen in the mixture.
The optimum ratio of hydrogen to oxygen for combustion is 2:1 by volume. This means that for every 2 volumes of hydrogen gas, we need 1 volume of oxygen gas.
Therefore, to calculate the volume of oxygen gas needed to make an optimum mixture with 5 mL of hydrogen gas, we can use the following formula:
volume of oxygen gas = (volume of hydrogen gas) / 2
Plugging in the values, we get:
volume of oxygen gas = (5 mL) / 2
volume of oxygen gas = 2.5 mL
So we would need 2.5 mL of oxygen gas to make an optimum mixture with 5 mL of hydrogen gas
Calculate the mass of sulfur that must react to produce 9.30 L of sulfur dioxide (SO,) at
740 mmHg and 125°C.
How much ammonium chloride (NH4Cl), in grams, is needed to produce 2.5 L of a 0.5M aqueous solution?
The mass (in grams) of ammonium chloride, NH₄Cl needed to produce 2.5 L of a 0.5M aqueous solution is 66.88 grams
How do i determine the mass of ammonium chloride, NH₄Cl needed?First, we shall determine the mole of ammonium chloride, NH₄Cl. Details below:
Volume = 2.5 LMolarity = 0.5 MMole of ammonium chloride, NH₄Cl =?Molarity = Mole / Volume
Cross multiply
Mole of ammonium chloride, NH₄Cl = molarity × volume
Mole of ammonium chloride, NH₄Cl = 0.5 × 2.5
Mole of ammonium chloride, NH₄Cl = 1.25 mole
Finally, we shall determine the mass of ammonium chloride, NH₄Cl needed. Details below:
Mole of ammonium chloride, NH₄Cl = 1.25 moleMolar mass of ammonium chloride, NH₄Cl = 53.5 g/molMass of ammonium chloride, NH₄Cl =?Mass = Mole × molar mass
Mass of ammonium chloride, NH₄Cl = 1.25 × 53.5
Mass of ammonium chloride, NH₄Cl = 66.88 grams
Therefore, we can conclude that the mass of ammonium chloride, NH₄Cl is 66.88 grams
Learn more about mass:
https://brainly.com/question/21940152
#SPJ1
Consider the following compound: 8 N 5 2. 3. 4. Determine the oxidation number atoms (a) 1. (b) 6, and (c) 7, a.) b.) c.) What is the average oxidation number for carbon in this compound? Use the algorithm method with the formula, not the structure. Enter fractions in decimal form with at least 3 spaces after the decimal. e.g. if O.N. E. then enter 2.500. Evaluate
The oxidation number of atoms (a) 1. (b) 6, and (c) 7 are as follows:The oxidation number of atom 1 is +8,The oxidation number of atom 6 is +5,The oxidation number of atom 7 is -2.The average oxidation number for carbon in this compound is -1.875.
The algorithm method with the formula is used to determine the average oxidation number for carbon in the compound. The formula to calculate the oxidation state of carbon can be given as:
Oxidation state of carbon = (number of carbon atoms x oxidation state of carbon) / total number of atoms.The given compound 8 N 5 2.3.4 consists of 19 atoms, of which 8 are carbon atoms, 5 are nitrogen atoms, and 6 are hydrogen atoms.
The oxidation state of nitrogen is -3 in the compound, and the oxidation state of hydrogen is +1.Now, the oxidation state of carbon is calculated as follows:
Oxidation state of carbon = (8 × oxidation state of carbon) / 19
We are supposed to find the average oxidation number of carbon atoms. To do this, we sum up the oxidation numbers of all carbon atoms and divide the sum by the total number of carbon atoms.
Oxidation state of carbon = (5* -1 + 3* -2 + 6 * +1) / 8
Oxidation state of carbon = (-5 - 6 + 6) / 8
Oxidation state of carbon = -1.875
Thus, the average oxidation number for carbon in this compound is -1.875.
Learn more about oxidation number here:
brainly.com/question/29263066
#SPJ11
caproic acid, which is responsible for the foul odor of dirty socks, is composed on c, h, and o atoms. combustion of a 0.225 g sample of this acid produces 0.512 g co2 and 0.209 g h2o. What is the empirical formula of caproic acid?
The empirical formula of caproic acid is [tex]C_4H_8O[/tex].
What is caproic acid? Caproic acid, also known as hexanoic acid, is a six-carbon, straight-chain fatty acid.
Caproic acid has a rancid odor and is commonly found in milk and other dairy items.
Caproic acid can be found in the milk of many mammals, including cows and goats.
What is the empirical formula of caproic acid? The following information was given: 0.225 g of caproic acid was burned, producing 0.512 g of [tex]CO_2[/tex] and 0.209 g of[tex]H_2O[/tex].
To solve the issue, you should start with the combustion reaction:
2 [tex]C_6H_1_2O_2[/tex] + 19 [tex]O_2[/tex] → 12 [tex]CO_2[/tex] + 12 [tex]H_2O[/tex]
The ratios of moles of [tex]CO_2[/tex] to moles of [tex]C_6H_1_2O_2[/tex] are 12:2, or 6:1, and the ratios of moles of [tex]H_2O[/tex] to moles of [tex]C_6H_1_2O_2[/tex] are 12:1, or 6:0.5. This signifies that the stoichiometry of the combustion reaction is [tex]C_6H_1_2O_2[/tex].
Start with the weight of [tex]CO_2[/tex]: 0.512 g/44.01 g/mol = 0.012 mol [tex]CO_2[/tex]
Weight of [tex]H_2O[/tex]: 0.209 g/18.02 g/mol = 0.012 mol [tex]H_2O[/tex]
Since the stoichiometric ratio of the combustion reaction is 1:1, the number of moles of [tex]C_6H_1_2O_2[/tex] must be equal to the number of moles of [tex]CO_2[/tex] or [tex]H_2O[/tex].
Therefore, [tex]C_6H_1_2O_2[/tex] is 0.012 mol. Divide the molar mass of [tex]C_6H_1_2O_2[/tex] by 0.012 mol to get the molecular mass of [tex]C_6H_1_2O_2[/tex]: 0.225 g/72.09 g/mol = 0.00312 mol.
The subscripts of [tex]C_4H_8O[/tex] can be determined by dividing the number of atoms in [tex][tex]C_6H_1_2O_2[/tex][/tex] by the greatest common factor of all subscripts.
Divide all by 0.00312 to obtain the empirical formula: [tex]C_4H_8O[/tex]
Learn more about empirical formula: https://brainly.com/question/1603500
#SPJ11
How much cesium (half-life = 2 years) would remain from a 10 g sample after 2 years?
5 g of cesium(half-life = 2 years) would remain from a 10 g sample after 2 years.
Cesium has a half-life of 2 years. The half-life of a material is the length of time necessary for half of it to degrade or react. Half-life is a property of a chemical that is commonly represented by the sign "t½".
To find out how much cesium (half-life = 2 years) would remain from a 10 g sample after 2 years, we can use the formula
N = N0(1/2)^(t/t1/2) where N is the final amount, N0 is the initial amount, t is the time passed, and t1/2 is the half-life period.
In this case, N0 = 10 g, t = 2 years, and t1/2 = 2 years.
Substituting these values into the formula:
N = N0(1/2)^(t/t1/2)
N = 10 g(1/2)^(2/2)
N = 10 g(1/2)^1
N = 10 g(0.5)
N = 5 g
For more such questions on half-life, click on:
https://brainly.com/question/14936355
#SPJ11
A 1.00 liter solution contains 0.32 M ammonia and 0.42 M ammonium iodide.
If 0.110 moles of calcium hydroxide are added to this system, indicate whether the following statements are true or false.
(Assume that the volume does not change upon the addition of calcium hydroxide.)
_______TrueFalse A. The number of moles of NH3 will increase.
_______TrueFalse B. The number of moles of NH4+ will increase.
_______TrueFalse C. The equilibrium concentration of H3O+ will decrease.
_______TrueFalse D. The pH will remain the same.
_______TrueFalse E. The ratio of [NH3] / [NH4+] will remain the same.
When 0.110 moles of calcium hydroxide are added to a solution containing 0.32 M ammonia and 0.42 M ammonium iodide, then statements B and C are True and statements A, D, and E are False.
A. The number of moles of NH₃ will increase. – False.
Adding calcium hydroxide to the system will not affect the amount of ammonia in the solution.
B. The number of moles of NH₄⁺ will increase. – True.
Adding calcium hydroxide will react with ammonium iodide, producing more ammonium ions in the solution.
C. The equilibrium concentration of H₃O⁺ will decrease. – True.
Adding calcium hydroxide will result in more hydroxide ions in the solution, thus decreasing the concentration of H₃O⁺.
D. The pH will remain the same. – False.
Adding calcium hydroxide will increase the number of hydroxide ions in the solution, thus increasing the pH.
E. The ratio of [NH₃]/[NH₄⁺] will remain the same. – False.
Adding calcium hydroxide will result in more ammonium ions in the solution, thus decreasing the ratio of [NH₃]/[NH₄⁺].
Therefore, statements B and C are true whereas statements A, D, and E are false.
To know more about ammonia, refer here:
https://brainly.com/question/14672082#
#SPJ11
select which, if any, of the anions of the homonuclear diatomic molecules formed by B, C, N, O, and F have shorter bond lengths than those of the corresponding neutral molecules. Consider only the anions with 1- and 2- charge. boron, carbon, nitrogen, oxygen, fluorine, or none (it can also me more than one option)
The anion of nitrogen (N2-) has a shorter bond length than that of the corresponding neutral molecule.
In order to determine which, if any, of the anions of the homonuclear diatomic molecules formed by B, C, N, O, and F have shorter bond lengths than those of the corresponding neutral molecules, we need to consider the bond length trends across the periodic table.
First, let's review the general trend of bond length across a period.
Bond length decreases across a period as the atomic number increases.
This is because the number of protons increases across a period, which means that the electrons are more strongly attracted to the nucleus and the atomic radius decreases.
Second, let's review the general trend of bond length down a group.
Bond length increases down a group as the number of electron shells increases.
This means that there is a greater distance between the nucleus and the bonding electrons, resulting in longer bond lengths.
Now, let's apply this knowledge to the homonuclear diatomic molecules formed by B, C, N, O, and F.
We will start by considering the neutral molecules, and then move on to the anions.
We will also only consider the 1- and 2- anions, since these are the relevant charges for this question.
Boron (B2) has a bond length of 1.33 Å.
Carbon (C2) has a bond length of 1.16 Å.
Nitrogen (N2) has a bond length of 1.10 Å.
Oxygen (O2) has a bond length of 1.21 Å.
Fluorine (F2) has a bond length of 1.42 Å.
Now let's consider the anions.
If the anions have extra electrons that are added to antibonding orbitals, this will weaken the bond strength, which in turn will lengthen the bond length.
Therefore, we would expect the anions to have longer bond lengths than the corresponding neutral molecules.
Boron (B2-) has not been observed, so we cannot compare it to the neutral molecule.
Carbon (C2-) has a bond length of 1.28 Å, which is longer than that of the neutral molecule.
Nitrogen (N2-) has a bond length of 1.14 Å, which is shorter than that of the neutral molecule.
Oxygen (O2-) has a bond length of 1.33 Å, which is longer than that of the neutral molecule.
Fluorine (F2-) has a bond length of 1.42 Å, which is the same as that of the neutral molecule.
For similar questions on homonuclear diatomic.
https://brainly.com/question/30502028
#SPJ11
What change did you observe in the hot water when you poured it in the mixing bowl?
Answer: You should add a picture but just put that the mixing bowl will get water vapor around the bowl
Explanation: the mixing bowl will get water vapor around the bowl
This portion of the titration curve of a strong base with a strong acid is the same as this region for a weak base titrated with a strong acid. a. the portion after all of the base has been neutralized
b. the endpoint pH c. the portion before the endpoint is reached d. the buffer region
The portion of the titration curve of a strong base with a strong acid is the same as the region before the endpoint is reached for a weak base titrated with a strong acid. The correct answer is Option C.
What is titration?Titration refers to the process of measuring the volume of one solution required to react with a given volume of another solution completely. The titration curve is a graph that shows the change in pH during a titration.
The pH changes quickly from acidic to basic as the volume of strong base added approaches the stoichiometric point. It can be observed that the pH of the strong base solution is high, but as it is titrated with an acid, its pH decreases. The graph gradually falls as the acid is added, finally reaching a sharp rise known as the equivalence point or endpoint. As a result, the correct option is c. the portion before the endpoint is reached.
Learn more about titration curve here: https://brainly.com/question/31030054
#SPJ11
Why do we use anhydrous diethyl ether? Choose the right answer.
A. Since Grignard reagents react with O2 to form hydroperoxides, vapors from highly volatile diethyl ether solvent prevents O2 from reaching the reaction mixture.
B. Ether molecules coordinate with grignard Reagent
C. Ether helps stabilize the Grignard reagent
We use anhydrous diethyl ether since Grignard reagents react with O2 to form hydroperoxides, vapors from highly volatile diethyl ether solvent prevents O2 from reaching the reaction mixture. Option A is the correct answer.
Anhydrous diethyl ether is commonly used as a solvent in Grignard reactions. The main reason for using anhydrous diethyl ether is to prevent the Grignard reagent from reacting with moisture or oxygen in the air, which would lead to unwanted side reactions or a reduction in the yield of the desired product.
Diethyl ether is highly volatile, and its vapors help to exclude oxygen from the reaction mixture, preventing the formation of hydroperoxides. Additionally, diethyl ether helps to dissolve the reactants and stabilize the Grignard reagent, making it more reactive towards the substrate. Hence option A is correct.
To know more about diethyl ether, here
brainly.com/question/28623053
#SPJ4
Study the drawing of the combination electrode you will make in this experiment and answer the following questions. What are the components of the reference and of the working electrodes? What is the function of the attached string? How must the string be placed so that it functions properly?
The combination electrode in the given drawing is made up of a reference electrode and a working electrode.
What are the components of the reference and of the working electrodes?The working electrode in the given combination electrode is made up of a platinum wire. The platinum wire is coated with platinum black. This is the black substance on the lower part of the platinum wire in the given drawing.
The reference electrode is made up of a silver wire that is coated with silver chloride. A small amount of KCl solution is placed in the tube at the top of the silver wire.
What is the function of the attached string?The string that is attached to the combination electrode is used to immerse the electrode in a solution. It is attached to the top of the reference electrode. The string also acts as a support to prevent the combination electrode from sinking into the solution being measured.
How must the string be placed so that it functions properly?The string should be attached to the top of the reference electrode. When the combination electrode is immersed in the solution, the string should be at the top so that the electrode does not sink into the solution being measured.
See more about electrode in:
https://brainly.com/question/17362810
#SPJ11
what information is needed to balance a chemical formula equation example periodic table or list of chemicals
To balance a chemical formula equation, you need to know the elements and their respective atomic mass. You can find this information on the periodic table.
To balance a chemical formula equation, you need the following information: periodic table or list of chemicals. A chemical formula is a symbolic representation of the elements present in a compound, as well as the proportion in which they are present. The subscripts indicate the relative number of atoms of each element in the compound's formula. The Periodic Table can also be useful in determining the atomic masses of the elements involved in the reaction. A balanced chemical equation is an essential tool for predicting the outcome of chemical reactions, calculating reaction stoichiometry, and calculating the amount of reactants needed to produce a given amount of product.
Therefore, you need to have a list of chemicals, formulas, and the number of atoms for each element in each reactant and product in order to balance a chemical equation.
To know more about Atomic mass refer here :
https://brainly.com/question/30390726
#SPJ11
Calculate the molarity (moles/L) of acetic acid in vinegar: Use the molar mass of acetic acid to convert your molarity value above to grams of acetic acid per mL Take this number times [00 to get & percent acetic acid in vinegar: (The result should be close to 5%.)
Calculating the molarity of acetic acid in vinegar:
Molarity (M) = (number of moles of solute) / (volume of solution in liters)
What is molar mass?The molar mass is the same as mass number if it is only one element with no subscripts.
the mass of acetic acid in the vinegar will be determined first:
Mass = volume (L) × density (g/mL)
Mass = 1 L × 1.05 g/mL
Mass = 1.05 g/L
Then, the moles of acetic acid can be calculated using the molar mass of acetic acid:
Moles = mass (g) / molar mass
Moles = 1.05 g / 60.05 g/mol
Moles = 0.01748 mol
Acetic acid molarity = 0.01748 mol / 1 L
= 0.01748 M
Calculating the percentage of acetic acid in vinegar:
% acetic acid = (mass of acetic acid/volume of vinegar) × 100%
= (1.05 g / 100 mL) × 100%
= 1.05%
Therefore, the result of the calculation will be close to 1.05%, not 5%.
To know more about molarity:
https://brainly.com/question/19517011
#SPJ11
A Read each question carefully. Write your response in the space provided for each part of each question. Answers must be written out in paragraph form. Outlines, bulleted lists, or diagrams alone are not acceptable and will not be scored. Scientists are testing substance L to determine how it enters mammalian cells in a culture. The cells maintain a 120 millimolar (mM) intracellular concentration of substance L. The scientists determined the rate of entry of substance L into the cells at various external concentrations of substance L (10 to 100 mM) in culture medium (Table 1). Table 1. Rate of entry of substance L into mammalian cells in culture External concentration of substance L (MM) Rate of entry of substance L into cell as a percent of maximum 10 5% 20 25% 30 45% 40 65% 50 80% 60 90% 70 95% 80 100% 40 65% 50 80% 60 90% 70 95% 80 100% 90 100% 100 100% The cells maintain substance L at an internal concentration of 120 mM. (a) Identify the most likely mode of transport across the membrane for substance L. Explain how information provided helps determine the most likely mode of transport. BI y = 0 / 10000 Word (b) On the axes provided, construct an appropriately labeled line graph with correct scale and units to illustrate the data in Table 1. (b) On the axes provided, construct an appropriately labeled line graph with correct scale and units to illustrate the data in Table 1. 0/2 File Limit (c) Determine the external concentration of substance L that will result in one-half of the maximal entry rate. BI VE (d) Predict the likely effect on the ability of substance L to enter the cells if substance L is attached to a large protein instead of free in the culture. B I USE 0
(a) The most likely mode of transport across the membrane for substance L is facilitated diffusion.
What is transport?Transport is the movement of people, animals and goods from one location to another. It is a key factor in economic growth as it allows for the exchange of people, goods and services between different locations.
This can be determined from the data in Table 1 which shows that the rate of entry is directly related to the external concentration of substance L. As the external concentration increases, so does the rate of entry, indicating that the transport is not mediated by active transport and instead is dictated by the concentration gradient.
(b) The line graph below illustrates the data in Table 1, with the external concentration of substance L on the x-axis and the rate of entry of substance L into the cell as a percent of maximum on the y-axis.
(c) The external concentration of substance L that will result in one-half of the maximal entry rate is 50 mM. This can be determined from the graph, which shows that the rate of entry reaches half the maximum value at 50 mM.
(d) If substance L is attached to a large protein, it is likely to have a reduced ability to enter the cells. This is because the larger size of the protein will make it more difficult for it to pass through the membrane, thus reducing the rate of entry of the substance L into the cell.
To learn more about transport
https://brainly.com/question/30302054
#SPJ1
Which of the following is an Arrhenius base?
A) CH3CO2H
B) LiOH
C) CH3OH
D) NaBr
E) More than one of these compounds is an Arrhenius base
The correct option is (B) LiOH. An Arrhenius base is one that dissociates in water to produce hydroxide ions (OH⁻). LiOH is an example of an Arrhenius base.
Arrhenius acid-base theoryAccording to the Arrhenius acid-base theory, acids are compounds that dissolve in water to form H⁺ (hydrogen ion) while bases are compounds that dissolve in water to form OH⁻ (hydroxide ion).
Arrhenius Acid: A substance that dissociates in water to give H⁺ (hydrogen ion) ions is called an Arrhenius acid. They release hydrogen ions when dissolved in water. For example, HCl, HNO₃, H₂SO₄, HClO₄, etc.
Arrhenius Base: A substance that dissociates in water to give OH⁻ (hydroxide ion) ions is called an Arrhenius base. They release hydroxide ions when dissolved in water. Examples include NaOH, KOH, Mg(OH)₂, Ca(OH)₂, etc.
Let's now analyze the given options.
A) CH₃CO₂H is an organic acid called acetic acid. It is a weak acid and not an Arrhenius base.
B) LiOH dissociates in water to form Li⁺ and OH⁻ ions. Hence, it is an Arrhenius base.
C) CH₃OH is an alcohol called methanol. It is a weak acid and not an Arrhenius base.
D) NaBr is an ionic compound consisting of Na⁺ and Br⁻ ions. It is neither an acid nor a base.
E) More than one of these compounds is an Arrhenius base. This statement is incorrect because only option B (LiOH) is an Arrhenius base.
Hence, option B is the correct answer.
To know more about Arrhenius base, refer here:
https://brainly.com/question/516295#
#SPJ11