Answer: The boiling point of the solution is [tex]101.02^oC[/tex]
Explanation:
We are given:
3.5 % (by weight) NaCl
This means that 3.5 g of NaCl is present in 100 g of solution
Mass of solvent = Mass of solution - Mass of solute
Mass of solvent (water) = (100 - 3.5) g = 96.5 g
Elevation in the boiling point is defined as the difference between the boiling point of the solution and the boiling point of the pure solvent.
The expression for the calculation of elevation in boiling point is:
[tex]\text{Boiling point of solution}-\text{boiling point of pure solvent}=i\times K_b\times m[/tex]
OR
[tex]\text{Boiling point of solution}-\text{Boiling point of pure solvent}=i\times K_f\times \frac{m_{solute}\times 1000}{M_{solute}\times w_{solvent}\text{(in g)}}[/tex] ......(1)
where,
Boiling point of pure solvent (water) = [tex]100^oC[/tex]
Boiling point of solution = ?
i = Vant Hoff factor = 2 (for NaCl)
[tex]K_b[/tex] = Boiling point elevation constant = [tex]0.512^oC/m[/tex]
[tex]m_{solute}[/tex] = Given mass of solute (NaCl) = 3.5 g
[tex]M_{solute}[/tex] = Molar mass of solute (NaCl) = 36.5 g/mol
[tex]w_{solvent}[/tex] = Mass of solvent (water) = 96.5 g
Putting values in equation 1, we get:
[tex]\text{Boiling point of solution}-(100)=2\times 0.512\times \frac{3.5\times 1000}{36.5\times 96.5}\\\\\text{Boiling point of solution}=(1.02+100)^oC\\\\\text{Boiling point of solution}=101.02^oC[/tex]
Hence, the boiling point of the solution is [tex]101.02^oC[/tex]
A number is three times the difference between twenty and the number. What is the number?
Answer:
the number is 7
Explanation:
"Three times" means multiply by 3
"Difference" means subtract
"Sum" means add
3(x - 7) = 23 - (3x + 2)
3x - 21 = 23 - 3x - 2
3x - 21 = 21 - 3x
6x = 42
x = 7
How many moles of Cl− are in 5.76 mg of FeCl3?
Answer:
0.0061650760770388 mole
Dylan has a coworker who is always showing up late and then not finishing his work on time . It's frustrating the other members of the team . What can he do that might help the situation ? a ) Complain about the coworker to other team members b ) Ask his coworker if he understands his job responsibilities c ) Tell his boss that the coworker is slacking off d ) Complete his coworker's work for him
A central atom has two lone pairs on opposite sides and four single bonds. What is the molecule geometry of the result?
A. octahedral
B. tetrahedral
C. square planar
D. linear
The correct answer is C. square planar
According to the Valence Shell Electron Pair Repulsion Theory(VSEPR), The shape of a molecule depends on the number of electron pairs in the molecule.
VSEPR theory was first coined by Gillespie and Nyhlom in 1957 as an improvement over the Sidgwick - Powell theory.
According to this theory, the shape of a molecule is determined by the number of electron pairs that surround the valence shell of the central atom in the molecule. The electron pairs are positioned as far apart in space as possible to minimize repulsion of electron pairs.
However, the presence of lone pairs distorts the shape anticipated for the molecule on the basis of VSEPR.
For a molecule having six electron pairs, an octahedral geometry is expected(electron domain geometry). However, the presence of two lone pairs which are positioned at opposite side of the four single bonds leads to an observed square planar molecular geometry.
https://brainly.com/question/13591921
Answer:
square planar
Explanation:
6) Hydrogen gas can be generated from the reaction between aluminum metal and hydrochloric acid:
2 Al(s) + 6 HCl(aq) + 2 AICI3, (aq) + 3 H2(g)
a. Suppose that 3.00 grams of Al are mixed with excess acid. If the hydrogen gas produced is directly collected
into a 850 mL glass flask at 24.0 °C, what is the pressure inside the flask (in atm)?
b. This hydrogen gas is then completely transferred from the flask to a balloon. To what volume (in L) will the
balloon inflate under STP conditions?
c. Suppose the balloon is released and rises up to an altitude where the temperature is 11.2 °C and the pressure is
438 mm Hg. What is the new volume of the balloon (in L)?
Stoichiometry refers to the relationship between the moles of reactants and products.
This question must be solved using both stoichiometry and the gas laws
The reaction equation is;
2 Al(s) + 6 HCl(aq) --------> 2 AICI3, (aq) + 3 H2(g)
Using stoichiometryNumber of moles of Al = 3g/27g/mol = 0.11 moles
According to the reaction equation;
2 moles of Al yields 3 moles of H2
0.11 moles of Al yields 0.11 * 3/2 = 0.165 moles
Using the gas lawsFrom the ideal gas equation;
PV=nRT
P = ?
n= 0.165 moles
V = 0.85 L
T = 297 K
R = 0.082 atmLK-1mol-1
P= nRT/V
P = 0.165 * 0.082 * 297/0.85
P= 4.73 atm
Under STP conditions;P1 = 4.73 atm
T1 = 297 K
V1 = 0.85 L
P2 = 1 atm
T2 =273 K
V2 =?
From the general gas equation;P1V1/T1 = P2V2/T2
P1V1T2 = P2V2T1
V2 = P1V1T2/P2T1
V2 = 4.73 * 0.85 * 273/1 * 297
V2 = 3.69 L
P1 = 760 mmHg
T1 = 273 K
V1 = 3.69
P2 = 438 mm Hg
T2 = 284.2 K
V2 =?
P1V1/T1 = P2V2/T2
P1V1T2 = P2V2T1
V2 = P1V1T2/P2T1
V2 = 760 * 3.69 * 284.2/438 *273
V2 = 797010.48/119574
V2= 6.67 L
https://brainly.com/question/1190311
What are the effects of global warming?
the effects are: temperature rises, water shortages, and increased fire threats
For a different reaction, the plot of the reciprocal of concentration versus time in seconds was linear with a slope of 0.056 M-1 s -1 . If the initial concentration was 2.2 M, calculate the concentration after 100 seconds. Show your work.
Answer:
[tex]C_t=0.165M[/tex]
Explanation:
From the question we are told that:
Slope [tex]K=0.056 M-1 s -1[/tex]
initial Concentration [tex]C_1=2.2M[/tex]
Time [tex]t=100[/tex]
Generally the equation for Raw law is mathematically given by
[tex]\frac{1}{C}_t=kt+\frac{1}{C}_0[/tex]
[tex]\frac{1}{C}_t=0.056*100+\frac{1}{2.2}_0[/tex]
[tex]C_t=0.165M[/tex]
The second-order reaction is the reaction that depends on the reactants of the first or the second-order reaction. The concentration after 100 seconds will be 0.165 M.
What is the specific rate constant?The specific rate constant (k) of the second-order reaction is given in L/mol/s or per M per s. It is the proportionality constant that gives the relation between the concentration and the rate of the reaction.
Given,
Slope (k)= 0.056 per M per s
Initial concentration of the reactant [tex](\rm C_{1})[/tex] = 2.2 M
Time (t) = 100 seconds
The concentration of the reaction after 100 seconds can be given by,
[tex]\rm \dfrac{1}{C_{t}} = kt + \dfrac{1}{C_{1}}[/tex]
Substitute values in the above equation:
[tex]\begin{aligned} \rm \dfrac{1}{C_{t}} &= 0.056 \times 100 + \dfrac{1}{2.02}\\\\&= 0.165 \;\rm M\end{aligned}[/tex]
Therefore, after 100 seconds the concentration is 0.165 M.
Learn more about the order of reaction here:
https://brainly.com/question/14810717
Read the following statement:
Energy cannot be created or destroyed.
Does the statement describe a scientific law? (3 points)
a
No, because it universally applies to all objects
b
No, because it is not true in all circumstances
c
Yes, because it universally applies to all objects
d
Yes, because it is not true in all circumstances
Answer:
C. yes, because it is universally applies to all objects
When hydrogen gas reacts with oxygen gas, water vapour is formed according to the
reaction 2H2 + O2 2H2O. If 3.00 mol of hydrogen gas react with 3.00 mol
of oxygen gas, which reactant will be the reactant in excess?
Explanation:
here's the answer to the question
A wavelength of 489.2 nm is observed in a hydrogen spectrum for a transition that ends in the nf level of the Balmer series. What was ni for the initial level of the electron
Answer:
[tex]n_1=4[/tex]
Explanation:
From the question we are told that:
Wavelength [tex]\lambda=489.2 nm =>4.86*10^{-7}[/tex]
nf level= Balmer series
nf level= 2
Generally the equation for Wavelength is mathematically given by
[tex]\frac{1}{\lambda}=R[\frac{1}{nf^2}-\frac{1}{n_1^2}][/tex]
Where
[tex]R=Rydberg Constant[/tex]
[tex]R=1.097*10^7[/tex]
Therefore
[tex]\frac{1}{4.86*10^{-7}}=1.097*10^7[\frac{1}{2^2}-\frac{1}{n_1^2}][/tex]
[tex]n_1=4.0021[/tex]
[tex]n_1=4[/tex]
Consider the reaction: A(aq) + 2B (aq) === C (aq). Initially 1.00 mol A and 1.80 mol B
were placed in a 5.00-liter container. The mole of B at equilibrium was determined to
be 1.00 mol. Calculate K value.
0.060
5.1
25
17
Ugh
Answer:
17
Explanation:
Step 1: Calculate the needed concentrations
[A]i = 1.00 mol/5.00 L = 0.200 M
[B]i = 1.80 mol/5.00 L = 0.360 M
[B]e = 1.00 mol/5.00 L = 0.200 M
Step 2: Make an ICE chart
A(aq) + 2 B(aq) ⇄ C(aq)
I 0.200 0.360 0
C -x -2x +x
E 0.200-x 0.360-2x x
Then,
[B]e = 0.360-2x = 0.200
x = 0.0800
The concentrations at equilibrium are:
[A]e = 0.200-0.0800 = 0.120 M
[B]e = 0.200 M
[C]e = 0.0800 M
Step 3: Calculate the concentration equilibrium constant (K)
K = [C] / [A] × [B]²
K = 0.0800 / 0.120 × 0.200² = 16.6 ≈ 17
Please help 15 points
What is the change in electrons for nitrogen in the
following reaction?
S + NO3 --> SO2 + NO
Nitrogen gained 4 electrons.
Because Nitrogen's redox number went from +6 to +2, it must have gained 4 electrons (-4) in order to achieve this number. Thus, Nitrogen is reduced.
Lewis Structures are used to describe the covalent bonding in molecules and ions. Draw a Lewis structure for NO3- and answer the following questions based on your drawing.
1. For the central nitrogen atom:
The number of lone pairs = ________
The number of single bonds=_______
The number of double bonds= ______
2. The central nitrogen atom :
Answer:
The lewis structure for NO₃⁻ is shown in the attachment below
For the central nitrogen atom:
The number of lone pairs = 0
The number of single bonds = 2
The number of double bonds= 1
Explanation:
The lewis structure for NO₃⁻ is shown in the attachment below.
From the Lewis structure
For the central nitrogen atom:
The number of lone pairs = 0
The number of single bonds = 2
The number of double bonds= 1
Sean plated an unknown metal onto his silver ring which initially weighed 1.4 g. He constructs an electrolytic cell using his ring as one of the electrodes. After running the cell, 0.022 moles of the unknown metal was plated onto his ring and the mass of the ring increased to 3.137 g. What is the atomic weight of the unknown metal in g/mol
Answer:
79 g/mol
Explanation:
Mass of unknown metal deposited = 3.137 g - 1.4 g = 1.737 g
Number of moles of metal deposited = 0.022 moles
Since;
Number of moles = reacting mass/molar mass
Molar mass = reacting mass/number of moles
Molar mass = 1.737 g/0.022 moles
Molar mass= 79 g/mol
How many moles of Al are needed to react exactly with 10.00 moles of Fe2O3 according to the following
equation?
Fe2O3 + 2 Al → Al2O3 + 2Fe
A) 15.0 moles
1
B) 20.0 moles
C) 30.0 moles
D) 60.0 moles
E) 35.0 moles
Answer:
Answer is B) 20.0 moles
Explanation:
From the equation,
1 mole of Fe2O3 = 2 moles of Al
therefore 10.0 moles of Fe2O3 = 10×2
= 20.0 moles.
what is the bond energy required to break one mole of carbon-carbon bonds
Answer:
100 kcal of bond energy
Each 5-ml teaspoon of Extra Strength Maalox Plus contains 450 mg of magnesium hydroxide and 500 mg of aluminum hydroxide. How many moles of hydronium ions H3O are neutralized by 1 teaspoon of antacid product?
Answer:
0.0347 moles of hydronium ions
Explanation:
The equation of the neutralization reaction between hydroxide and hydronium ions is given below:
H₃O+ (aq) + OH- (aq) ----> 2 H₂O (l)
From the equation above, 1 mole of hydroxide ions will neutralize one mole hydronium ions.
The moles of hydroxide ions present in 1 teaspoon or 5 mL of antacid product is calculated as follows:
Number of moles = mass / molar mass
Molar mass of Magnesium hydroxide, Mg(OH)₂ = 58 g/mol
Molar mass of aluminium hydroxide, Al(OH)₃ = 78 g/mol
Mass of magnesium hydroxide = 450 g = 0.45 g
Mass of aluminium hydroxide = 500 mg = 0.5 g
Moles of magnesium hydroxide = (0.45/58) moles
Moles of aluminium hydroxide = (0.5/78) moles
Equation of the ionization of magnesium hydroxide and aluminium hydroxide is given below:
Mg(OH)₂ (aq) ----> Mg²+ (aq) + 2 OH- (aq)
Al(OH)₃ (aq) ---> Al³+ (aq) + 3 OH- (aq)
Number of moles of hydroxide ions present in (0.45/58) moles of magnesium hydroxide = 2 × (0.45/58) moles = 0.0155 moles
Number of moles of hydroxide ions present in (0.5/78) moles of aluminium hydroxide = 3 × (0.5/78) moles = 0.0192 moles
Total moles of hydroxide ions = 0.0155 + 0.0192 = 0.0347 moles hydroxide ions
Therefore, 0.0347 moles of hydroxide ions will neutralize 0.0347 moles of hydronium ions.
How did Kepler's discoveries contribute to astronomy?
O They supported the heliocentric model.
O They established the laws of planetary motion.
O They explained how the Sun rises and sets.
O They made astronomy accessible to people who spoke Italian.
They made astronomy accessible to people who spoke italian
Answer:
"They established the laws of planetary motion"
Explanation:
Mr. Kepler was the astronomer who came up with the "Laws of Planetary Motion."
Forcus on the yellow highlighted texts, your help is appreciated.
[tex]{ \sf{ \red{no \: pranks}}}[/tex]
Answer:
Transition temperature is the temperature at which a substance changes from one state to another.
Allotropy is the existence of an element in many forms.
a. You have a stock solution of 14.8 M NH3. How many milliliters of this solution should you dilute to make 1000.0 mL of 0.250 M NH3?
b. If you take a 10.0 mL portion of the stock solution and dilute it to a total volume of 0.500 L, what will be the concentration of the final solution?
Answer:A) V = 16.892 ml
Explanation:
M1 * V1 = M2 * V2
14.8 M * V1 =0.250 M * 1000 ml
V1 = 16.892 ml
a. The volume of 16.89 milliliters of the stock solution of 14.8 M should be diluted to make 1000.0 mL of 0.250 M.
b. The concentration of the final solution is 0.296 M.
What is the dilution law?The concentration or the volume of the concentrated or dilute solution can be calculated by using the equation:
M₁V₁ = M₂V₂
where M₁ and V₁ are the concentration and volume of the concentrated solution respectively and M₂ and V₂ are the concentration and volume of the dilute solution.
A stock solution is a solution that has a high concentration and that will be diluted to a low concentration by the addition of water in it.
Given, a stock solution of concentration, M₁ = 14.8 M
The concentration of the diluted solution, M₂ = 0.250 M
The volume of diluted solution, V₂ = 1000ml
Substitute the value of the molarity and volume in equation (1):
(14.8)× (V₁) = (1000) × (0.250)
V₁ = 16.89 ml
Similarly, for part (b): M₁ = 14.8 M, V₁ = 10 ml and V₂ = 0.5L = 500 ml
(14.8)× (10) = (500) × (M₂)
M₂ = 0.296 M
Learn more about dilution law, here:
https://brainly.com/question/15718488
#SPJ5
how is the Sun classified?
A as a giant star
B as a medium star
C as a white star as a neutron star
D as a white dwarf
Answer:
As a giant star.
Explanation:
A
Determine the number of moles of aluminum in 2.154 x 10-1 kg of Al. Group of answer choices 5816 mol 7.984 mol 6.02 X 1023 mol 4.801 mol 8.783
Answer:
Avogadro's number is 1 mol = 6.02 * 10^23 elements
It means that 1 mol of atoms is 6.02 * 10^23 atoms
1 mol of atoms = 6.02 * 10^23 atoms
From there, if you divide both sides by 1 mol of atoms, you get
1 = 6.02 * 10^23 atoms / 1 mol of atoms.
That means, that to pass from a number of moles of atoms to number of atoms you have to multipby by the conversion factor
6.02*10^23 atoms Al/ 1 mol Al
That is the second option of the list.
Explanation:
What is the biggest cause of change in Earth's systems?
A. Heat
B. Motion
C. Friction
D. Plate tectonics
Answer:
heat
Explanation:
because it's the cause of change
Answer:
heat
Explanation:
because it is a natural factor that causes the change in Earth's system
A substance which is made up of the same kind
of atom is known as?
Answer:
Element
Element : A pure substance composed of the same type of atom throughout. Compound : A substance made of two or more elements that are chemically combined in fixed amounts.
Explanation:
A chunk of a metal alloy displaces 0.58 L of water and has a mass of 2.9 kg. What is the density of the alloy in g/cm3?
Answer:
5g/cm3
Explanation:
firstly convert the litres and kilograms to grams and centimeters.
1l is equivalent to 1000cm3
0.58×1000
580cm3
and 1kg is equivalent to 1000g
2.9×1000
2900
then find the density by using the formula
density=mass/volume
=2900g/580cm3
=5g/cm3
I hope this helps
một chất hữu cơ có cấu tạo c2h2 cho khí br2 vào ta được hỗn hợp khí
Answer:
C2H2 + Br2 → C2H2Br2
Explanation:
Write balanced equations for the reaction of each of the following carboxylic acids with NaOH. Part A formic acid Express your answer as a chemical equation. A chemical reaction does not occur for this question. Request Answer Part B 3-chloropropanoic acid Express your answer as a chemical equation. nothing A chemical reaction does not occur for this question.
Answer:
Part A
HCOOH(aq) + NaOH(aq) → HCOONa(aq) + H2O(l)
Part B
ClCH2CH2CO2H(aq) + NaOH(aq) ------> ClCH2CH2CO2Na(aq) + H2O(l)
Explanation:
The reaction between an alkanoic acid and a base is a neutralization reaction. The reaction occurs as follows;
RCOOH + NaOH ----> RCOONa + H2O
We have to note the fact that the net ionic reaction still remains;
H^+(aq) + OH^-(aq) ---> H2O(l)
In both cases, the reaction can occur and they actually do occur as written.
how many CH4 molecules are in 14.8 g of CH4
Answer:
[tex]\boxed {\boxed {\sf 5.56 \times 10^{23} \ molecules \ CH_4}}[/tex]
Explanation:
We are asked to find how many molecules of methane are in 14.8 grams of the substance.
1. Convert Grams to MolesFirst, we convert grams to moles. We use the molar mass, or the mass of 1 mole of a substance. These values are equivalent to the atomic masses found on the Periodic Table, however the units are grams per mole instead of atomic mass units.
We are given the compound methane, or CH₄. Look up the molar mass of the individual elements (carbon and hydrogen).
C: 12.011 g/mol H: 1.008 g/molCheck the formula for subscripts. Hydrogen (H) has a subscript of 4, so there are 4 moles of hydrogen in 1 mole of methane. We must multiply hydrogen's molar mass by 4, then add carbon's molar mass.
H₄: 1.008 * 4 = 4.032 g/mol CH₄: 12.011 + 4.032 = 16.043 g/molNow we use dimensional analysis to convert. To do this, we set up a ratio using the molar mass.
[tex]\frac {16.043 \ g \ CH_4 }{ 1 \ mol \ CH_4}[/tex]
Since we are converting 14.8 grams of methane to moles, we multiply by this value.
[tex]14.8 \ g \ CH_4 *\frac {16.043 \ g \ CH_4 }{ 1 \ mol \ CH_4}[/tex]
Flip the ratio so the units of grams of methane cancel.
[tex]14.8 \ g \ CH_4 *\frac{ 1 \ mol \ CH_4} {16.043 \ g \ CH_4 }[/tex]
[tex]14.8 *\frac{ 1 \ mol \ CH_4} {16.043}[/tex]
[tex]\frac {14.8}{16.043} \ mol \ CH_4= 0.9225207256 \ mol \ CH_4[/tex]
2. Moles to MoleculesNext, we convert moles to molecules. We use Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this problem, the particles are moles of methane. Set up another ratio using Avogadro's Number.
[tex]\frac { 6.022 \times \ 10^{23} \ molecules \ CH_4}{ 1 \ mol \ CH_4}[/tex]
Multiply by the number of moles we calculated.
[tex]0.9225207256\ mol \ CH_4 * \frac { 6.022 \times \ 10^{23} \ molecules \ CH_4}{ 1 \ mol \ CH_4}[/tex]
The units of moles of methane cancel.
[tex]0.9225207256* \frac { 6.022 \times \ 10^{23} \ molecules \ CH_4}{ 1 }[/tex]
[tex]5.55541981 \times 10^{23} \ molecules \ CH_4[/tex]
3. RoundThe original measurement of grams (14.8) has 3 significant figures, so our answer must have the same. For the number we calculated, that is the hundredth place. The 5 in the thousandth place tells us to round the 5 in the hundredth place up to a 6.
[tex]5.56 \times 10^{23} \ molecules \ CH_4[/tex]
14.8 grams of methane is equal to approximately 5.56 × 10²³ molecules of methane.
Two common methods to generate an aldehyde is by oxidation of an alcohol and through ozonolysis.
a. True
b. False
Answer:
a. True.
Explanation:
Only primary and secondary alcohols can oxidise to give an aldehyde. But a weak oxidizing agent must be used to prevent formation of a carboxylic acid or ketone.
weak oxidizing agents: Chromyl chloride, silver/oxygen/500°C
take an example of ethanol:
[tex]{ \bf{CH _{3} CH_{2}OH \: \: \frac{Ag/O_{2} }{500 \degree C} > \: \:CH _{3} CHO}}[/tex]
[tex]{ \sf{CH _{3} CHO \: \: is \: ethanal}} [/tex]
By ozonolysis:
Here, reactants are Ozone gas, Carbon tetrachloride at a temperature (<20°C), ethanoic acid, zinc and water.
take an example of propanol:
if it undergoes ozonolysis, it gives ethanal and methanal.
Answer:
A. True
Explanation:
Only primary and secondary alcohols can oxidise to give an aldehyde. But a weak oxidizing agent must be used to prevent formation of a carboxylic acid or ketone.
weak oxidizing agents: Chromyl chloride, silver/oxygen/500°C
take an example of ethanol:
By ozonolysis:
Here, reactants are Ozone gas, Carbon tetrachloride at a temperature (<20°C), ethanoic acid, zinc and water.
take an example of propanol:
if it undergoes ozonolysis, it gives ethanal and methanal.
Manganese-55 has _____neutrons.
55 Mn
25
A. 55
B. 30
C. 25
QUESTION:- Manganese-55 has _____neutrons.
OPTIONS :-
A. 55
B. 30
C. 25
ANSWER:- NUMBER OF NEUTRONS IS EQUAL TO THE DIFFERENCE BETWEEN THE MASS IF THE ATOM AND ATOMIC NUMBER
SO DIFFERENCE IS EQUAL TO :- 55-25 = 30 NEUTRONS.
SO THERE IS 30 NEUTRONS IN SINGLE ATOM OF THE MANGANESE-55 ATOM.
Answer:
the mass of an atom is the sum of proton and neutron which are both concentrated in nocleus of an atom. from the question the mass is given as 55 and the proton is 25.