Answer:
Let's start by expressing "Z increased by 16%" using algebra.
Let Z be the original value of some quantity.
To increase Z by 16%, we need to add 16% of Z to Z:
Z + 0.16Z
Simplifying this expression by factoring out Z, we get:
Z(1 + 0.16)
Combining like terms, we have:
Z(1.16)
Therefore, "Z increased by 16%" can be expressed algebraically as:
Z increased by 16% = Z(1.16)
Answer:
z(1.16)
Step-by-step explanation:
5 Mrs. Newsome bought a piece of fabric 142 centimeters long to make a quilt for her son's bedroom. She bought a piece of fabric 2 meters long for curtains. How could Mrs. Newsome find the total length, in centimeters, of both pieces of fabric? Multiply 2 by 2,000, then add 142. Add 2 and 142, then multiply by 100. Divide 142 by 100, then add 2,000. O Multiply 2 by 100, then add 142. B C
Answer:
Step-by-step explanation:
To find the total length of both pieces of fabric in centimeters, we need to add the length of the first piece of fabric (142 cm) and the length of the second piece of fabric (2 meters).
However, we need to make sure that the units are consistent before we add the lengths. We can convert the length of the second piece of fabric from meters to centimeters by multiplying by 100. Therefore, the total length in centimeters is:
142 cm + 2 meters * 100 cm/meter = 142 cm + 200 cm = 342 cm
The option that correctly gives the answer is "Multiply 2 by 100, then add 142" (Option C).
Complete the recursive formula of the arithmetic s -17,-8, 1, 10, .... a(1) = -17 a(n) = a(n − 1)+
Answer:
The common difference between consecutive terms in the sequence is 8 (since -17 + 8 = -9, -9 + 8 = -1, -1 + 8 = 7, and so on). Therefore, the recursive formula for this arithmetic sequence is:
a(1) = -17
a(n) = a(n-1) + 8 for n >= 2
This formula says that the first term in the sequence is -17, and each subsequent term is found by adding 8 to the previous term.
(please mark my answer as brainliest)
Is this figure a polygon dont answer if you don’t know the answer
Polygon - a plane figure with at least three straight sides and angles, and typically five or more.
Answer:
No
Step-by-step explanation:
Since a polygon has straight sides, with 3 or more, it cannot be a polygon since one side is curved.
Find the standard normal area for each of the following (LAB)Round answers to 4 decimals
The answer of the standard normal area for each of the following questions are given below respectively.
What is standard normal area?Standard normal area refers to the area under the standard normal distribution curve, which is a normal distribution with a mean of 0 and a standard deviation of 1.
a. P(1.24<Z<2.14) = 0.0912
b. P(2.03 <Z<3.03) = 0.0484
c. P(-2.03 <Z<2.03) = 0.9542
d. P(Z > 0.53) = 0.2977
Note: The standard normal distribution is a continuous probability distribution with mean 0 and standard deviation 1. The area under the curve represents probabilities and can be calculated using a standard normal distribution table or a calculator with a normal distribution function.
To know more about probability distribution visit:
https://brainly.com/question/14210034
#SPJ1
Given the coefficient of correlation in the relationship to be - 0.73 , what percentage of the variation in hours of sleep cannot be explained by the time spent on social media?
Can someone actually see if I got this answer correct please
Instead of 2.00 as mentioned in the question, the semester GPA is 1.38. Please double-check your calculations or provide more details if you made an error when reporting your grades or computing your GPA.
How many credit hours are there in three?Students must devote approximately 135 hours (45 x 3) of class, instructional, and independent time to a three credit unit course. Students who enroll in a course for four credit hours must dedicate around 180 (45 x 4) hours to it, split between in-class and out-of-class work.
You must first translate each letter grade using the common 4.0 scale into its equivalent numerical number before you can determine your semester GPA:
A = 4.0
B = 3.0
C = 2.0
D = 1.0
F = 0.0
E = 0.0 (equivalent to F)
Then, you can use the formula:
(Total grade points) / GPA (total credit hours)
Using this formula, we can calculate your semester GPA as follows:
FYE 105: F (0.0) x 3 credit hours = 0.0 grade points
MAT 150: E (0.0) x 3 credit hours = 0.0 grade points
ENG 101: D (1.0) x 3 credit hours = 3.0 grade points
BIO 112: A (4.0) x 3 credit hours = 12.0 grade points
BIO 113: B (3.0) x 1 credit hour = 3.0 grade points
Total grade points = 0.0 + 0.0 + 3.0 + 12.0 + 3.0 = 18.0
Total credits earned is 13 (3 + 3 + 3 + 3 + 1)
GPA = 18.0 / 13 = 1.3846
To know more about semester GPA visit:-
https://brainly.com/question/13871451
#SPJ1
A salesperson earns 4% commission on furnace sales.
What is the commission that the salesperson earns on the sale of $33,000 worth of furnaces.
The commission earned 4 percentage on the salesperson on the sale of furnaces is $1320.
What is percentage?In mathematics, a percentage is a number or ratio that can be expressed as a fraction of 100. If we need to calculate a percentage of a number, we should divide it by its entirety and then multiply it by 100. The percentage therefore refers to a part per hundred. The word per cent means per 100. The letter "%" stands for it. The term "percentage" was adapted from the Latin word "per centum", which means "by the hundred". Percentages are fractions with 100 as the denominator.
by the question.
the commission that the salesperson earns on the sale of $33,000 worth of furnaces= 4% of 33,000 = 4× 330 = $1320
To know more about percentage:
https://brainly.com/question/29306119
#SPJ1
list all symmetry groups that are the symmetry groups of quadrilaterals and for each group sketch a quadrilateral
The quadrilaterals which have both line and rotational symmetry of order more than 1 are square, and rhombus
Symmetry is a fundamental concept in mathematics and geometry. It refers to the property of a shape that remains unchanged when it is transformed in a certain way.
Now, let's talk about quadrilaterals that have both line and rotational symmetry of order more than 1. One example of such a quadrilateral is a square.
Another example of a quadrilateral with both line and rotational symmetry of order more than 1 is a rhombus. A rhombus is a type of quadrilateral where all four sides are equal in length, and opposite angles are equal.
In summary, a square and a rhombus are examples of quadrilaterals that have both line and rotational symmetry of order more than 1.
To know more about quadrilateral here
https://brainly.com/question/29934440
#SPJ4
Complete Question:
Name the quadrilaterals which have both line and rotational symmetry of order more than 1.
(-2) to the second power - (-28) divided by 7
Answer:
≈ 4.57
Step-by-step explanation:
(-2) ^ 2 = 4
4 - (-28) = 4 + 28 = 32
32/7 ≈ 4.57
CAN SOMEONE PLEASE HELP thank you so so much please!!!
Step-by-step explanation:
try this option, all the details are in the attachment.
please help me with 4 math questions
Using linear negative association, According to the all four parts correct options are D ;A ;D ;D respectively
What is linear negative association?The slope of a line expresses a great deal about the linear relationship between two variables. If the slope is negative, there is a negative linear relationship, which means that as one variable increases, the other variable decreases. If the slope is zero, one increases while the other remains constant.
The first answer to the question is option D
The second answer to the question must be option A
Option D must be chosen for the third question.
Option D must be selected for Question 4.
Solution:
1.
square of 3 is 9
3 to the power of negative 2 is 1/ 9
cube of 3 is 27
3 to the negative power 3 is 1/27
2.
cylinder volume =πr²h
Given value
pi =3.14
r=5
h=10
Volume=3.14×5²×10
cylinder volume =785m³
3.
When a point is rotated 90 degrees anticlockwise about the origin, it becomes the point (x,y) (-y,x).
The coordinates of Point N are (4, 3)
N' will be the new coordinates (-3, 4)
As a result, the y-coordinate of N' is 4.
4.
Option D must be selected for Question 4.
To know more about linear nonlinear visit:
brainly.com/question/15830007
#SPJ1
HELP ME ASAP!!! YOU WILL BE BRAINLIEST
We can conclude that Maya's experimental probabilities fluctuate around the theoretical probability, but over a larger number of trials, the experimental probabilities should converge towards the theoretical probability.
What is probability?
Probability is simply how likely something is to happen. Whenever we're unsure about the outcome of an event, we can talk about the probabilities of certain outcomes—how likely they are. The analysis of events governed by probability is called statistics.
The theoretical probability of rolling a 5 on a fair die is 1/6, which means that if the die is rolled many times, we would expect to see a 5 about 1/6 of the time.
For the first 100 trials, Maya rolled a 5 on 25 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 25/100
experimental probability = 0.25
So, in the first 100 trials, Maya's experimental probability of rolling a 5 was 0.25.
For the first 200 trials, Maya rolled a 5 on 30 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 30/200
experimental probability = 0.15
So, in the first 200 trials, Maya's experimental probability of rolling a 5 was 0.15.
Comparing these experimental probabilities to the theoretical probability, we see that after 100 trials, Maya's experimental probability of rolling a 5 (0.25) is higher than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 100 trials was somewhat biased in favor of rolling a 5.
On the other hand, after 200 trials, Maya's experimental probability of rolling a 5 (0.15) is lower than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 200 trials was somewhat biased against rolling a 5.
Overall, we can conclude that Maya's experimental probabilities fluctuate around the theoretical probability, but over a larger number of trials, the experimental probabilities should converge towards the theoretical probability. This is known as the law of large numbers, which states that as the number of trials or observations increases, the experimental probability will tend to approach the theoretical probability.
Learn more about probability on:
https://brainly.com/question/13604758
#SPJ1
We might say that Maya's experimental probabilities oscillate about the theoretical probability, but after more trials, the experimental probabilities ought to converge to the theoretical probability.
What is probability?
Simply put, probability is the likelihood that something will occur. When we don't know how an event will turn out, we can discuss the likelihood or likelihood of several outcomes. Statistics is the study of events that follow a probability distribution.
A fair die has a theoretical probability of rolling a 5 of 1/6, therefore if the die is rolled several times, we can anticipate seeing a 5 roughly 1/6 of the time.
For the first 100 trials, Maya rolled a 5 on 25 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 25/100
experimental probability = 0.25
So, in the first 100 trials, Maya's experimental probability of rolling a 5 was 0.25.
For the first 200 trials, Maya rolled a 5 on 30 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 30/200
experimental probability = 0.15
So, in the first 200 trials, Maya's experimental probability of rolling a 5 was 0.15.
Comparing these experimental probabilities to the theoretical probability, we see that after 100 trials, Maya's experimental probability of rolling a 5 (0.25) is higher than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 100 trials was somewhat biased in favor of rolling a 5.
On the other hand, after 200 trials, Maya's experimental probability of rolling a 5 (0.15) is lower than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 200 trials was somewhat biased against rolling a 5.
Overall, we can conclude that Maya's experimental probabilities fluctuate around the theoretical probability, but over a larger number of trials, the experimental probabilities should converge towards the theoretical probability. This is known as the law of large numbers, which states that as the number of trials or observations increases, the experimental probability will tend to approach the theoretical probability.
Learn more about probability on:
https://brainly.com/question/13604758
#SPJ1
Find the distance from Link to the Octorok so Link can attack
The distance from Link to the Octorok is 10.63 units.
How to find the distance?We know that the distance between two points (x₁, y₁) and (x₂, y₂) is given by the formula below:
distance = √( (x₂ - x₁)² + (y₂ - y₁)²)
Here we want to find the distance from Link to the Octorok so Link can attack, so we need to get the distance between the points (-4, -5) and (3, 3).
The distance will be:
distance = √( (3 + 4)² + (3 + 5)²)
distance = √( (7)² + (8)²)
distance = √113
distance = 10.63
The distance is 10.63 units.
Learn more about distance at:
https://brainly.com/question/7243416
#SPJ1
6TH GRADE MATH IS THIS CORRECT??
Answer:
Step-by-step explanation:
y2-y1/x2-x1
-7-(-19)/-2-1
12/-2
-6
The slope is -6
Does the expression 56x+40y-48z=8(7x+5y-6z)
For all values of x, y, and z, the expression 56x + 40y - 48z = 8(7x + 5y - 6z) holds true.
Explain expression using an example.As an illustration, the phrase x + y is one where x and y are terms with an addition operator in between. There are two sorts of expressions in mathematics: numerical expressions, which only contain numbers, and algebraic expressions, which also include variables.
Indeed, for all values of x, y, and z, the expression 56x + 40y - 48z = 8(7x + 5y - 6z) holds true.
We can simplify both sides of the equation to understand why:
56x + 40y - 48z = 8(7x + 5y - 6z)
56x + 40y - 48z = 56x + 40y - 48z
As we can see, the equation is true for all values of x, y, and z because both sides are identical.
To know more about expression visit:-
https://brainly.com/question/14083225
#SPJ1
6TH GRADE MATH, What is the y intercept in the equation y= 4x - 8??
Really Need help asap!
Step-by-step explanation:
h(-2) = 25
h(-1) = 5
h(0) = 1
h(1) = 1/5
h(2) = 1/25
What is the meaning of "isometries"?
Answer:
"permutations that preserve distances"
Step-by-step explanation:
You want to know the meaning of "isometries" in the given discussion of dihedral groups.
The wording of the paragraph tells you the meaning:
"isometries ... are permutations that preserve distances."
__
Additional comment
Often, writing that introduces an unfamiliar word will describe the meaning of that word. Here, the meaning is described, along with several examples (translations, rotations, reflections).
The word isometry has its origin in ancient Greek. The prefix "iso-" means "equal", and "-metry" comes from metron, meaning "measure." Effectively, an isometry is a transformation that preserves measures.
can you help me to solve this question?
The asymptotes of the function f(x) = (2x² - 5x + 3)/(x - 2) are given as follows:
Vertical asymptote at x = 2.Oblique asymptote at: y = 2x - 3/2.How to obtain the asymptotes of the function?The function for this problem is defined as follows:
f(x) = (2x² - 5x + 3)/(x - 2)
The vertical asymptote is the value of x for which the function is not defined, hence it is at the zero of the denominator, and thus it is given as follows:
x - 2 = 0
x = 2.
The oblique asymptote is at the quotient of the two functions, hence:
(mx + b)(x - 2) = 2x² - 5x + 3
mx² + (b - 2m) - 2b = 2x² - 5x + 3.
Hence the values of m and b are given as follows:
m = 2.-2b = 3 -> b = -3/2.More can be learned about the asymptotes of a function at https://brainly.com/question/1851758
#SPJ1
Let A and B be events with P(A) = 0.3, P(B) = 0.6, and P(A and B) = 0.03. Are A and B mutually exclusive? Explain why or why not.
Answer:
A and B are not mutually exclusive
Step-by-step explanation:
A and B are not mutually exclusive because P(A and B) > 0. If A and B were mutually exclusive, then they would have no outcomes in common and the probability of their intersection would be zero. However, in this case, they do share some outcomes, since P(A and B) is greater than zero.
4. A pet store has eight dogs and cats. Three are dogs. What fraction represents the number of cats?
A. 1/4
B. 3/8
C. 1/2
D.5/8
Answer:
Step-by-step explanation:
Number of cats = 8 - 3 = 5
Fraction that are cats [tex]=\frac{5}{8}[/tex]
Mrs. Young has p goats and q cows on his farm. He has 23 fewer cows than goats.
What are the missing values in the table?
PLSSSS QUICK
Step-by-step explanation:
35:12
40:17
45:22
50:27
55:32
Graph the function.
f(x) = 3/5x -5
Use the Line tool and select two points to graph.
Answer:
see attached
Step-by-step explanation:
You want to graph the function f(x) = 3/5x -5.
GraphFor graphing purposes, it is convenient to choose values of x that result in integer values of y. In this case, the multiplier of x (the slope) has a denominator of 5, so it is convenient to choose x-values that are multiples of 5.
For x = 0, y = 3/5·0 -5 = -5
For x = 5, y = 3/5·5 -5 = 3 -5 = -2
Suitable points for your plot are (0, -5) and (5, -2). These are shown in the attachment.
Part A
Use GeoGebra to graph points A, B, and C to the locations shown by the ordered pairs in the table. Then join each pair of
points using the segment tool. Record the length of each side and the measure of each angle for the resulting triangle.
Location
A(3,4), B(1,1).
C(5.1)
A(4.5), B(2.1).
C(7.3)
—————-
AB=
BC=
AC=
Answer:
Step-by-step explanation:
Answer:
[tex]\begin{array}{|c|c|c|c|}\cline{1-4}\vphantom{\dfrac12}\sf Location&AB&BC&AC\\\cline{1-4}\vphantom{\dfrac12} A(3,4),\;B(1,1),\;C(5,1)&3.61&4&3.61\\\cline{1-4}\vphantom{\dfrac12} A(4,5),\;B(2,1),\;C(7,3)&4.47&5.39&3.61\\\cline{1-4}\end{array}[/tex]
[tex]\begin{array}{|c|c|c|c|}\cline{1-4}\vphantom{\dfrac12}\sf Location&m \angle A&m \angle B&m \angle C\\\cline{1-4}\vphantom{\dfrac12} A(3,4),\;B(1,1),\;C(5,1)&67.38^{\circ}&56.31^{\circ}&56.31^{\circ}\\\cline{1-4}\vphantom{\dfrac12} A(4,5),\;B(2,1),\;C(7,3)&82.87^{\circ}&41.63^{\circ}&55.49^{\circ}\\\cline{1-4}\end{array}[/tex]
Step-by-step explanation:
Step 1Place points A, B and C on the coordinate grid.
Alternatively, type the following into the input field as 3 separate inputs:
Triangle 1
A = (3, 4)B = (1, 1)C = (5, 1)Triangle 2
A = (4, 5)B = (2, 1)C = (7, 3)Step 2Use the Segment tool to join each pair of points.
Alternatively, type Segment( <Point>, <Point> ) into the input field (replacing <Point> with the letter name of the point) to create a segment between two points.
Record the length of each side.
[tex]\begin{array}{|c|c|c|c|}\cline{1-4}\vphantom{\dfrac12}\sf Location&AB&BC&AC\\\cline{1-4}\vphantom{\dfrac12} A(3,4),\;B(1,1),\;C(5,1)&3.61&4&3.61\\\cline{1-4}\vphantom{\dfrac12} A(4,5),\;B(2,1),\;C(7,3)&4.47&5.39&3.61\\\cline{1-4}\end{array}[/tex]
Step 3Use the Angle tool to measure each angle in the resulting triangle.
Alternatively, type Angle(Polygon(A, B, C)) into the input field to create all interior angles.
Record the measure of each angle.
[tex]\begin{array}{|c|c|c|c|}\cline{1-4}\vphantom{\dfrac12}\sf Location&m \angle A&m \angle B&m \angle C\\\cline{1-4}\vphantom{\dfrac12} A(3,4),\;B(1,1),\;C(5,1)&67.38^{\circ}&56.31^{\circ}&56.31^{\circ}\\\cline{1-4}\vphantom{\dfrac12} A(4,5),\;B(2,1),\;C(7,3)&82.87^{\circ}&41.63^{\circ}&55.49^{\circ}\\\cline{1-4}\end{array}[/tex]
Note: All measurements have been given to the nearest hundredth (2 decimal places).
Find dz/dt in two ways: by using the Chain Rule, and by first substituting the expressions for x and y to write z as a function of t. Do your answers agree?z= x^2y+xy^2, x = 3t y = t^2
The derivative of the function z= x^2y+xy^2, x = 3t y = t^2 using the chain rule is given by dz/dt = 36t^3 + 15t^4.
Expressions are equals to,
z= x^2y+xy^2
x = 3t
y = t^2
Using the chain rule calculate dz/dt,
which states that if z is a function of x and y,
And x and y are both functions of t, then,
dz/dt = (dz/dx)(dx/dt) + (dz/dy)(dy/dt)
Using these expressions, calculate the value of dz/dt using the chain rule,
z= x^2y+xy^2
This implies,
dz/dx = 2xy + y^2
dz/dy = x^2 + 2xy
x = 3t
⇒ dx/dt = 3
y = t^2
⇒ dy/dt = 2t
Substituting these values into the chain rule formula, we get,
dz/dt = (2xy + y^2)(3) + (x^2 + 2xy)(2t)
= [2(3t)(t^2 ) + (t^2)^2 ]3 + [(3t)^2 + 2(3t)(t^2)](2t )
= [ 6t^3 + t^4 ]3 + [ 9t^2 + 6t^3 ]2t
= 18t^3 + 3t^4 + 18t^3 + 12t^4
= 36t^3 + 15t^4
Substituting the given expressions for x and y into z, we get,
z = (3t)^2(t^2) + (3t)(t^2)^2
= 9t^4 + 3t^5
here also,
dz/dt = 36t^3 + 15t^4
Therefore, the value of the function using the chain rule dz/dt is equals to 36t^3 + 15t^4.
learn more about chain rule here
brainly.com/question/24391730
#SPJ4
Find the definite integral of f(x)=
fraction numerator 1 over denominator x squared plus 10x plus 25 end fraction for x∈[5,7]
the definite integral of f(x) over the interval [5, 7] is (-5 / 600).
How to find?
The given function is:
f(x) = 1 / (x² + 10x + 25)
To find the definite integral of this function over the interval [5, 7], we can use the following steps:
Rewrite the function using partial fraction decomposition:
f(x) = 1 / (x² + 10x + 25)
= 1 / [(x + 5)²]
Using partial fraction decomposition, we can write this as:
f(x) = A / (x + 5) + B / (x + 5)²
where A and B are constants to be determined. Multiplying both sides by the common denominator (x + 5)², we get:
1 = A(x + 5) + B
Setting x = -5, we get:
1 = B
Setting x = 0, we get:
1 = 5A + B
= 5A + 1
Solving for A, we get:
A = 0
Therefore, the partial fraction decomposition is:
f(x) = 1 / [(x + 5)²]
= 0 / (x + 5) + 1 / (x + 5)²
Use the formula for the definite integral of a power function:
∫ xⁿ dx = (1 / (n + 1))× x²(n + 1) + C
where C is the constant of integration.
Using this formula, we can find the antiderivative of the function 1 / (x + 5)²:
∫ 1 / (x + 5)² dx = -1 / (x + 5) + C
Evaluate the definite integral over the interval [5, 7]:
∫[5,7] 1 / (x + 5)² dx
= [-1 / (x + 5)] [from 5 to 7]
= (-1 / 12) - (-1 / 10)
= (-5 / 600)
Therefore, the definite integral of f(x) over the interval [5, 7] is (-5 / 600).
To know more about Fraction related questions, visit:
https://brainly.com/question/10354322
#SPJ1
Which operation do you use to simplify a ratio after finding the greatest common factor (GCF)?
division
addition
multiplication
subtraction
Answer:
hey baby
Step-by-step explanation:
hi thwrw honey i love you lol
The operation we use to simplify a ratio after finding the greatest common factor (GCF) is division.
Option A is the correct answer.
What is an expression?An expression contains one or more terms with addition, subtraction, multiplication, and division.
We always combine the like terms in an expression when we simplify.
We also keep all the like terms on one side of the expression if we are dealing with two sides of an expression.
Example:
1 + 3x + 4y = 7 is an expression.
3 + 4 is an expression.
2 x 4 + 6 x 7 – 9 is an expression.
33 + 77 – 88 is an expression.
We have,
To simplify a ratio after finding the greatest common factor (GCF), we use division.
We divide both terms of the ratio by the GCF.
This reduces the ratio to its simplest form.
Thus,
The operation we use to simplify a ratio after finding the greatest common factor (GCF) is division.
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ2
What value of Y and Z will make DEF correspond to JKI?
[tex]\bold{Solution:}[/tex]
[tex]\Delta[/tex][tex]DE[/tex][tex]F[/tex] congruent to [tex]\Delta[/tex][tex]JKI[/tex]
[tex]\bold{FD=JI} \text{(corresponding angles of congruent triangles)}[/tex]
[tex]z + 22 = 3z[/tex]
[tex]\text{or,} \ z-3 z= -22[/tex]
[tex]\text{or,} \ -2z = -22[/tex]
[tex]\text{or,} \ z = \bold{11}[/tex]
[tex]\bold{EF=KI} \text{(corresponding angles of congruent triangles)}[/tex]
[tex]5y+13=6y[/tex]
[tex]\bold{y=13}[/tex]
for autonomous equations, find the equilibria, sketch a phase portrait, state the stability of the equilibria.
Understanding the equilibria, sketching a phase portrait, and determining the stability of equilibria for autonomous equations are important tools for analyzing and understanding the behavior of systems over time.
Autonomous equations are differential equations that do not depend explicitly on time. To find the equilibria of an autonomous equation, we set the derivative of the function to zero and solve for the values of the independent variable that satisfy the equation. These values represent points at which the function does not change over time and are known as equilibrium points.
To sketch a phase portrait for an autonomous equation, we plot the slope field of the function and then draw solutions through each equilibrium point. The resulting graph shows the behavior of the function over time and helps us understand how the solutions behave near each equilibrium point.
The stability of an equilibrium point is determined by examining the behavior of nearby solutions. If nearby solutions move toward the equilibrium point over time, the equilibrium point is stable. If nearby solutions move away from the equilibrium point over time, the equilibrium point is unstable. Finally, if the behavior of nearby solutions is inconclusive, further analysis is needed.
Here is the sketch for [tex]dx/dt = x - x^3[/tex]
/ <--- (-∞) x=-1 (+∞) ---> \
/ \
<--0--> x=-1 x=1 0-->
\ /
\ <--- (-∞) x=1 (+∞) ---> /
Learn more about equilibria here https://brainly.com/question/29313546
#SPJ4
A company produced in the first quarter 6,905 pieces in the second quarter the same company produced 795 pieces more than in the first quarter under these conditions how many pieces did the company produce in the first semester?
Answer: 14,605 pieces.
Step-by-step explanation:
In the second quarter, the company produced 795 pieces more than in the first quarter.
So, the total pieces produced in the second quarter can be calculated as:
6905 + 795 = 7700
The total pieces produced in the first semester (two quarters) can be calculated as:
6905 + 7700 = 14,605
Therefore, the company produced 14,605 pieces in the first semester.
The number of pieces the company produced in the first semester was 14,605 pieces.
How many?The question asks to calculate how many pieces a company produced in the first semester, considering the production of two quarters.
In the first quarter, the company produced 6,905 pieces, as indicated in the question.
Already in the second quarter, the company produced 795 more pieces than in the first quarter, which means that the production in the second quarter was:
6,905 + 795 = 7,700 pieces.
To know the company's total production in the first semester, just add the productions of the two quarters:
6,905 + 7,700 = 14,605 pieces