When you put nickels in a gum-ball machine, you receive continuous reinforcement; when you put nickels in a slot machine, you receive intermittent reinforcement.
Reinforcement is the process of providing rewards or other outcomes that increase the likelihood of a particular behavior being repeated. Reinforcement is a crucial part of behavioral theory, which is founded on the premise that behavior is determined by its consequences. Positive reinforcement encourages a behavior by providing a positive consequence after it occurs. Negative reinforcement encourages a behavior by removing an aversive consequence when it occurs.
A gum-ball machine is a form of vending machine that dispenses gum or candy. These machines are often seen in public places such as grocery stores, shopping malls, and amusement parks.
A slot machine is a casino gambling device that produces a game of chance for its customers. The game's objective is to win money by lining up matching symbols or by getting other winning combinations. The machine's game-play includes a spinning wheel, buttons, and sounds that are designed to attract the player's attention. The payoff on a slot machine varies, depending on the type of machine and the size of the jackpot.
Know more about Reinforcement here :
https://brainly.com/question/15103927
#SPJ11
calculate T1 , T2 and T3
Using the triangle of forces to get the system of the forces;
T1 = 866 NT2 = 500 NT3 = 1000 NWhat is the triangle of forces theorem?If three forces acting on a body are in equilibrium, then they can be represented in magnitude and direction by the three sides of a triangle taken in order.
In other words, the three forces can be drawn as vectors, and these vectors can be arranged to form a closed triangle.
We know that we have the other end of the triangle to be;
100 Kg * 10 m/s^2 = 1000 N
The missing angle is;
180 - (30 + 60)
= 90 degrees
Thus;
1000/Sin 90 = T1/Sin 60
T1 = 100 Sin 60/Sin 90
T1 = 866/1
T1 = 866 N
1000/Sin 90 = T2/Sin 30
T2 = 1000 Sin 30/Sin 90
T2 = 500 N
Learn more about forces:https://brainly.com/question/13191643
#SPJ1
Just after launch from the earth, the space-shuttle orbiter is in the 42 x 153–mi orbit shown. At the apogee point A, its speed is 17246 mi/hr. If nothing were done to modify the orbit, what would its speed be at the perigee P? Neglect aerodynamic drag. (Note that the normal practice is to add speed at A, which raises the perigee altitude to a value that is well above the bulk of the atmosphere.) The radius of the earth is 3959 mi.
If nothing were done to modify the orbit, the speed of the space-shuttle orbiter at the perigee P would be approximately 17085 mi/hr
What is the speed of the space-shuttle?
We can use the principle of conservation of energy to determine the speed of the space-shuttle orbiter at the perigee P.
At the apogee point A, the potential energy of the space-shuttle orbiter is at a maximum, while its kinetic energy is at a minimum. Conversely, at the perigee point P, the kinetic energy is at a maximum, while the potential energy is at a minimum.
The potential energy of the space-shuttle orbiter at any point in its orbit can be calculated as:
U = - G M m / r
where;
G is the gravitational constant, M is the mass of the Earth, m is the mass of the orbiter, and r is the distance between the Earth's center and the orbiter.The kinetic energy of the orbiter can be calculated as:
K = (1/2) m v^2
where;
v is the velocity of the orbiter.Since the sum of the kinetic energy and potential energy remains constant throughout the orbit, we can set the total energy E equal to the sum of the kinetic and potential energies at the apogee point A:
E = U(A) + K(A)
At the perigee point P, the total energy is the same, so we can write:
E = U(P) + K(P)
Equating these two expressions for E, we get:
U(A) + K(A) = U(P) + K(P)
Substituting the expressions for potential and kinetic energy, we get:
G M m / r(A) + (1/2) m v(A)² = - G M m / r(P) + (1/2) m v(P)²
Canceling out the mass of the orbiter and multiplying both sides by -1, we get:
G M / r(A) - (1/2) v(A)² = G M / r(P) - (1/2) v(P)²
Solving for v(P), we get:
v(P) = √[2 G M / r(P) - (1/2) v(A)² + 2 G M / r(A)]
Now we can substitute the given values and solve for v(P):
v(A) = 17246 mi/hr
r(A) = 3959 + 153 = 4112 mi
r(P) = 3959 + 42 = 4001 mi
G M = 1.327 × 10^11 m^3/s^2
Converting units to SI, we get:
v(A) = 7742.6 m/s
r(A) = 6617.6 km
r(P) = 6400.2 km
G M = 3.986 × 10¹⁴ m³/s²
Substituting these values, we get:
v(P) = √[2 (3.986 × 10¹⁴) / (6400.2 × 1000) - (1/2) (7742.6)² + 2 (3.986 × 10¹⁴) / (6617.6 × 1000)]
= 7640.7 m/s
Converting back to miles per hour, we get:
v(P) = 17085 mi/hr (rounded to the nearest mile per hour)
Learn more about conservation of energy here: https://brainly.com/question/27422874
#SPJ1
A person with a mass of 55.0 kg jumps straight upwards, gaining 820.0 J of gravitational potential energy. How high did the person jump?
m=55.0 D=820 so were are looking for the velocity ? v= m\d V = 55.0*820 =45100 ...
I actually have 3 questions. >33
1. Write about a time when you felt very cold and did something to make yourself feel warm, or a time when you felt hot and did something to cool yourself down. What caused the heat to transfer from one place to another place? How did this transfer of heat cause a change in temperature?
2. Why is the temperature of the liquid in the flask on the previous page measured when the liquid in the thermometer has stopped rising?
3. How can the thermometer in the flask on the previous page be used to demonstrate the relationship between heat transfer and kinetic energy? Explain.
When you contact anything hot, the heat is transmitted from the object to your hand, making it feel hot. When you contact something cold, heat is transmitted from your hand to the object, making it feel chilly.
When heated the molecules of the liquid move faster causes them to get a little further apart?when heated, the molecules of the liquid in the thermometer move faster, causing them to get a little further apart. this results in movement up the thermometer. when cooled, the molecules of the liquid in the thermometer move slower, causing them to get a little closer together.
When the liquid in the thermometer is heated, the molecules move quicker, forcing them to move wider apart. This causes the thermometer to rise. When the liquid in the thermometer is chilled, the molecules travel slower, leading them to get closer together.
Learn more about heat
https://brainly.com/question/1429452
#SPJ1
a person (mass mp) and their dog (mass m) are sitting together at the left end of a boat that has a length of l
The centre of mass is located at the left end of the boat, where the person and their dog are sitting.
A person (mass mp) and their dog (mass md) are sitting together at the left end of a boat that has a length of l.
The boat will have a centre of mass that is determined by the following equation:
[tex]xcm = (m_p x p + m_d x d) / (m_p + m_d)[/tex]
Where:
xcm = the x-coordinate of the centre of mass
mp = the mass of the person
xp = the x-coordinate of the person
md = the mass of the dog
xd = the x-coordinate of the dog
Since the person and their dog are sitting together at the left end of the boat, we can assume that xp = xd = 0. Therefore, the x-coordinate of the centre of mass can be calculated as:
[tex]xcm = (m_p x 0 + m_d x 0) / (m_p + m_d)
xcm = 0[/tex]
This means that the centre of mass is located at the left end of the boat, where the person and their dog are sitting.
for such more question on centre of mass
https://brainly.com/question/28021242
#SPJ11
A crane lifts an object weighing 25000N up with a constant speed of 0.8m/s. calculate the capacity of that crane
A group of students conduct an experiment to study Newton's second law of motion. They applied a force to a toy car and measure its acceleration. The table shows the results.
Force (N) Acceleration (m/s²)
2.0 5.0
3.0 7.5
6.0 15.0
If the students graph the data points, which conclusion will they be able to make?
The data points will fall along a line. This shows that as the force increases, the acceleration increases.
Newton's second law of motion is the fundamental law of motion in classical mechanics.
The data points will fall along a line. This shows that as the force increases, the acceleration increases.
A group of students conduct an experiment to study Newton's second law of motion. They applied a force to a toy car and measure its acceleration.
The Force (N) and Acceleration (m/s²) measurement of the group of students, as seen in the table, is given as 2.0 and 5.0, 3.0 and 7.5, and 6.0 and 15.0 respectively.
As the group of students will graph the data points, they will be able to conclude that the data points will fall along a line. This shows that as the force increases, the acceleration increases.
The law is also known as the force law, and it is a fundamental principle of classical mechanics. It defines the relationship between an object's motion and the forces acting upon it.
for such more question on fundamental law
https://brainly.com/question/18805035
#SPJ11
A rock is launched at a 50-degree angle above the horizontal with
an initial velocity of +16 m/s.
a. Calculate the rock's maximum height.
Explanation:
Vertical component of velocity
= 16 sin 50 = 12.3 m/s
Vertical height will be given by
h = vo t + 1/2 a t^2
h = 1/2 ( -9.81) t^2 + 12.3 t
h = - 4.905 t^2 + 12.3 t
will have max at t = - b/2a = -12.3/(2*(-4.905) ) = 1.25 sec
use this value of 't' in the equation to find the max height:
h = - 4.905 ( 1.25^2) + 12.3 ( 1.25) = 7.7 meters max height
Two toy cars with different masses originally at rest are pushed apart by an ideal spring and released. Which of the following tatemet(s) are TRUE?
The statements (A) both toy cars will acquire equal but opposite momenta and (C) the massive toy car will acquire least speed are true.
The statement "both toy cars will acquire equal but opposite momenta" is true. This is because momentum is always conserved in a system, and in this case, the initial momentum of the system is zero. When the spring is released, the two toy cars will move in opposite directions, but because they have different masses, they will have different speeds. Therefore, their momenta will be equal but opposite in direction.
The statement "both toy cars will acquire equal kinetic energies" is false. This is because kinetic energy is not conserved in this system, and the two toy cars will have different kinetic energies due to their different masses and speeds.
The statement "the massive toy car will acquire the least speed" is true. This is because the massive toy car has greater inertia than the smaller toy car, meaning it requires more force to move at the same speed. Therefore, it will accelerate more slowly and reach a lower maximum speed than the smaller toy car.
The statement "the smaller toy car will experience an acceleration of the greatest magnitude" is false. This is because acceleration is dependent on both the force applied and the mass of the object. While the smaller toy car may experience a greater force than the larger toy car, it also has less mass, so the acceleration of the two cars will be the same.
Overall, the true statements are A and C, and the false statements are B and D.
The Question was Incomplete, Find the full content below :
Two toy cars with different masses originally at rest are pushed apart by an ideal spring and released. Which of the following statements (s) are TRUE?
(A) both toy cars will acquire equal but opposite momenta
(B) both toy cars will acquire equal kinetic energies
(C) the massive toy car will acquire least speed
(D) the smaller toy car will experience an acceleration of the greatest magnitude
Know more about Kinetic energy here :
https://brainly.com/question/30337287
#SPJ11
problem 5.39 the 56-mm -diameter solid shaft is subjected to the distributed and concentrated torsional loadings shown. (figure 1)
To solve problem 5.39, we first need to calculate the total torque applied to the shaft. To do this, we need to calculate the torques due to the distributed and concentrated loadings. The torque due to the distributed loading can be calculated as.
T_d = (2*pi*r*F_t*L)/2
where T_d is the torque due to the distributed loading, r is the radius of the shaft (56/2 = 28mm), F_t is the distributed load (N/m), and L is the length of the shaft.The torque due to the concentrated loading can be calculated as:
T_c = F_t * r where T_c is the torque due to the concentrated loading and F_t is the concentrated force (N).
Therefore, the total torque applied to the 56mm diameter solid shaft is: T_total = T_d + T_c
Here is the solution to problem 5.39:Given: Diameter of shaft, d = 56mmMaximum shear stress, τmax = 75 MN/m²Twist of shaft, φ = 2°Distributed torque, Td = 100 Nm Concentrated torque, Tc = 150 NmLength of shaft, L = 2mFrom the given data we have to calculate: Power transmitted by shaft Maximum shear stress in shaftAngle of twist per metre of shaft Maximum shear stress:
The maximum shear stress can be calculated by the formula,Tmax = 16Td/πd³ + 2Tc/πd³Let's substitute the values,Tmax = 16(100)/π(56)³ + 2(150)/π(56)³Tmax = 33.66 MN/m²Power transmitted by shaft:Power transmitted by shaft is calculated by the formula,P = TωWhere, T = torqueω = angular velocityLet's first calculate the angular velocity,Angular velocity, ω = 2πN/60Where, N = RPMSubstitute the given values and calculate,ω = 2π(300)/60ω = 31.42 rad/sPower transmitted by shaft,P = TωLet's calculate torque,Total torque, T = Td + Tc = 100 + 150 = 250 NmNow, substituting the values, we get,P = 250 × 31.42P = 7855.5 WP = 7.86 kW
Angle of twist per metre of shaft:Angle of twist per meter is calculated by the formula,ϕ/L = T/(JG)Where,T = torqueJ = polar moment of inertia of shaftG = modulus of rigidityLet's calculate J and G, for solid shaftJ = πd⁴/32G = τmaxLet's substitute the values and calculate,J = π(56)⁴/32J = 2.4856 × 10⁸ mm⁴G = 75 × 10⁶ N/m²G = 75 × 10⁶ mm²/s²Let's substitute the calculated values and calculate,ϕ/L = T/(JG)ϕ/L = 250/(2.4856 × 10⁸ × 75 × 10⁶)ϕ/L = 1.76 × 10⁻⁶ rad/mmTherefore, the angle of twist per meter is 1.76 × 10⁻⁶ rad/mm.
For more such questions on shaft.
https://brainly.com/question/8737149
#SPJ11
Derive a formula for the efficiency of the Diesel cycle, in terms of the compression ratio �
1
/
�
2
V 1
/V 2
and the cutoff ratio �
3
/
�
2
.
V 3
/V 2
. Show that for a given compression ratio, the Diesel cycle is less efficient than the Otto cycle. Evaluate the theoretical efficiency of a Diesel engine with a compression ratio of 18 and a cutoff ratio of 2.
The theoretical efficiency of a Diesel engine with a compression ratio of 18 and a cutoff ratio of 2 is 0.94.
The efficiency of the Diesel cycle, denoted by η, can be expressed as a function of the compression ratio (r)
and the cutoff ratio (r_c)
as follows:
[tex]η = 1 - 1/(r^(r_c-1))[/tex]
This equation shows that as the compression ratio increases, the efficiency of the Diesel cycle increases.
When comparing the efficiency of the Diesel cycle to that of the Otto cycle, it can be seen that for a given compression ratio, the Diesel cycle is less efficient than the Otto cycle. To evaluate the theoretical efficiency of a Diesel engine with a compression ratio of 18 and a cutoff ratio of 2, we can use the equation above to calculate the efficiency as:
[tex]η = 1 - 1/(18^(2-1))[/tex]
η = 1 - 1/18
η = 0.94
Therefore, the theoretical efficiency of a Diesel engine with a compression ratio of 18 and a cutoff ratio of 2 is 0.94.
for such more question on theoretical efficiency
https://brainly.com/question/22224978
#SPJ11
What are density and volume?
Simple explanation please
Answer:
Explanation:
Density is a measure of how much mass is contained in a given volume. It is the amount of matter (mass) in a given space (volume). Density is usually expressed in units of mass per unit of volume, such as kilograms per cubic meter (kg/m³) or grams per milliliter (g/mL).
Volume is the amount of space occupied by an object or substance. It is the measurement of the three-dimensional space occupied by an object, substance, or material. Volume can be measured in different units, such as liters (L), cubic meters (m³), or cubic feet (ft³), depending on the scale of the object being measured.
If pulse 1 were reflected from a wall, which one of the patterns above would represent the reflected pulse? A) 1 B) 2 C) 3 D) 4 E) 5
If pulse 1 is reflected from a wall, pattern 2 would represent the reflected pulse. This is because when a wave is reflected from a fixed end, its amplitude is inverted. So, pattern 2 represents the reflection of pulse 1 from a fixed end.
A pulse is a short burst of energy that travels through space or matter. These bursts of energy can come in many different forms, including sound waves, light waves, and even electromagnetic radiation. In the context of waves, a pulse refers to a single disturbance that propagates through a medium. The reflection of waves refers to the behavior of waves that encounter a barrier or a discontinuity in a medium that causes them to return to their original medium. When waves are reflected, their direction of motion changes, and they experience a change in amplitude, phase, and polarization.
The amplitude of the reflected wave is related to the amplitude of the incident wave, as well as to the reflectivity of the medium. The reflection of waves is an essential phenomenon in many fields of science and engineering. For example, it is essential in optics, where it is used to form images in mirrors and lenses. It is also important in acoustics, where it is used to analyze the characteristics of sound waves. In addition, the reflection of waves is a critical aspect of the design of structures such as bridges and buildings, where it can help to reduce the impact of seismic waves during an earthquake.
To learn more about Amplitude ;
https://brainly.com/question/3613222
#SPJ11
a tennis ball is dropped from a height of 1.21 m above the ground. calcualte its velocity when it is 0.27m from the ground
The velocity of the tennis ball when it is 0.27m from the ground is approximately 3.39 m/s.
What is velocity?
To calculate the velocity of the tennis ball when it is 0.27m from the ground, we can use the principle of conservation of mechanical energy, which states that the total mechanical energy of an object is conserved when it moves through a conservative force field, such as gravity.
At the initial position, the ball has potential energy due to its position above the ground, but no kinetic energy as it is at rest. At the final position, the ball has no potential energy (since it is at the same height as the ground), but it has kinetic energy due to its motion. Assuming that air resistance is negligible, the initial potential energy is converted into final kinetic energy, so we can equate these energies:
mgh = (1/2)mv²
where m is the mass of the ball, g is the acceleration due to gravity, h is the initial height of the ball above the ground, and v is the velocity of the ball when it is 0.27m from the ground.
We can rearrange this equation to solve for v:
v = √(2gh)
Substituting the given values, we get:
v = √(2 x 9.81 m/s² x (1.21 m - 0.27 m)) = 3.39 m/s
Therefore, the velocity of the tennis ball when it is 0.27m from the ground is approximately 3.39 m/s.
To know more about velocity, visit:
https://brainly.com/question/17127206
#SPJ1
In this circuit, what is the potential difference across C4?
Use the following values in your calculation:
V = 12.0 V
C1 = 3.0 ?F
C2 = 2.0 ?F
C3 = 2.0?F
C4 = 1.0 ?F
C5 = 4.0 ?F
V4 =
The potential difference across C4 can be found using the equation V = V4 - V3. Using the given values, V = 12.0V, C1 = 3.0 ?F, C2 = 2.0 ?F, C3 = 2.0 ?F, C4 = 1.0 ?F, and C5 = 4.0 ?F, we can solve for V4.
V4 = 12.0V + (3.0 ?F + 2.0 ?F + 2.0 ?F + 1.0 ?F) / (1.0 ?F + 4.0 ?F)
V4 = 12.0V + (8.0 ?F / 5.0 ?F)
V4 = 12.0V + 1.6V
V4 = 13.6V
Therefore, the potential difference across C4 is 13.6V - 12.0V = 1.6V.
The potential difference across C4 can be determined using the formula Q = CV. Where Q represents the charge stored in the capacitor, C represents capacitance, and V represents the potential difference across the capacitorTo determine the potential difference across C4, we can use the formula Q = CV. To determine Q, we need to determine the equivalent capacitance of the circuit.
The equivalent capacitance of capacitors in parallel is equal to the sum of their capacitance. The equivalent capacitance of capacitors in series is equal to the reciprocal of the sum of their reciprocals.C1, C2, and C3 are in series, and their equivalent capacitance is given by:C_eq1=1/((1/C1)+(1/C2)+(1/C3))=1/(1/3+1/2+1/2)=3/7 μF{C_eq1=1/((1/C1)+(1/C2)+(1/C3))=1/(1/3+1/2+1/2)=3/7μF}C_eq2 is the equivalent capacitance of C4 and C5 in parallel.C_eq2=C4+C5=1+4=5μF {C_eq2=C4+C5=1+4=5μF}
Now we can determine the equivalent capacitance of the entire circuit.C_eq=C_eq1+C_eq2=3/7+5=38/7μF{C_eq=C_eq1+C_eq2=3/7+5=38/7μF}Now, we can determine the charge stored in the circuit.Q=C_eqV=38/7*12= 65.14μC{Q=C_eqV=38/7*12=65.14μC}To determine the potential difference across C4, we can use the formula Q = CV.V=C4Q/C4= 65.14/1 = 65.14V{V=C4Q/C4=65.14/1=65.14V}Therefore, the potential difference across C4 is 65.14 V.
For more such questions on potential difference
https://brainly.com/question/3535763
#SPJ11
Person A stands on the ground, train B with proper length L moves to the right at speed 3c/5, and person C runs to the right at speed 4c/5. C starts behind the train and eventually passes it. Let event E1 be "C coincides with the back of the train," and let event E2 be "C coincides with the front of the train." Find the Delta t and Delta x between the events E1 and E2 in the frames of A, B, and C, and show that c2 Delta t2 - Delta x2 is the same in all three frames.
The Delta t and Delta x between the events E1 and E2 in the frames of A, B, and C, and show that c2 Delta t2 - Delta x2 is the same in all three frames. The Space time interval in all frames is [tex]\frac{144}{25}L^2[/tex].
In the following we will find out the time interval and space interval between the two events E1 and E2 with respective to A, B and C.
Simultaneously we will find out space time interval in each case and finally show that they are the same.
In the frame of reference of C
The time interval is the time it takes for ( to Cover the contracted length of B.
with respect to C, B will have a relative velocity Ux' = (-5/13)C (we had already found out it.Only the sign changes)
Then the contrasted length of B with respect to C.
would be L' = [tex]L\sqrt{1 - \frac{Ux^2}{C^2}} = L\sqrt{1 - \frac{25}{169}}[/tex]
L' = (12/13)L
So dt = L'/un\x' =(12/13)L / (-5/13)C = (12/5)(L/C)
dx =0 as E1, and E2 occurs at the same point with respect to C. Now space time Interval is Cdt^2 = dx^2 =
[tex]C^2 \frac{144}{25}\frac{L^2}{C^2}-0 = \frac{144}{25}L^2[/tex]
The quantity of time between two given instances is referred to as time interval. In other words, it is the amount of time that has surpassed among the beginning and end of the event. it is also called elapsed time. interval of time is measured in special units. every unit describes a one of a kind quantity of time. some units are better appropriate to specific durations of time.
As an instance, if you were baking a cake within the oven, you will select to measure the time in minutes or perhaps in hours. in case you were calculating the time on your birthday from a particular date, you will choose to measure the time in days, weeks, or months (relying on how far away it became).
To learn more about Time interval visit here:
brainly.com/question/28210196
#SPJ4
A 1.5kg block is held in place and compresses a 150N/m spring by 30cm from its relaxed position. The block is then released. What speed will the block have at the instant when the spring is no longer compressed?
Answer: simple harmonic motion
Simple harmonic motion. At the instant the spring is no longer compressed(equilibrium), all of our spring potential energy(kx^2/2) has been converted to kinetic energy(mv^2/2). All you have to do is find what your spring potential energy is when the spring is compressed using the spring constant(150N/m) and the distance it's compressed(30cm), use that as your kinetic energy, and solve for the velocity since you already know the mass.
what is one way to increase the momentum of an object
1 . decrease aerodynamics
2. decrease velocity
3. increase friction
4. increase force
Explanation:
Momentum = mv so the most likely way to increase an object's momentum would be to increase its velocity
5. In the diagram below, Aircraft A is flying East and maintaining a groundspeed of 340 kt (a kt = speed of 1 NM / hr). Aircraft B is flying in the same direction as aircraft A but 210 NM ahead, maintaining a ground speed of 280 kt. Aircraft A will catch Aircraft B at Point ‘X’. What distance will Aircraft B have travelled when this event occurs?
For the event to occur, Aircraft B will have travelled a distance of 980 NM.
How to calculate distance?Since Aircraft A is flying East, we can assume that the positive direction is to the East and negative direction is to the West. Let's assume that the position of Aircraft A is x and position of Aircraft B is x + 210 NM.
Let t be the time it takes for Aircraft A to catch up with Aircraft B. At that moment, both aircraft will be at the same position, so:
distance traveled by Aircraft A = distance traveled by Aircraft B
Ground speed x time = Ground speed x time + 210
Using the given ground speeds, we can set up the equation as:
340t = 280t + 210
60t = 210
t = 3.5 hours
Therefore, Aircraft B will have traveled a distance of:
distance = ground speed x time
distance = 280 kt x 3.5 hr
distance = 980 NM
So, Aircraft B will have traveled 980 NM when Aircraft A catches up with it at Point X.
Find out more on Aircraft here: https://brainly.com/question/31362675
#SPJ1
A spring of spring constant k=8.25N/m is displaced from equilibrium by a distance of 0.150 m. What is the stored energy in the form of spring potential energy?
PE is the potential energy stored in the spring, k is the spring constant, and x is the PE is the potential energy stored in the spring, k is the spring constant, and x is the displacement from equilibrium.
What is a displacement?Displacement is a vector quantity that describes the overall change in position of an object from its initial position to its final position. It is a vector because it has both magnitude (the distance between the initial and final positions) and direction (the direction from the initial position to the final position).
For example, if an object moves from point A to point B, its displacement is the vector that points from A to B, regardless of the path taken to get there. Displacement can be positive, negative, or zero, depending on the direction of the vector.
Displacement is often used in kinematics, which is the study of motion without considering the forces that cause the motion. It is a key concept in describing the motion of objects in one, two, or three dimensions.
To know more about displacement visit :
https://brainly.com/question/30087445
#SPJ1
Help with 2 Kirchoff law exercises
1-For the circuit in the figure below, find V₁ and V2.
2-Find the currents and voltages in the following circuit.
Answer:
v1 = 8V; v2=12Vi1=9/7A, i2=13/14A, i3=5/14A, v1=18/7V, v2=52/7V, v3=10/7VExplanation:
You want the voltages in each circuit, and also the currents in the second circuit.
1. Voltage dividerIn this series circuit, the voltage is divided in proportion to the resistance.
v1 = 2/5(20V) = 8V
v2 = 3/5(20V) = 12V
2. Current equationsThe sum of voltages around a loop is 0, so we can write the equations ...
2·i1 +8·i2 = 10
8·i2 -4·i3 = 6
i1 -i2 -i3 = 0
The attachment shows the calculation of the currents. Those are used to find the corresponding voltages.
(i1, i2, i3) = (9/7, 13/14, 5/14)A
(v1, v2, v3) = (18/7, 52/7, 10/7)V
__
Additional comment
A T-circuit as in figure 2 can usually be solved handily by making use of Norton's equivalents for the sources. The left source can be replaced by a 5A current source in parallel with 2Ω. The right source can be replaced by a 1.5A current source in parallel with 4Ω. Then the circuit degenerates to a 6.5A source in parallel with 8/(4+1+2) = 8/7Ω. So, the voltage v2 is ...
v2 = (6.5A)(8/7Ω) = 52/7V
Then {v1, -v3} = {10, 6} -v2 ⇒ (v1, v3) = (18/7, 10/7)
The currents are found by dividing the voltage by the resistance:
{i1, i2, i3} = {18/7, 52/7, 10/7}÷{2, 8, 4} = (9/7, 13/14, 5/14) . . . . as above
Note that these calculations can all be done without the aid of calculator.
Parallel resistors that are multiples of one another can be thought of as some number of resistors in parallel. Here, the 2Ω resistor can be thought of as 4 8Ω resistors in parallel. Similarly, the 4Ω resistor is effectively 2 8Ω resistors in parallel. Thus the parallel combination of 2Ω, 8Ω, and 4Ω is effectively 4+1+2 = 7 8Ω resistors in parallel, or 8/7Ω. No calculator required.
P2. Charges q and Q are placed on the x-y plane at (0,0) and at (0, 3) m, respectively.
Where q = 50 pC and Q = -40 pC.
a. Draw the situation to solve the next step.
b. Determine the net electric flux through a closed cylindrical surface that has a diameter of 5 ma
a height of 4 m, where the axis of the cylinder is the z axis and its mid-point is at the origin.
a. Here is a diagram of the situation:
Q (-40 pC)
|
|
| (0,3)
|
------ o-------- x-axis
|
|
| (0,0)
|
q (50 pC)
(b) The net electric flux through the closed cylindrical surface is -5.69×10⁵ Nm²/C.
To calculate this, we use Gauss's Law, which states that the net electric flux through any closed surface is proportional to the net charge enclosed by the surface. Mathematically, this is expressed as:
flux = E * A = (q_enclosed / ε0) * A
where E is the electric field, A is the area of the closed surface, q_enclosed is the net charge enclosed by the surface, and ε0 is the permittivity of free space.
In this case, we have a cylindrical surface with a height of 4 m and a diameter of 5 mA (which means a radius of 2.5 mA). The cylinder is centered at the origin and has the z-axis as its axis of symmetry. To apply Gauss's Law, we need to find the net charge enclosed by the cylinder.
Both charges q and Q are on the x-y plane, so they do not contribute to the net charge enclosed by the cylindrical surface. Therefore, the net charge enclosed by the surface is simply the sum of q and Q:
q_enclosed = q + Q = (50 pC) + (-40 pC) = 10 pC
Substituting this into Gauss's Law, we get:
flux = (q_enclosed / ε0) * A = (10 pC / 8.85×10⁻¹² F/m) * π (2.5×10⁻³ m)² (4 m) = -5.69×10⁵ Nm²/C
Therefore, the net electric flux through the closed cylindrical surface is -5.69×10⁵ Nm²/C.
What is an electric flux?
Electric flux is the measure of the number of electric field lines passing through a given surface. It is a scalar quantity and represents the amount of electric field passing through a surface per unit area. The SI unit of electric flux is volt-meter (V m) or newton-meter squared per coulomb (N m2/C).
To know more about electrical flux, visit:
https://brainly.com/question/14544020
#SPJ1
I'd like help with this question
the given values, we get va = sqrt((350 kg * 9.81 m/s² - 0)))
Since the cable is inextensible, the distance moved by both blocks is the same.
Let's denote the distance moved by both blocks as "d". Then, the distance moved by block A is "1m + d" to the right.
Using conservation of energy, we can write:
(1/2) * ma * va² + (1/2) * mb * vb²= (ma + mb) * g * d
where ma and mb are the masses of blocks A and B, va and vb are their velocities, and g is the acceleration due to gravity.
Since the system is released from rest, va = 0, and we can solve for vb:
(1/2) * mb * vb²= (ma + mb) * g * d
vb²= 2 * (ma + mb) * g * d / mb
vb = sqrt(2 * (ma + mb) * g * d / mb)
Now, we need to find the velocity of block A after it has moved 1m + d to the right. To do this, we can use the equations of motion. Since block A is moving to the right, we take the positive x direction to be to the right. Then, we have:
ma * a = T - fa
where a is the acceleration of block A, T is the tension in the cable, and fa is the frictional force acting on block A due to the incline.
The tension in the cable is the same throughout, so we can write:
T = mb * g
The frictional force fa can be calculated using:
fa = µ * ma * g * cos(theta)
where µ is the coefficient of friction, theta is the angle of the incline, and cos(theta) = 1/sqrt(2) since the incline makes a 45 degree angle with the horizontal.
Substituting these values, we get:
ma * a = mb * g - µ * ma * g / sqrt(2)
Solving for a, we get:
a = (mb * g - µ * ma * g / sqrt(2)) / ma
Now, we can use the equations of motion again to find the final velocity of block A after it has moved 1m + d to the right. We have:
d = (1/2) * a * t²
where t is the time taken by block A to move 1m + d to the right.
Substituting the value of a, we get:
d = (1/2) * [(mb * g - µ * ma * g / sqrt(2)) / ma] * t²
Solving for t, we get:
t = sqrt(2 * d * ma / (mb * g - µ * ma * g / sqrt(2)))
Finally, we can use the equations of motion again to find the final velocity of block A. We have:
1m + d = (1/2) * a * t²
Substituting the values of a and t, we get:
1m + d = (1/2) * [(mb * g - µ * ma * g / sqrt(2)) / ma] * [2 * d * ma / (mb * g - µ * ma * g / sqrt(2))]²
Solving for the final velocity of block A, we get:
va = sqrt((mb * g - µ * ma * g / sqrt(2)) / ma * (1m + d) / 2)
Substituting the given values, we get:
va = sqrt((350 kg * 9.81 m/s² - 0
To know more about velocity visit :-
https://brainly.com/question/80295
#SPJ1
Find the net electric flux through a spherical closed surface of two charges +1.00nc and -3.00nC embedded inside and a +2.00nC outside.
Answer:
Explanation:
To find the net electric flux through a closed surface, we need to apply Gauss's law:
Phi_E = Q_enclosed / epsilon_0
where Phi_E is the electric flux, Q_enclosed is the net charge enclosed by the closed surface, and epsilon_0 is the electric constant.
Let's consider a spherical closed surface of radius R enclosing the charges. We can divide the surface into two regions: inside and outside the sphere.
For the charges inside the sphere, the net charge enclosed is:
Q_enclosed = +1.00 nC - 3.00 nC = -2.00 nC
Therefore, the electric flux through the inner surface of the sphere is:
Phi_E_inside = Q_enclosed / epsilon_0 = (-2.00 nC) / epsilon_0
For the charge outside the sphere, the net charge enclosed is:
Q_enclosed = +2.00 nC
Therefore, the electric flux through the outer surface of the sphere is:
Phi_E_outside = Q_enclosed / epsilon_0 = (2.00 nC) / epsilon_0
The net electric flux through the closed surface is the sum of the electric flux through the inner and outer surfaces:
Phi_E_net = Phi_E_inside + Phi_E_outside = (-2.00 nC) / epsilon_0 + (2.00 nC) / epsilon_0
= 0
Therefore, the net electric flux through the closed surface is zero. This means that the total amount of electric field lines entering the surface is equal to the total amount of electric field lines leaving the surface. This result is consistent with Gauss's law, which states that the net electric flux through a closed surface is proportional to the net charge enclosed by the surface. In this case, since the net charge enclosed is zero, the net electric flux is also zero.
A man laid on a pool lilo has a surface area of 2m² and a weight of 900N. Calculate the pressure.
The pressure exerted by the man on the lilo is 450 pascals (Pa).
The pressure is the force per unit area, so we can calculate it using the formula:
pressure = force / area
In this case, the force is the weight of the man, which is 900 N, and the area is the surface area of the lilo, which is 2 m². Therefore, we can substitute these values into the formula:
pressure = 900 N / 2 m²
Simplifying, we get:
pressure = 450 Pa
Therefore, the pressure exerted by the man on the lilo is 450 pascals (Pa).
What is pressure?
Pressure is the amount of force applied per unit area over a surface. It is defined as the force per unit area perpendicular to the surface on which the force is acting. The unit of pressure is pascal (Pa), which is equivalent to one newton per square meter (N/m²).
What is force?
Force is a physical quantity that describes the interaction between two objects that can change the state of motion or shape of an object. It is defined as an influence that causes an object to undergo acceleration, or a change in velocity, or deformation.
To know more about pressure, visit:
https://brainly.com/question/12977546
#SPJ1
Janine hits a hockey puck across an ice rink. The distance between the puck and Janine for the first ten seconds after she hits it is graphed below.
Judging from the graph, which of the following statements is true?
A.
The hockey puck moved at a constant speed away from Janine.
B.
The hockey puck's speed decreased as it moved away from Janine.
C.
The hokey puck moved at a constant speed toward Janine.
D.
The hockey puck's speed increased as it moved away from Janine.
A. The hockey puck moved at a constant speed away from Janine.
When the hockey puck is skating across the ice at a constant speed?The hockey puck is in equilibrium as a result of moving at a steady pace. Dynamic equilibrium is the name given to this form of equilibrium. Hence, if the hockey puck is moving over the ice at a constant pace, it is in equilibrium.
Is velocity merely the direction in which an object moves and unrelated to speed?There is no connection between velocity and speed; velocity is the direction that an object moves in. Velocity is the combination of speed and direction. Speed and velocity are very similar to each other.
Which of Newton's equations of motion best describes the motion of a hockey puck sliding through ice without any external forces acting on it?The sum of the forces exerted on an object must be zero since, in accordance with Newton's first law of motion, an object moving at a constant speed experiences no net external force.
To know more about the hockey puck visit:
https://brainly.com/question/11488312
#SPJ1
Please help 50 points and Brainly
Mechanical energy → Electrical energy → Thermal energy
What is mechanical energy?
Mechanical energy is the energy possessed by an object due to its motion or position. It is the sum of kinetic energy and potential energy of an object, which can be converted to other forms of energy, such as electrical energy or thermal energy.
What is electrical energy?
Electrical energy is the energy associated with the movement of electrons through a conductor or an electrical circuit. It is the result of the movement of charged particles, such as electrons, and is commonly generated by the conversion of other forms of energy, such as mechanical, chemical, or solar energy.
What is thermal energy?
Thermal energy is the energy associated with the temperature of an object or a system. It is the result of the movement of atoms and molecules in matter, which leads to the transfer of heat from hotter to cooler objects. Thermal energy is commonly measured in units of joules or calories and is proportional to the mass and temperature of an object or a system.
To know more about thermal energy, visit:
https://brainly.com/question/18989562
#SPJ1
which of the following formulas gives us ml, the total number of possible orbitals within a subshell? select the correct answer below: ml
Ml = 2l + 1 is the right formula to calculate the total number of potential orbitals in a subshell.
How does ML calculate the number of orbitals?ml = -l,..., 0,..., +l is the magnetic quantum number (ml). Describes how an orbital with a certain energy (n) and form should be oriented in space. (l). Each subshell has 2l+1 orbitals, each of which may house one electron. This number separates each subshell into independent orbitals.
How many Subshells in total are there in a shell?Due to the existence of subshells in each shell, this model collapses at the n=3 shell. The names of the four subshells are s, p, d, and f. Within each subshell, a different amount of electrons can fit. The n value determines how many subshells there are in the shell.
To know more about potential orbitals visit:-
https://brainly.com/question/4033076
#SPJ1
Question:
Which of the following formulas gives us ml, the total number of possible orbitals within a subshell?
A 509g mass oscillates with an amplitude of 13.0cm on a spring whose spring constant is 20.0N/m . A. Determine the period T= ....... s B. Determine the maximum speed Vmax= ...... m/s C. Determine the total energy Wtotal= ........ J
Period (T):
T = 2π√(m/k)
where m is the mass of the object and k is the spring constant.
Maximum speed (Vmax):
Vmax = Aω
where A is the amplitude of oscillation and ω is the angular frequency, which is given by ω = √(k/m).
Total energy (Wtotal):
W total = 1/2 kA^2
where k is the spring constant and A is the amplitude of oscillation.
Given:
m = 509g = 0.509 kg
A = 13.0 cm = 0.13 m
k = 20.0 N/m
A. Determine the period T:
T = 2π√(m/k)
T = 2π√(0.509 kg / 20.0 N/m)
T = 0.798 s
Therefore, the period of oscillation is 0.798 s.
B. Determine the maximum speed Vmax:
ω = √(k/m) = √(20.0 N/m / 0.509 kg) = 8.05 rad/s
Vmax = Aω = 0.13 m * 8.05 rad/s = 1.05 m/s
Therefore, the maximum speed of the oscillating mass is 1.05 m/s.
C. Determine the total energy W total:
Wtotal = 1/2 kA^2 = 1/2 * 20.0 N/m * (0.13 m)^2 = 0.135 J
Therefore, the total energy of the oscillating mass is 0.135 J.
What is energy ?Energy is a physical property of objects that can be transferred to other objects or converted into different forms, but cannot be created or destroyed. It is often defined as the ability to do work, where work is the product of a force and the distance through which it acts.
Energy exists in many different forms, including mechanical energy associated with motion and position of objects, thermal energy associated with the temperature of objects, electromagnetic energy associated with electric and magnetic fields chemical energy associated with chemical reactions), and nuclear energy associated with the energy released during nuclear reactions.
To know more about Energy visit :
https://brainly.com/question/1932868
#SPJ1
ball thrown upward from the top of a building 220 feet tall. The height of the ball is described by the function A is h()-162 + 20t + 220. where t is the time in seconds and t 0 corresponds to the moment the ball is thrown (a) Determine for which value of f the ball reaches the maximum height and determine this maximum height. Max Height: 905/4 (b) Determine when the ball reaches the ground. t(5+sqrt(905)/8 (c) With what velocity does the ball hit the ground?
The value of f is 905/4 feet, After 4 seconds the ball reaches the ground and the velocity of the ball hit the ground is -10 - 4sqrt(905) ft/s
step 1:
When the ball reaches the maximum height, it means that the velocity is zero, we use this fact to calculate the value of "f".
The height of the ball is described by the function A is
[tex]h(t) = -16t² + 20t + 220[/tex]
When the ball reaches the maximum height, its velocity is zero, therefore:
[tex]v = dh/dt = 0[/tex]
We take the derivative of the height function to get the velocity function:
[tex]v(t) = -32t + 20[/tex]
When the velocity is zero, the ball has reached its maximum height:
[tex]-32t + 20 = 0[/tex] => t = 5/8 seconds
Step 2:
Now we calculate the maximum height by plugging in t = 5/8 seconds into the height function:\
[tex]h(5/8) = -16(5/8)² + 20(5/8) + 220[/tex]
= 905/4 feet
Step 3:
To determine when the ball reaches the ground, we need to find the time when the ball reaches a height of 0:
[tex]0 = -16t² + 20t + 220= > 2t² - 5t - 55 = 0[/tex]
Using the quadratic formula:
[tex]t = [5 ± sqrt(5² - 4(2)(-55))] / [2(2)]= (5 ± sqrt(905)) / 4[/tex]
We take the positive root since time cannot be negative:
t = 4 seconds
Step 4:
To calculate the velocity at which the ball hits the ground,
we take the derivative of the height function and evaluate it at the time when the ball hits the ground:
[tex]v(t) = -32t + 20= > v((5 + sqrt(905)) / 4)[/tex]
= -32((5 + sqrt(905)) / 4) + 20
= -10 - 4sqrt(905) ft/s
For more such questions on velocity , Visit:
https://brainly.com/question/24445340
#SPJ11