Answer:
City A and city B will have equal population 25years after 1990
Step-by-step explanation:
Given
Let
[tex]t \to[/tex] years after 1990
[tex]A_t \to[/tex] population function of city A
[tex]B_t \to[/tex] population function of city B
City A
[tex]A_0 = 10000[/tex] ---- initial population (1990)
[tex]r_A =3\%[/tex] --- rate
City B
[tex]B_{10} = \frac{1}{2} * A_{10}[/tex] ----- t = 10 in 2000
[tex]A_{20} = B_{20} * (1 + 20\%)[/tex] ---- t = 20 in 2010
Required
When they will have the same population
Both functions follow exponential function.
So, we have:
[tex]A_t = A_0 * (1 + r_A)^t[/tex]
[tex]B_t = B_0 * (1 + r_B)^t[/tex]
Calculate the population of city A in 2000 (t = 10)
[tex]A_t = A_0 * (1 + r_A)^t[/tex]
[tex]A_{10} = 10000 * (1 + 3\%)^{10}[/tex]
[tex]A_{10} = 10000 * (1 + 0.03)^{10}[/tex]
[tex]A_{10} = 10000 * (1.03)^{10}[/tex]
[tex]A_{10} = 13439.16[/tex]
Calculate the population of city A in 2010 (t = 20)
[tex]A_t = A_0 * (1 + r_A)^t[/tex]
[tex]A_{20} = 10000 * (1 + 3\%)^{20}[/tex]
[tex]A_{20} = 10000 * (1 + 0.03)^{20}[/tex]
[tex]A_{20} = 10000 * (1.03)^{20}[/tex]
[tex]A_{20} = 18061.11[/tex]
From the question, we have:
[tex]B_{10} = \frac{1}{2} * A_{10}[/tex] and [tex]A_{20} = B_{20} * (1 + 20\%)[/tex]
[tex]B_{10} = \frac{1}{2} * A_{10}[/tex]
[tex]B_{10} = \frac{1}{2} * 13439.16[/tex]
[tex]B_{10} = 6719.58[/tex]
[tex]A_{20} = B_{20} * (1 + 20\%)[/tex]
[tex]18061.11 = B_{20} * (1 + 20\%)[/tex]
[tex]18061.11 = B_{20} * (1 + 0.20)[/tex]
[tex]18061.11 = B_{20} * (1.20)[/tex]
Solve for B20
[tex]B_{20} = \frac{18061.11}{1.20}[/tex]
[tex]B_{20} = 15050.93[/tex]
[tex]B_{10} = 6719.58[/tex] and [tex]B_{20} = 15050.93[/tex] can be used to determine the function of city B
[tex]B_t = B_0 * (1 + r_B)^t[/tex]
For: [tex]B_{10} = 6719.58[/tex]
We have:
[tex]B_{10} = B_0 * (1 + r_B)^{10}[/tex]
[tex]B_0 * (1 + r_B)^{10} = 6719.58[/tex]
For: [tex]B_{20} = 15050.93[/tex]
We have:
[tex]B_{20} = B_0 * (1 + r_B)^{20}[/tex]
[tex]B_0 * (1 + r_B)^{20} = 15050.93[/tex]
Divide [tex]B_0 * (1 + r_B)^{20} = 15050.93[/tex] by [tex]B_0 * (1 + r_B)^{10} = 6719.58[/tex]
[tex]\frac{B_0 * (1 + r_B)^{20}}{B_0 * (1 + r_B)^{10}} = \frac{15050.93}{6719.58}[/tex]
[tex]\frac{(1 + r_B)^{20}}{(1 + r_B)^{10}} = 2.2399[/tex]
Apply law of indices
[tex](1 + r_B)^{20-10} = 2.2399[/tex]
[tex](1 + r_B)^{10} = 2.2399[/tex] --- (1)
Take 10th root of both sides
[tex]1 + r_B = \sqrt[10]{2.2399}[/tex]
[tex]1 + r_B = 1.08[/tex]
Subtract 1 from both sides
[tex]r_B = 0.08[/tex]
To calculate [tex]B_0[/tex], we have:
[tex]B_0 * (1 + r_B)^{10} = 6719.58[/tex]
Recall that: [tex](1 + r_B)^{10} = 2.2399[/tex]
So:
[tex]B_0 * 2.2399 = 6719.58[/tex]
[tex]B_0 = \frac{6719.58}{2.2399}[/tex]
[tex]B_0 = 3000[/tex]
Hence:
[tex]B_t = B_0 * (1 + r_B)^t[/tex]
[tex]B_t = 3000 * (1 + 0.08)^t[/tex]
[tex]B_t = 3000 * (1.08)^t[/tex]
The question requires that we solve for t when:
[tex]A_t = B_t[/tex]
Where:
[tex]A_t = A_0 * (1 + r_A)^t[/tex]
[tex]A_t = 10000 * (1 + 3\%)^t[/tex]
[tex]A_t = 10000 * (1 + 0.03)^t[/tex]
[tex]A_t = 10000 * (1.03)^t[/tex]
and
[tex]B_t = 3000 * (1.08)^t[/tex]
[tex]A_t = B_t[/tex] becomes
[tex]10000 * (1.03)^t = 3000 * (1.08)^t[/tex]
Divide both sides by 10000
[tex](1.03)^t = 0.3 * (1.08)^t[/tex]
Divide both sides by [tex](1.08)^t[/tex]
[tex](\frac{1.03}{1.08})^t = 0.3[/tex]
[tex](0.9537)^t = 0.3[/tex]
Take natural logarithm of both sides
[tex]\ln(0.9537)^t = \ln(0.3)[/tex]
Rewrite as:
[tex]t\cdot\ln(0.9537) = \ln(0.3)[/tex]
Solve for t
[tex]t = \frac{\ln(0.3)}{ln(0.9537)}[/tex]
[tex]t = 25.397[/tex]
Approximate
[tex]t = 25[/tex]
A right triangle ABC is shown below:
The are of the triangle above will equal one-half of a rectangle that is 5 units long and __ units wide. (Input only whole numbers, such as 8) (1 point)
96 sq meters
144 sq meters
84 sq meters
102 sq meters
Pls show work I get different answers from people every time
Answer:
84 sq meters
Step-by-step explanation:
First, divide the shape in 2 or more parts so that you can find it step by step
Divide this shape in three parts:
One part (blue): 2 m and 3 m rectangle
Second part (orange): 5 m and 12 m rectangle
Third part (red): 6 m and 3 m rectangle
(you can also see this below: in the pic there are three parts so you figure out that which is the correct value for the sides)
Now, find area of each shape by multiplying its values:
1st shape: 3 x 2 = 6
2nd shape: 5 x 12 = 60
3rd shape: 6 x 3 = 18
As you have the area of all the different shapes,
add all of them:
6 + 60 + 18 = 84 sq meters
I hope this helps :)
Question attached please answer brainliest to best answer
Answer:
B
Step-by-step explanation:
Have a nice day :)
buggy’s bugs buggles buuuugles
Find the coordinates of the points that are 20 units away from the origin and have a y-coordinate equal to −12.
9514 1404 393
Answer:
(-16, -12), (16, -12)
Step-by-step explanation:
The given values (side length and hypotenuse) have the ratio ...
12 : 20 = 3 : 5
This suggests that the triangle formed by the axes and the point 20 units from the origin is a 3-4-5 triangle, and the remaining side is 16 units from the y-axis. That means the points of interest are ...
(-16, -12) and (16, -12)
PLEASE SOLVE!! Using
using sin∆ = 5/13
= 0.3846
therefore ∆ = 22.62
Hello! I was wondering if anyone can help me out on this question?
Function 1 is defined by the following table.
r: 0, 4, 5, 7
y: -3.5, -1.5 -1, 0
Function 2 is defined by line q (see attached image)
Which of these functions has a greater slope?
A. Function 1
B. Function 2
C. The functions have the same slope
Answer:
Function 2
Step-by-step explanation:
Function 2 or line q would have a greater slope
Please mark as brainliest answer
Which point is the center of the circle that contains the vertices of a triangle?
The circumcenter is the center of the circle that contains the vertices of a triangle
How to determine the point?When a triangle is inscribed in a circle, the vertices of the triangle touch the circumference of the circle
A line drawn through the center of the circle and passes through each of the triangle vertex is its circumcenter.
Hence, the name of the required point is the circumcenter
Read more about circumcenter at:
https://brainly.com/question/14368399
#SPJ2
Answer:
B. The point of intersection of the perpendicular bisectors of the side
Step-by-step explanation:
definition of circumcenter as the previos question answered
plz find the area of the red shape :)
A person draws a card from a hat. Each card is one color, with the following probabilities of being drawn: 1/10 for blue, 1/20 for black, 1/15 for pink, and 1/5 for yellow. What is the probability of pulling a blue or yellow card, written as a reduced fraction?
Answer:
3/10
Step-by-step explanation:
1/10 + 1/5 = need to get common denominators to add.
1/10 + 2/10 = 3/10
What is the slope of the line that contains the points (-2, 5) and (6, -3)?
Answer:
-1
Step-by-step explanation:
(-2 , 5) = (x1 , y1)
(6 , -3) = (x2 , y2)
slope of a line = y2 - y1/x2 - x1
=-3 - 5/6 - (-2)
=-8/6+2
=-8/8
=-1
therefore slope of a line is -1.
A plumber and his assistant work together to replace the pipes in an old house. The plumber charges $30 an hour for his own labor and $20 an hour for his assistant's labor. The plumber works twice as long as his assistant on this job, and the labor charge on the final bill is $2000. How long did the plumber and his assistant work on this job
Answer:
The plumber worked 50 hours, and his assistant worked 25 hours.
Step-by-step explanation:
Since a plumber and his assistant work together to replace the pipes in an old house, and the plumber charges $ 30 an hour for his own labor and $ 20 an hour for his assistant's labor, and the plumber works twice as long as his assistant on this job, and the labor charge on the final bill is $ 2000, to determine how long did the plumber and his assistant work on this job the following calculation must be performed:
40 x 30 + 20 x 20 = 1200 + 400 = 1600
50 x 30 + 25 x 20 = 1500 + 500 = 2000
Therefore, the plumber worked 50 hours, and his assistant worked 25 hours.
Please help.
A: 4/7
B: 3/7
C:5/7
D: 2/7
D: 2/7
Step-by-step explanation:
The probability of an event x is how likely the event will occur. It is given as;
P(x) = number of expected outcomes / number of possible outcomes
Given:
Event A = The place is a city.
Therefore,
P(A) is the probability that the event A happens. i.e the probability that a place is a city.
P([tex]A^c[/tex]) is the probability that the event A does not happen. i.e the probability that a place is not a city
Also,
The sum of the probability that an event happens and the probability that the event does not happen is equal to 1. i.e
P(A) + P([tex]A^c[/tex]) = 1
From the table,
P([tex]A^c[/tex]) is found by counting the number of places that does not have a tick on the "is a city" column, then divide the result by the total number of places. i.e
P([tex]A^c[/tex]) = 2 ÷ 7
P([tex]A^c[/tex]) = 2/7
Therefore P([tex]A^c[/tex]) which is the probability that the place is not a city is 2/7
Find the distance between the points (6,5) and (4,-2). use of the graph is optional
Answer ? Anyone
Answer:
√53
Step-by-step explanation:
Distance between two points =
√(4−6)^2+(−2−5)^2
√(−2)^2+(−7)^2
= √4+49
=√53
= 7.2801
Hope this helps uwu
9514 1404 393
Answer:
option 2: √53
Step-by-step explanation:
The distance formula is useful for this:
d = √((x2 -x1)² +(y2 -y1)²)
d = √((4-6)² +(-2-5)²) = √((-2)² +(-7)²) = √(4+49)
d = √53
The distance between the given points is √53.
what is 1+544 please somone tell me or i wikl fail mah test qwq
Answer:555
Step-by-step explanation:
Answer:
545
Step-by-step explanation:
you are just adding one
544+1=
below is a table showing the investment and the investment period of
Answer:
hey. pls complete your question.
help plssssssssssssssssssssssssssssss
Answer:
285 mi
Step-by-step explanation:
We can see that for every gallon, Josh drives 30 more miles. This means that he will drive 30*9.5 mi.
30*9.5 = 285
HELP ME PLEASE!!!!!
The 2 questions is down below with the picture; please let me know.
Given:
1. 60 is the sum of 15 and Mabel's age.
2. Given equation is
[tex]-8(x+1)=-40[/tex]
To find:
1. The equation for the given situation.
2. Complete the two column proof.
Solution:
1.
60 is the sum of 15 and Mabel's age.
Let m be the Mabel's age. Then,
[tex]15+m=60[/tex]
Therefore, the required equation for the given situation is [tex]15+m=60[/tex].
2.
The complete two column proof is:
Steps Reasons
[tex]-8(x+1)=-40[/tex] Given equation
[tex]\dfrac{-8(x+1)}{-8}=\dfrac{-40}{-8}[/tex] Division Property of Equality
[tex]x+1=5[/tex] Simplifying
[tex]x+1-1=5-1[/tex] Subtraction Property of Equality
[tex]x=4[/tex] Simplifying
draw a poster that symbolizes-the importance of grammatical signals in developing patterns of idea in communiting to your readers.You will be graded according to the rubrics provided. .an example is provided as your guide.
_________
#LetsStudy
Using grammatical signals in developing patterns of ideas can be like a zipper because it zips our ideas or combined some information.
What are Grammatical signals?Grammatical signals are writing devices that serve to maintain text coherence. The short story is one of the written mediums where we can find these signals.
Important's of Grammatical signals
Grammatical signals are important because they signal relationships between sentences using backreference through the use of pronominal forms, determiners, repetition of keywords, synonyms, and superordination.
In short, they signal the relationship between new sentences and the one before them and they are also important writing devices in text construction.
Learn more about Grammatical signals;
https://brainly.com/question/10528558
Rewrite the quadratic equation in the form y= a(x - h)2 + k.
y = 5x2 – 30.3 + 95
Y= ?
3 Alex is the manager of a hospital canteen.
He reviews the meals the patients choose.
On Monday there were 240 patients in total.
1/3 of these patients chose pasta.
3/8 of these patients chose beef stew. The other patients chose chicken.
How many patients chose chicken on Monday?
The number of patients chose chicken on Monday is 90.
What is the fraction?In Mathematics, fractions are represented as a numerical value, which defines a part of a whole. A fraction can be a portion or section of any quantity out of a whole, where the whole can be any number, a specific value, or a thing.
Given that, there were 240 patients in total.
1/3 of these patients chose pasta.
Number of patients chose pasta
= 1/3 ×240
= 60
3/8 of these patients chose beef stew.
Number of patients chose beef stew
= 3/8 ×240
= 90
Number of patients chose chicken
= 240-(60+90)
= 240-150
= 90
Therefore, the number of patients chose chicken on Monday is 90.
To learn more about the fraction visit:
brainly.com/question/1301963.
#SPJ2
Can someone help pleaseee
Answer:
Ŷ = 76.4064+5.4254X
0.786
Strong positive relationship
Score = 98
Step-by-step explanation:
Using technology, the linear model obtained by fitting the data is :
Ŷ = 76.4064+5.4254X
Where, slope = 5.4254
y = test score ; x = study time
The Correlation Coefficient obtained is 0.786 ; which depicts that there exist a strong positive relationship between the two variables.
Using the model; test score, if x = 4
Ŷ = 76.4064+5.4254(4)
Y = 98.108
Test score = 98
5/6+3/9 in the simplest form
HELP PLSS
Answer:
1 1/6
Step-by-step explanation:
5/6 + 3/9
Simplify 3/9 by dividing the top and bottom by 3
5/6 + 1/3
Get a common denominator of 6
5/6 + 1/3 *2/2
5/6 + 2/6
7/6
Rewriting
6/6 +1/6
1 1/6
Lisa's shop sells 5 quarts of ice cream each day. How much is this in pints?
Answer:
10
Step-by-step explanation:
We know there are 5 quarts.
There are 2 pints for each quart.
This can be though of as a ratio of:
2 : 1
There are 5 quarts, which is 5 times bigger than the ratio of 1.
So this means we need to mutliply both sides of the ratio by 5, to make the quarts equivelent to 5:
2*5 : 1*5
=
10 : 5
So for every 5 quarts there are 10 pints.
Hope this helps!
The distance from place A to place B is 100 yards. What is this distance in terms of feet?
A. 100 ft.
B. 200 ft.
C. 250 ft.
D. 300 ft.
Answer:
D
Step-by-step explanation:
one yard is 3 feet
100x3=300
how many terms are in the following expression 9c+2d-8
Given circle R , arc BA = 35 and arc DE= 43 what is angle BCA equal to?
If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple are written in increasing order but are not necessarily distinct
This question is incomplete, the complete question is;
If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple are written in increasing order but are not necessarily distinct.
In other words, how many 5-tuples of integers ( h, i , j , m ), are there with n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1 ?
Answer:
the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120
Step-by-step explanation:
Given the data in the question;
Any quintuple ( h, i , j , m ), with n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1
this can be represented as a string of ( n-1 ) vertical bars and 5 crosses.
So the positions of the crosses will indicate which 5 integers from 1 to n are indicated in the n-tuple'
Hence, the number of such quintuple is the same as the number of strings of ( n-1 ) vertical bars and 5 crosses such as;
[tex]\left[\begin{array}{ccccc}5&+&n&-&1\\&&5\\\end{array}\right] = \left[\begin{array}{ccc}n&+&4\\&5&\\\end{array}\right][/tex]
= [( n + 4 )! ] / [ 5!( n + 4 - 5 )! ]
= [( n + 4 )!] / [ 5!( n-1 )! ]
= [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120
Therefore, the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120
How to solve a problem.
a) [tex]\log \left(\dfrac{A^3B}{C} \right) = 3\log A + \log B - \log C[/tex]
b) [tex]\log \left(\dfrac{\sqrt{A}}{B^2} \right) = \frac{1}{2}\log A - 2\log B[/tex]
The sum of two numbers is zero. When 10 times the smaller number is added to 6 times the larger, the result is 3. Find the two numbers.
Answer:
3/4 and -3/4
or
0.75 and -0.75
but there is no solution for
10 times the smaller number added to 6 times the larger number to get 3 as result.
the absolute values of x and y must be equal and with opposite signs (due to their sum being 0).
therefore, 10 times the negative value can never be compensated by 6 times the same but positive value. the sum will always be negative and not positive (and therefore not +3).
it only works with 10 times the larger (positive) number plus 6 times the smaller (negative) value.
Step-by-step explanation:
x + y = 0
10×x + 6×y = 3
=>
x = -y
10×(-y) + 6×y = 3
-10y + 6y = 3
-4y = 3
y = -3/4
=>
x = -y = -(-3/4) = 3/4
control :
10×(3/4) + 6×(-3/4) = 30/4 - 18/4 = 3
12/4 = 3
3 = 3
correct