Answer:
Step-by-step explanation:
Hello, "the constant term has been written on the right side", it means that we add 18 to both sides to get.
[tex]x^2+3x-18=0\\\\x^2+3x=18\\\\\text{We can see the beginning of } (x+\dfrac{3}{2})^2 \\\\x^2+3x=(x+\dfrac{3}{2})^2-\dfrac{3^3}{2^2}=18\\\\(x+\dfrac{3}{2})^2=18+\dfrac{9}{4}=\dfrac{18*4+9}{4}=\dfrac{81}{4}[/tex]
Hope this helps.
Thank you.
Answer:
2.25.
Step-by-step explanation:
x^2 + 3x - 18 = 0
First, we need to write the constant on the right of the equation. So, we add 18 to both sides.
x^2 + 3x = 18.
Now, we find the number that will complete the square. It will be [tex](\frac{b}{2} )^2[/tex].
In this case, b = 3.
[tex](\frac{3}{2} )^2[/tex]
= (1.5)^2
= 2.25.
So, the number that will complete the square to solve the equation is 2.25, or 2 and 1/4, or 9/4.
Hope this helps!
find the h.c.f of 186,310,434
186|2
93|3
31|31
1
310|2
155|5
31|31
1
434|2
217|7
31|31
1
[tex]186=2\cdot3\cdot31\\310=2\cdot5\cdot31\\434=2\cdot7\cdot31\\\\\text{hcf}(186,310,434)=2\cdot31=62[/tex]
The base of a triangle is 4 cm greater than the
height. The area is 30 cm. Find the height and
the length of the base
h
The height of the triangle is
The base of the triangle is
Answer:
Step-by-step explanation:
Formula for area of a triangle:
Height x Base /2
Base (b) = h +4
Height = h
h + 4 x h /2 = 30cm
=> h +4 x h = 60
=> h+4h =60
=> 5h = 60
=> h = 12
Height = 12
Base = 12 +4 = 16
What is the error in this problem?
Answer:
wrong position of tan 64
Pattern A: 0, 5, 10, 15, 20,... Pattern B: 0, 20, 40, 60, 80,... Which statement is true about the relationship between the corresponding terms of Pattern A and Pattern B? A. The terms in Pattern B is 4 times the corresponding terms in Pattern A. B. The terms in Pattern A is 1/2 times the corresponding terms in Pattern B. C. The terms in Pattern B is 20 more than the corresponding terms in Pattern A. D. The terms in Pattern A is 5 more than the corresponding terms in Pattern B.
Answer:
Option 1: The terms in Pattern B is 4 times the corresponding terms of Pattern A
Step-by-step explanation:
Answer:
Pattern B has more then pattern A so option 2
Step-by-step explanation:
) A random sample of size 36 is selected from a normally distributed population with a mean of 16 and a standard deviation of 3. What is the probability that the sample mean is somewhere between 15.8 and 16.2
Answer:
The probability is 0.31084
Step-by-step explanation:
We can calculate this probability using the z-score route.
Mathematically;
z = (x-mean)/SD/√n
Where the mean = 16, SD = 3 and n = 36
For 15.8, we have;
z = (15.8-16)/3/√36 = -0.2/3/6 = -0.2/0.5 = -0.4
For 16.2, we have
z = (16.2-16)/3/√36 = 0.2/3/6 = 0.2/0.5 = 0.4
So the probability we want to calculate is;
P(-0.4<z<0.4)
We can get this using the standard normal distribution table;
So we have;
P(-0.4 <z<0.4) = P(z<-0.4) - P(z<0.4)
= 0.31084
Can somebody explain how trigonometric form polar equations are divided/multiplied?
Answer:
Attachment 1 : Option C
Attachment 2 : Option A
Step-by-step explanation:
( 1 ) Expressing the product of z1 and z2 would be as follows,
[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]
Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,
cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],
sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]
cos(3π / 2) = 0,
sin(3π / 2) = - 1
Let's substitute those values in our expression,
[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]
And now simplify the expression,
[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]
The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.
( 2 ) Here we will apply the following trivial identities,
cos(π / 3) = [tex]\frac{1}{2}[/tex],
sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],
cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],
sin(- π / 6) = [tex]-\frac{1}{2}[/tex]
Substitute into the following expression, representing the quotient of the given values of z1 and z2,
[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒
[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]
The simplified expression will be the following,
[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]
The solution will be option a, as you can see.
Gulnaz plans to use less than 26 eggs while baking. She uses 5 eggs for each cake that she bakes, and 3 eggs for each quiche that she bakes.
Write an inequality that represents the number of cakes (C)left parenthesis, C, right parenthesis and quiches (Q)left parenthesis, Q, right parenthesis Gulnaz can bake according to her plan.
Answer:
5(x) +3(y)<26
Step-by-step explanation:
Let x represent the number of cakes she will bake and let you know represent the nymber of quiche she will bake.
She will use less than 26 eggs while baking and 5 eggs for each cake and 3 eggs for each quiche.
The inequality representing the above statement iz given below.
5(x) +3(y)<26
Tanθ - cosecθ secθ (1-2 cos²θ) = cotθ
Answer:
I thinksomething is wrong.
I'm getting another proving it's-tan thita.
I hope this is the one you are searching for..
Which expression is equal to 7 times the sum of a number and 4
Answer:
7(n + 4)
Step-by-step explanation:
Represent the number by n. Then the verbal expression becomes
7(n + 4).
write the equation of a horizontal ellipse with a major axis of 30, a minor axis of 14, and a center at (-9,-7).
Answer: [tex]\dfrac{(x+9)^2}{225}-\dfrac{(y+7)^2}{49}=1[/tex]
Step-by-step explanation:
The equation for a horizontal ellipse is: [tex]\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1[/tex] where
(h, k) is the centera is x-radiusb is the y-radiusGiven: major axis (diameter on x) is 30 --> x-radius (a) = 15 --> a² = 225
minor axis (diameter on y) is 14 --> y-radius (b) = 7 --> b² = 49
center (h, k) is (-9, -7)
Input those values into the equation for a horizontal ellipse and simplify:
[tex]\dfrac{(x-(-9))^2}{15^2}-\dfrac{(y-(-7))^2}{7^2}=1\\\\\\\large\boxed{\dfrac{(x+9)^2}{225}-\dfrac{(y+7)^2}{49}=1}[/tex]
On a coordinate plane, a line goes through (negative 3, 3) and (negative 2, 1). A point is at (4, 1). What is the equation, in point-slope form, of the line that is parallel to the given line and passes through the point (4, 1)? y − 1 = −2(x − 4) y – 1 = Negative one-half(x – 4) y – 1 = One-half(x – 4) y − 1 = 2(x − 4)
Answer:
y - 1 = -2(x - 4).
Step-by-step explanation:
First, we need to find the slope. Two sets of coordinates are (-3, 3), and (-2, 1).
(3 - 1) / (-3 - -2) = 2 / (-3 + 2) = 2 / (-1) = -2.
The line will be parallel to the given line, so the slope is the same.
Now that we have a point and the slope, we can construct an equation in point-slope form.
y1 = 1, x1 = 4, and m = -2.
y - 1 = -2(x - 4).
Hope this helps!
The slope of the line passing parallel to the given line and passes through the point (4, 1) is y = -2x + 9
The equation of a straight line is given by:
y = mx + b
where y, x are variables, m is the slope of the line and b is the y intercept.
The slope of the line passing through the points (-3,3) and (-2,1) is:
[tex]m=\frac{y_2-y_1}{x_2-x_1} \\\\m=\frac{1-3}{-2-(-3)} \\\\m=-2[/tex]
Since both lines are parallel, hence they have the same slope (-2). The line passes through (4,1). The equation is:
[tex]y-y_1=m(x-x_1)\\\\y-1=-2(x-4)\\\\y=-2x+9[/tex]
Find out more at: https://brainly.com/question/18880408
if b<0 and |b| = 4b+15 what is the value of b
Answer:
|b|= 4b+15
-b=4b+15
-b-4b= 15
-5b= 15
b= 15/-5
b= -3
the ans -3
If [tex]a<0[/tex] the [tex]|a|=-a[/tex]
So
[tex]|b|=4b+15\\-b=4b+15\\5b=-15\\b=-3[/tex]
In how many years will
The Compounds interest
onRs. 14,000 be Rs. 4, 634 at 10%
p.a?
Answer:
3 years
Step-by-step explanation:
A = P(1 + r)^t
A = I + P
A = 14,000 + 4,634 = 18,634
18,634 = 14,000(1 + 0.1)^t
18,634/14,000 = 1.1^t
log (18,634/14,000) = log 1.1^t
log (18,634/14,000) = t * log 1.1
t = [log (18,634/14000)]/(log 1.1)
t = 3
Find the remainder in the Taylor series centered at the point a for the following function. Then show that limn→[infinity]Rn(x)=0 for all x in the interval of convergence.
f(x)=cos x, a= π/2
Answer:
[tex]|R_n (x)| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]
Step-by-step explanation:
From the given question; the objective is to show that :
[tex]\lim_{n \to \infty} R_n (x) = 0[/tex] for all x in the interval of convergence f(x)=cos x, a= π/2
Assuming for the convergence f the taylor's series , f happens to be the derivative on an open interval I with a . Then the Taylor series for the convergence of f , for all x in I , if and only if [tex]\lim_{n \to \infty} R_n (x) = 0[/tex]
where;
[tex]\mathtt{R_n (x) = \dfrac{f^{(n+1)} (c)}{n+1!}(x-a)^{n+1}}[/tex]
is a remainder at x and c happens to be between x and a.
Given that:
a= π/2
Then; the above equation can be written as:
[tex]\mathtt{R_n (x) = \dfrac{f^{(n+1)} (c)}{n+1!}(x-\dfrac{\pi}{2})^{n+1}}[/tex]
so c now happens to be the points between π/2 and x
If we recall; we know that:
[tex]f^{(n+1)}(c) = \pm \ sin \ c \ or \ cos \ c[/tex] (as a result of the value of n)
However, it is true that for all cases that [tex]|f ^{(n+1)} \ (c) | \leq 1[/tex]
Hence, the remainder terms is :
[tex]|R_n (x)| = | \dfrac{f^{(n+1)}(c)}{(n+1!)}(x-\dfrac{\pi}{2})^{n+1}| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]
If [tex]\lim_{n \to \infty} R_n (x) = 0[/tex] for all x and x is fixed, Then
[tex]|R_n (x)| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]
What is the quotient of 35,423 ÷ 15?
Answer: 2361.53
Step-by-step explanation:
Use long division and round.
(The 3 is repeated)
mortician math word problem
Answer:
wat do u want me to do
Step-by-step explanation:
Find the particular solution of the differential equation that satisfies the initial condition. f '(x) = −8x, f(1) = −3
Step-by-step explanation:
f(x) = integral (-8x) dx = -4x^2 + C
f(1) = -3 = -4 + C
C = 1
f(x) = -4x^2 + 1
The particular solution of the differential equation f'(x) = -8x that satisfies the initial condition f(1) = -3 is: f(x) = -4x² + 1.
Here, we have,
To find the particular solution of the differential equation f'(x) = -8x that satisfies the initial condition f(1) = -3,
we can integrate the equation and use the initial condition to determine the constant of integration.
First, integrate both sides of the equation with respect to x:
∫ f'(x) dx = ∫ -8x dx
Integrating, we get:
f(x) = -4x² + C
Now, we can use the initial condition f(1) = -3 to find the value of the constant C.
Substituting x = 1 and f(x) = -3 into the equation, we have:
-3 = -4(1)² + C
-3 = -4 + C
C = -3 + 4
C = 1
Therefore, the particular solution of the differential equation f'(x) = -8x that satisfies the initial condition f(1) = -3 is:
f(x) = -4x² + 1
To learn more on equation click:
brainly.com/question/24169758
#SPJ2
The domain of the following relation has how many elements?
[(1/2, 3.14/6), (1/2, 3.14/4), (1/2, 3.14/3), (1/2,3.14/2)]
a. 0
b. 1
c. 4
Answer:
b. 1
Step-by-step explanation:
All first coordinates are 1/2.
Answer: b. 1
Question 36 of 40
The distance of a line bound by two points is defined as
L?
O A. a line segment
B. a ray
O
c. a plane
O D. a vertex
SUBMI
Answer:
A. a line segment
Step-by-step explanation:
a ray is directing in one dxn, and has no end pointa plane is a closed, so more than 2 points a vertex is a single point itselfFind the area of the shape shown below.
2
2
4
Hurry and answer plz!!!!
1
Answer:
7 square units
Step-by-step explanation:
We can break down this complex shape into smaller shapes.
I've broken it down into a rectangle, a square, and a triangle (See attached picture)
Let's first find the area of the triangle. To do this we use the formula [tex]\frac{bh}{2}[/tex]. The base is 1 (because the top is 2, and 1 is already used on the triangle - 2-1 = 1.) and the height is 2 (because 4 is already used on the left, and 2 was used on the right so 4-2=2).
[tex]\frac{2\cdot1}{2} = \frac{2}{2} = 1[/tex].
Now let's find the area of the top square - we can just square 2 which is 4.
To find the area of the bottom rectangle, we can multiply it's two side lengths of 2 and 1 = 2.
Adding these all together gets us 4+2+1 = 7.
Hope this helped!
2.1x10^8 is how many times the value of 4.2x 10^2
Answer:
500,000
Step-by-step explanation:
(2.1 * 10^8)/(4.2 * 10^2) =
= 2.1/4.2 * 10^8/10^2
= 0.5 * 10^6
= 500,000
The division of 2.1 × 10⁸ and 4.2 × 10² thus the exponent 2.1 × 10⁸ is 500000 times the exponent 4.2 × 10².
What is a number system?The number system is a way to represent or express numbers.
Since the decimal number system employs ten digits from 0 to 9, it has a base of 10.
Any of the multiple sets of symbols and the guidelines for utilizing them to represent numbers are included in the Number System.
As per the given exponents 2.1 × 10⁸
Let's assume 2.1 × 10⁸ is x times 4.2 × 10².
2.1 × 10⁸ = x (4.2 × 10²)
x = 2.1 × 10⁸/4.2 × 10²
x = 500000
Hence "The division of 2.1 × 10⁸ and 4.2 × 10² thus the exponent 2.1 × 10⁸ is 500000 times the exponent 4.2 × 10²".
For more about the number system,
https://brainly.com/question/22046046
#SPJ2
John painted his most famous work, in his country, in 1930 on composition board with perimeter 101.14 in. If the rectangular painting is 5.43 in. taller than it is wide, find the dimensions of the painting.
Answer:
22.57 x 28
Step-by-step explanation:
10.86 + 4x = 101.14
-10.86 -10.86
4x = 90.28
/4 /4
x = 22.57
5.43 + 22.57 = 28
22.57
the product of two consecutive positive integer is 306
Answer:
[tex]\Large \boxed{\sf 17 \ and \ 18}[/tex]
Step-by-step explanation:
The product means multiplication.
There are two positive consecutive integers.
Let the first positive consecutive integer be x.
Let the second positive consecutive integer be x+1.
[tex](x) \times (x+1) =306[/tex]
Solve for x.
Expand brackets.
[tex]x^2 +x =306[/tex]
Subtract 306 from both sides.
[tex]x^2 +x -306=306-306[/tex]
[tex]x^2 +x -306=0[/tex]
Factor left side of the equation.
[tex](x-17)(x+18)=0[/tex]
Set factors equal to 0.
[tex]x-17=0[/tex]
[tex]x=17[/tex]
[tex]x+18=0[/tex]
[tex]x=-18[/tex]
The value of x cannot be negative.
Substitute x=17 for the second consecutive positive integer.
[tex](17)+1[/tex]
[tex]18[/tex]
The two integers are 17 and 18.
The product of two consecutive positive integers is 306.
We need to find the integers
solution : Let two consecutive numbers are x and (x + 1)
A/C to question,
product of x and (x + 1) = 306
⇒x(x + 1) = 306
⇒x² + x - 306 = 0
⇒ x² + 18x - 17x - 306 = 0
⇒x(x + 18) - 17(x + 18) = 0
⇒(x + 18)(x - 17) = 0⇒ x = 17 and -18
so x = 17 and (x +1) = 18
Therefore the numbers are 17 and 18.
Hope it helped u if yes mark me BRAINLIEST
TYSM!
Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below.4,3
Answer:
5
Step-by-step explanation:
a^2 + b^2 = c^2
4^2 + 3^2 = c^2
16 + 9 = c^2
25 = c^2
c = 5
Answer:
5Step-by-step explanation:
[tex]Hypotenuse = ?\\Opposite = 4\\Adjacent = 3\\\\Pythagoras \: Theorem ;\\\\Hypotenuse^2 =Opposite^2+Adjacent ^2\\\\Hypotenuse^2 = 4^2 +3^2\\\\Hypotenuse^2 = 16+9\\\\Hypotenuse^2 = 25\\\\\sqrt{Hypotenuse^2}=\sqrt{25} \\Hypotenuse = 5[/tex]
How to find probability from cumulative frequency graph
Answer:
find the difference of points on the graph
Step-by-step explanation:
The cumulative frequency graph (CDF) represents the integral of the probability distribution function (PDF). You find the probability that X is in some interval by subtracting the value of the CDF at the low end of the interval from the CDF value at the high end of the interval.
p(a < x < b) = cdf(b) -cdf(a)
WILL MARK BRAINIEST!!! Segment AC has two endpoints; (-2,5) and (2,-5). What are the coordinates of point B on segment AC such that the ratio of AB to BC is 5:1? Any help would be appreciated; first correct answer get brainiest and a 5 star review!
Answer:
[tex](\frac{4}{3},-\frac{10}{3})[/tex]
Step-by-step explanation:
If the extreme ends of a line segment AC are A[tex](x_1,y_1)[/tex] and C[tex](x_2,y_2)[/tex].
If a point B(x, y) divides the segment in the ratio of m : n
Then the coordinates of the point B are,
x = [tex]\frac{mx_2+nx_1}{m+n}[/tex]
y = [tex]\frac{my_2+ny_1}{m+n}[/tex]
If the ends of AC are A(-2, 5) and C(2, -5) and a point B divides it in the ratio of m : n = 5 : 1
Therefore, coordinates of this point will be,
x = [tex]\frac{5\times (2)+1(-2)}{5+1}[/tex]
= [tex]\frac{10-2}{5+1}[/tex]
= [tex]\frac{8}{6}[/tex]
= [tex]\frac{4}{3}[/tex]
y = [tex]\frac{5\times (-5)+1(5)}{5+1}[/tex]
= [tex]\frac{-25+5}{6}[/tex]
= [tex]-\frac{20}{6}[/tex]
= [tex]-\frac{10}{3}[/tex]
Therefore, coordinates of the point B are [tex](\frac{4}{3},-\frac{10}{3})[/tex].
the length of a mathematical text book the is approximately 18.34cm and its width is 11.75 calculate ?
the approximate perimeter of the front cover?
the approximate area of the front cover of the book?
Answer:
Perimeter=60.18cm
Area=215.495cm^2
Step-by-step explanation:
Given:
Length of book=18.34cm
Breadth=11.75cm
Solution:
Perimeter=2(l +b)
P=2(18.34+11.75)
P=2 x 30.09
P=60.18cm
Area=l x b
A=18.34 x 11.75
A=215.495 cm^2
Thank you!
3 ratios that are equivalent to 6:12
Answer:
1:3
2:4
3:6
Step-by-step explanation:
we can divide both sides by 6 and get 1:2
we can divide both sides by 3 and get 2:4
we can divide both sides by 2 and get 3:6
Answer:
12:24, 3:6, 2:4
Step-by-step explanation:
What we are looking for here is a ratio that, when you divide/multiply the same constant on both parts of the ratio, you get 6:12.
6:12 is the same thing as 1:2, so we can find ratios equivalent to 1:2 (the first value will be half the second).
Hope this helped!
Evaluate
1+5.3
2
please answer quickly
Answer:
1+5.3=6.3
Step-by-step explanation:
not sure what your asking for with the 2
explain what your looking for with the 2 and maybe we can help you further
(I have to do it the way I did it because the 2 in the question is confusing)
Answer:
For expression 1 + 5.32: 6.32
For expression 1 + 5.3 × 2: 11.6
Step-by-step explanation:
If the expression is 1 + 5.32:
Add 1 to 5.32: 1 + 5.32 = 6.32If the expression is 1 + 5.3 × 2:
5.3 × 2 = 10.6Plug in 10.6: 1 + 10.61 + 10.6 = 11.6
3. A jogger runs 4 miles on Monday, 5 miles on
Tuesday, 3 miles on Wednesday, and 5 miles on
Thursday. He doesn't run on Friday. How many
miles did he run in all?
Answer:
17 miles
Step-by-step explanation:
4+5+5+3=17