Answer: E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Step-by-step explanation:
According to the combinations: Number of ways to choose r things out of n things = C(n,r)
Given word: "georgianna"
It is a sequence of 10 letters with 2 a's , 2 g's , 2 n's , and one of each e, o,r, i.
If we think 10 blank spaces, then in a sequence we need 2 spaces for each of g.
Number of ways = C(10,2)
Similarly,
1 space for 'e' → C(8,1)
1 space for 'o' → C(7,1)
1 space for 'r' → C(6,1)
1 space for 'i' → C(5,1)
1 space for 'a' → C(4,2)
1 space for 'n' → C(2,2)
Required number of different sequences = C(10,2) ×C(8,1)× C(7,1)× C(6,1)×C(5,1)×C(2,2).
Hence, the correct option is E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
limit chapter~ anyone can help me with these questions?
please gimme clear explanation :)
Step-by-step explanation:
I(S) = aS / (S + c)
As S approaches infinity, S becomes much larger than c. So S + c is approximately equal to just S.
lim(S→∞) I(S)
= lim(S→∞) aS / (S + c)
= lim(S→∞) aS / S
= lim(S→∞) a
= a
As S approaches infinity, I(S) approaches a.
Two balls are drawn in succession out of a box containing 5 red and 4 white balls. Find the probability that at least 1 ball was red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw. (A) Find the probability that at least 1 ball was red, given that the first ball was replaced before the second draw. StartFraction 24 Over 49 EndFraction (Simplify your answer. Type an integer or a fraction.) (B) Find the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw.
Answer:
The answer is below
Step-by-step explanation:
The box contains 5 red and 4 white balls.
A) The probability that at least 1 ball was red = P(both are red) + P(first is red and second is white) + P(first is white second is red)
Given that the first ball was (Upper A )Replaced before the second draw:
P(both are red) = P(red) × P(red) = 5/9 × 5/9 = 25/81
P(first is red and second is white) = P(red) × P(white) = 5/9 × 4/9 = 20/81
P(first is white and second is red) = P(white) × P(red) = 4/9 × 5/9 = 20/81
The probability that at least 1 ball was red = 25/81 + 20/81 + 20/81 = 65/81
B) The probability that at least 1 ball was red = P(both are red) + P(first is red and second is white) + P(first is white second is red)
Given that the first ball was not Replaced before the second draw:
P(both are red) = P(red) × P(red) = 5/9 × 4/8 = 20/72 (since it was not replaced after the first draw the number of red ball remaining would be 4 and the total ball remaining would be 8)
P(first is red second is white) = P(red) × P(white) = 5/9 × 4/8 = 20/72
P(first is white and second is red) = P(white) × P(red) = 4/9 × 5/8 = 20/72
The probability that at least 1 ball was red = 20/72 + 20/72 + 20/72 = 60/72
In a lottery game, a player picks 6 numbers from 1 to 50. If 5 of the 6 numbers match those drawn, the player wins second prize. What is the probability of winning this prize
Answer:
1/254,251,200 Or 0.000000003933118
Step-by-step explanation:
1/50x1/49x1/48x1/47x1/46=1/254,251,200
Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 5 + ln(t), y = t2 + 2, (5, 3)
Answer:
Step-by-step explanation:
Given that:
[tex]x = 5 + In (t)[/tex]
[tex]y = t^2+2[/tex]
At point (5,3)
To find an equation of the tangent to the curve at the given point,
By without eliminating the parameter
[tex]\dfrac{dx}{dt}= \dfrac{1}{t}[/tex]
[tex]\dfrac{dy}{dt}= 2t[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ \dfrac{dy}{dt} }{\dfrac{dx}{dt} }[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ 2t }{\dfrac{1}{t} }[/tex]
[tex]\dfrac{dy}{dx}= 2t^2[/tex]
[tex]\dfrac{dy}{dx}_{ (5,3)}= 2t^2_{ (5,3)}[/tex]
t² + 5 = 4
t² = 4 - 5
t² = - 1
Then;
[tex]\dfrac{dy}{dx}_{ (5,3)}= -2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
By eliminating the parameter
x = 5 + In(t)
In(t) = 5 - x
[tex]t =e^{x-5}[/tex]
[tex]y = (e^{x-5})^2+5[/tex][tex]y = (e^{2x-10})+5[/tex]
[tex]\dfrac{dy}{dx} = 2e^{2x-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2e^{10-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
A total of n bar magnets are placed end to end in a line with random independent orientations. Adjacent like poles repel while ends with opposite polarities join to form blocks. Let X be the number of blocks of joined magnets. Find E(X) and Var(X).
Answer:
E(x) [tex]= \frac{n+1}{2}[/tex]
Var(x) [tex]= \frac{1}{4} [ n - 1 ][/tex]
Step-by-step explanation:
Hint x = 1 + x1 + ......... Xn-1
[tex]X_{i} = \left \{ {{1} if the ith adjacent pair of magnets repel each other \atop {0} if ith adjacent pair of magnets join} \right.[/tex]
attached below is the detailed solutioN
usually like poles of magnets repel each other and unlike poles of magnets attract each other forming a block
Because she has limited shelf space, she can't put out all her copies of the CD at once. On Monday morning, she stocked the display with 40 copies. By the end of the day, some of the copies had been sold. On Tuesday morning, she counted the number of copies left and then added that many more to the shelf. In other words, she doubled the number that was left in the display. At the end of the day, she discovered that she had sold the exact same number of copies as had been sold on Monday. On Wednesday morning, the manager decided to triple the number of copies that had been left in the case after Tuesday. Amazingly, she sold the same number of copies on Wednesday as she had on each of the first two days! But this time, at the end of the day the display case was empty.
Now, it look like there is some information missing in the answer. The whole problem should look like this:
Alicia Keys's new album As I Am is climbing the charts, and the manager of Tip Top Tunes expects to sell a lot of copies. Because she has limited shelf space, she can't put out all her copies of the CD at once. On Monday morning, she stocked the display with 40 copies. By the end of the day, some of the copies had been sold. On Tuesday morning, she counted the number of copies left and then added that many more to the shelf. In other words, she doubled the number that was left in the display. At the end of the day, she discovered that she had sold the exact same number of copies as had been sold on Monday. On Wednesday morning, the manager decided to triple the number of copies that had been left in the case after Tuesday. Amazingly, she sold the same number of copies on Wednesday as she had on each of the first two days! But this time, at the end of the day the display case was empty. How many copies of the As I Am CD did she sell each day?
Answer:
She sold 24 copies of the cd each day.
Step-by-step explanation:
In order to solve this problem we must first set our variable up. In this case, since we need to know what the number of sold cd's per day is, that will just be our variable:
x= Number of copies sold.
So we can start setting our equation up. So we take the first part of the problem:
"On Monday morning, she stocked the display with 40 copies. By the end of the day, some of the copies had been sold."
This can be translated as:
40-x
where this expression represents the number of copies left on the shelf by the end of monday.
"On Tuesday morning, she counted the number of copies left and then added that many more to the shelf."
so we represent it like this:
(40-x)+(40-x)
"In other words, she doubled the number that was left in the display."
so the previous expression can be simplified like this:
2(40-x)
"At the end of the day, she discovered that she had sold the exact same number of copies as had been sold on Monday."
so the expression now turns to:
2(40-x)-x this is the number of copies left by the end of tuesday.
"On Wednesday morning, the manager decided to triple the number of copies that had been left in the case after Tuesday."
this translates to:
3[2(40-x)-x]
This is the number of copies on the shelf by the begining of Wednesday.
"Amazingly, she sold the same number of copies on Wednesday as she had on each of the first two days! But this time, at the end of the day the display case was empty."
this piece of information lets us finish writting our equation:
3[2(40-x)-x] -x = 0
since there were no copies left on the shelf, then the equation is equal to zero.
So now we proceed and solve the equation for x:
3[2(40-x)-x] -x = 0
We simplify it from the inside to the outside.
3[80-2x-x]-x=0
3[80-3x]-x = 0
we now distribute the 3 so we get:
240-9x-x=0
we combine like terms so we get:
240-10x=0
we move the 240 to the other side of the equation so we get:
-10x=-240
and divide both sides into -10 so we get:
x=24
so she sold 24 copies each day.
HELP ME ILL GIV ROBUX Identify the property shown by the equation. 14 × 6 = 6 × 14 A. Commutative Property B. Associative Property C. Identity Property D. Distributive Property PLEASE HELP ME
Answer:
Its commutative property..
Step-by-step explanation:
Commutative property says A×B=B×A
Explanation is attached below.
A student wrote the following equation and solution. Explain the error and correctly solve the equation: √p = 9/16 p = 3/4
Answer:
see below
Step-by-step explanation:
√p = 9/16
We need to square each side, not take the square root
(√p)^2 =( 9/16)^2
p = 81/256
Given the sequence 38, 32, 26, 20, 14, ..., find the explicit formula. A. an=44−6n B. an=41−6n C. an=35−6n D. an=43−6n
Answer:
The answer is option AStep-by-step explanation:
The sequence above is an arithmetic sequence
For an nth term in an arithmetic sequence
A(n) = a + ( n - 1)d
where a is the first term
n is the number of terms
d is the common difference
From the question
a = 38
d = 32 - 38 = - 6 or 20 - 26 = - 6
Substitute the values into the above formula
A(n) = 38 + (n - 1)-6
= 38 - 6n + 6
We have the final answer as
A(n) = 44 - 6nHope this helps you
Answer:
a
Step-by-step explanation:
you're welcome!
given that f(x)=x^2-4x -3 and g(x)=x+3/4 solve for f(g(x)) when x=9
Answer:
f(g(9)) = 945/16
Step-by-step explanation:
To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).
g(x) = x + 3/4
f(x) = x² - 4x - 3
f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3
f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3
f(g(x)) = x² - 5/2x + 9/16 + 3 - 3
f(g(x)) = x² - 5/2x + 9/16
Now, put a 9 wherever there is an x in f(g(x)).
f(g(9)) = (9)² - 5/2(9) + 9/16
f(g(9)) = 81 - 5/2(9) + 9/16
f(g(9)) = 81 - 45/2 + 9/16
f(g(9)) = 117/2 + 9/16
f(g(9)) = 945/16
!2,19,26 what comes nxt
Answer:
12 , 19 , 26 , 33
Explaination:Here, n+7
12+7=19
19+7=26
So,
26+7=33
Hope you understand ❣
Step-by-step explanation:
12 , 19 , 26 , ?
Given
___________
a1= 12
a2= 19
a3 = 26
d= ?
a4 = ?
––——————
we can solve this by using formula from Ap .
But for this we have to find d
As we know that
common difference(d) = a2-a1 = 19 -12
= 7
so difference after every no is 7 so
a4 = a3 + d
= 26 +7
= 33
So 33 is ur answer mate
Hope it helps
Will mark the brainliest
And thank you:)
[tex]\sf{\implies Range = Highest \: - lowest }[/tex]
→ Range of Lewistown = 74 - 64
→ Range of Lewistown = 10 .
→ Range of Hamersville = 71 - 55
→ Range of Hamersville = 16 .
☆ Range of Hamersville - Range of Lewistown
→ 16 - 10
→ 6
Answer → The range for Hamersville is 6 more than the range for Lewistown .
suppose a chemical engineer randomly selects 3 catalysts for testing from a group of 10 catalysts, 6 of which have low acidity & 4 have high acidity. What is the probability that exactly2 lower acidic catalysts are selected?
Step-by-step explanation:
Total catalysts = 10
Probability of 2 lower acidic catalysts = 2/10 = 1/5
Given a sample of 35, what is the sample standard deviation of a pair of jeans if the 90% confidence interval is [37.14, 42.86]
Answer:
10.295Step-by-step explanation:
Using the value for calculating the confidence interval as given;
CI = xbar + Z*σ/√n
xbar is the mean = 37.14+42.86/2
xbar= 80/2
xbar = 40
Z is the z-score at the 90% confidence = 1.645
σ is the standard deviation
n is the sample size = 35
Given the confidence interval CI as [37.14, 42.86]
Using the maximum value of the confidence interval to get the value of the standard deviation, we will have;
42.86 = xbar + Z*σ/√n
42.86 = 40 + 1.645* σ/√35
42.86-40 = 1.645*σ/√35
2.86 = 1.645*σ/√35
2.86/1.645 = σ/√35
1.739 = σ/√35
1.739 = σ/5.92
σ= 1.739*5.92
σ = 10.295
Hence, the sample standard deviation of a pair of jeans is 10.295
A health insurer has determined that the "reasonable and customary" fee for a certain medical procedure is $1200. They suspect that the average fee charged by one particular clinic for this procedure is higher than $1200.
Explain in context the conclusion of the test if H0 is rejected.
Answer:
For the null hypothesis to be rejected , then the conclusion of the test is that the absolute values of the z-statistic and/or the t-test statistic is greater than the critical value
Step-by-step explanation:
Here, we want to explain the conclusion of the test given that the null hypothesis is rejected.
Mathematically, the null hypothesis is as expressed as below;
H0: μ = 1,200
The alternative hypothesis H1 would be;
H1: μ > 1,200
Now, before we can reject or accept the null hypothesis, we will need a sample size and thus calculate the test statistics and the z statistics
For us to reject the null hypothesis, one of two things, or two things must have occurred.
The absolute value of the z statistic |z| or the test statistic |t| must be greater than the critical value.
If this happens, then we can make a rejection of the null hypothesis
What is the area of polygon EFGH?
What is the approximate value of x in –2 ln (x + 1) − 3 = 7?
Answer:
x = 1/e^-5 - 1
Step-by-step explanation:
–2 ln (x + 1) − 3 = 7
–2 ln (x + 1) = 10
ln (x + 1) = –5
x + 1 = e^-5
x = e^-5 - 1
x = 1/e^-5 - 1
the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
To solve the equation -2 ln(x + 1) - 3 = 7 for the approximate value of x, we will follow these steps:
1. Begin with the given equation: -2 ln(x + 1) - 3 = 7.
2. Move the constant term to the other side of the equation: -2 ln(x + 1) = 7 + 3.
3. Simplify: -2 ln(x + 1) = 10.
4. Divide both sides of the equation by -2 to isolate the natural logarithm term: ln(x + 1) = -5.
5. Rewrite the equation using the exponential form of natural logarithm: e⁻⁵ = x + 1.
6. Calculate the value of e⁻⁵: e⁻⁵ ≈ 0.0067.
7. Subtract 1 from both sides of the equation: x = 0.0067 - 1.
8. Simplify: x ≈ -0.9933.
Therefore, the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
Learn more about equation here
https://brainly.com/question/32549431
#SPJ2
Evaluate the double integral ∬Ry2x2+y2dA, where R is the region that lies between the circles x2+y2=16 and x2+y2=121, by changing to polar coordinates.
Answer:
See answer and graph below
Step-by-step explanation:
∬Ry2x2+y2dA
=∫Ry.2x.2+y.2dA
=A(2y+4Ryx)+c
=∫Ry.2x.2+y.2dA
Integral of a constant ∫pdx=px
=(2x+2.2Ryx)A
=A(2y+4Ryx)
=A(2y+4Ryx)+c
The graph of y=A(2y+4Ryx)+c assuming A=1 and c=2
The evaluation of the double integral is [tex]\mathbf{ \dfrac{105}{2}\pi }[/tex]
The double integral [tex]\mathbf{\int \int _R\ \dfrac{y^2}{x^2+y^2} \ dA}[/tex], where R is the region that lies between
the circles [tex]\mathbf{x^2 +y^2 = 16 \ and \ x^2 + y^2 = 121}[/tex].
Let consider x = rcosθ and y = rsinθ because x² + y² = r²;
Now, the double integral can be written in polar coordinates as:
[tex]\mathbf{\implies \int \int _R\ \dfrac{y^2}{x^2+y^2} \ dxdy}[/tex]
[tex]\mathbf{\implies \int \int _R\ \dfrac{r^2 \ sin^2 \theta}{r^2} \ rdrd\theta}[/tex]
[tex]\mathbf{\implies \int \int _R\ \ sin^2 \theta \ r \ drd\theta}[/tex]
Thus, the integral becomes:
[tex]\mathbf{=\int^{2 \pi}_{0} sin^2 \theta d\theta \int ^{11}_{4} rdr }[/tex]
since 2sin² = 1 - cos2θ∴
[tex]\mathbf{=\int^{2 \pi}_{0} \dfrac{1-cos 2 \theta }{2} \ \theta \ d\theta\dfrac{r}{2} \Big|^{11}_{4}dr }[/tex]
[tex]\mathbf{\implies \dfrac{1}{2} \Big[\theta - \dfrac{sin \ 2 \theta}{2}\Big]^{2 \pi}_{0} \ \times\Big[ \dfrac{11^2-4^2}{2}\Big]}[/tex]
[tex]\mathbf{\implies \dfrac{\pi}{2} \times\Big[ 121-16\Big]}[/tex]
[tex]\mathbf{\implies \dfrac{105}{2}\pi }[/tex]
Learn more about double integral here:
https://brainly.com/question/19756166
The red blood cell counts (in millions of cells per microliter) for a population of adult males can be approximated by a normal distribution, with a mean of million cells per microliter and a standard deviation of million cells per microliter. (a) What is the minimum red blood cell count that can be in the top % of counts? (b) What is the maximum red blood cell count that can be in the bottom % of counts?
Answer:
(a) Minimum red blood cells 5.744 million cells per micro liter
(b) Maximum red blood cells 5.068 million cells per micro liter.
Step-by-step explanation:
Z-score formula is = [tex]\frac{x-u}{Standard deviation}[/tex]
Z-score = [tex]\frac{x-5.5}{0.4}[/tex]
The value of z-score is 0.61 so then x will be;
x = 5.744
The minimum red blood cells count that can in top is 27% of count which is 5.744 million cells per micro liter.
Z-score = [tex]\frac{x-5.5}{0.4}[/tex]
The value of z-score is 0.14 so then x will be;
x = 5.068
The maximum red blood cells count that can be in top is 14% of count which is 5.068 million cells per micro liter.
I need help with these
Answer:
2. 20 oranges
3. 18 yellow tulips
4. 23 students
PLEASE HELP- MATH
simplify the fraction
5bc/10b^2
[tex]\dfrac{5bc}{10b^2}=\dfrac{\not 5\cdot \not b\cdot c}{2\cdot \not 5\cdot \not b\cdot b}=\dfrac{c}{2b}[/tex]
Answer:
c / ( 2b)
Step-by-step explanation:
5bc/10b^2
Lets look at the numbers first
5/10 = 1/2
Then the variable b
b / b^2 = 1/b
Then the variable c
c/1 = c
Putting them back together
1/2 * 1/b * c/1
c/ 2b
someone please help me
Answer:
3 mL
Step-by-step explanation:
The fluid level is called the concave meniscus. The adhesive force causes it to crawl up on the sides, but you should ignore that while reading the level.
A United Nations report shows the mean family income for Mexican migrants to the United States is $26,500 per year. A FLOC (Farm Labor Organizing Committee) evaluation of 24 Mexican family units reveals a mean to be $30,150 with a sample standard deviation of $10,560. State the null hypothesis and the alternate hypothesis.
Answer:
The null hypothesis [tex]\mathtt{H_0 : \mu = 26500}[/tex]
The alternative hypothesis [tex]\mathtt{H_1 : \mu \neq 26500}[/tex]
Step-by-step explanation:
The summary of the given statistics is:
Population Mean = 26,500
Sample Mean = 30,150
Standard deviation = 10560
sample size = 24
The objective is to state the null hypothesis and the alternate hypothesis.
An hypothesis is a claim with insufficient information which tends to be challenged into further testing and experimentation in order to determine if such claim is significant or not.
The null hypothesis is a default hypothesis where there is no statistical significance between the two variables in the hypothesis.
The alternative hypothesis is the research hypothesis that the researcher is trying to prove.
The null hypothesis [tex]\mathtt{H_0 : \mu = 26500}[/tex]
The alternative hypothesis [tex]\mathtt{H_1 : \mu \neq 26500}[/tex]
The test statistic can be computed as follows:
[tex]z = \dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \dfrac{30150 - 26500}{\dfrac{10560}{\sqrt{24}}}[/tex]
[tex]z = \dfrac{3650}{\dfrac{10560}{4.8989}}[/tex]
[tex]z = \dfrac{3650 \times 4.8989 }{{10560}}[/tex]
z = 1.6933
(4 points) Determine whether each of these functions is O(x 2 ). Proof is not required but it may be good to try to justify it (a) 100x + 1000 (b) 100x 2 + 1000 (c) x 3 100 − 1000x 2 (d) x log x (2) (2 points) U
Answer:
(a) O(x²)
(b) O(x²)
(c) O(x²)
(d) Not O(x²)
Step-by-step explanation:
If a function is O(x²), then the highest power of x in the function ia greater or equal to 2.
(a) 100x + 1000
This is O(x), not O(x²)
(b) 100x² + 1000
This is O(x²)
(c) x³.100 − 1000x²
This is O(x²)
(d) x log x²
This is not O(x²)
What does the tape measure say Measurement # 3 is? *
Answer:
5 and 3/32 of an inch.
Help me solve this!!!
Answer:
54°
Step-by-step explanation:
Let ∠CYX=x
AB║CD
∠AXE=∠CYX (corresponding angles)
∠AXE=3∠CYX-108
x=3x-108
3x-x=108
2x=108
x=108/2=54°
∠AXE=∠CYX=x=54°
∠BXY=∠AXE=54° (Vertically opposite angles)
There are 47 contestants at a national dog show. How many different ways can contestants fill the first place, second place, and third place positions?
Answer:
97290
Step-by-step explanation:
47 different people can win first
47
Now there are only 46 people left
46 different people can win second
46
45 different people can win third
47*46*45
97290
find the unknown angles
Answer:
y=135
x=45
Step-by-step explanation:
x= 45
It is an isosceles so
180-90=90
90/2= 45
y=135
angles on a straight line add up to 180 so
180-45=135
Hope this helps!
in the factory 25 men working 26 hour can produce 1300 radios . how manny hours must the same group of men work to produce 450 radios
Answer:
9 hours
Step-by-step explanation:
Since the group of men remains the same, number of hours is proportional to number of radios.
1300/26 = 450/h
h = 26 * 450 / 1300 = 9 hours
About 25% of young Americans have delayed starting a family due to the continued economic slump. Determine if the following statements are true or false, and explain your reasoning.a. The distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump in random samples of size 12 is right skewed.b. In order for the distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump to be approximatly normal, we need random samples where the sample size is at least 40.c. A random sample of 50 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.d. A random sample of 150 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.e. Tripling the sample size will reduce the standard error of the sample proportion by one-third.
Answer:
a. True
b. true
c. false
d. false
e. false
Step-by-step explanation:
a. true
polutation = 25% = 0.25
sample = n= 12
n x p
= 12 x o. 25 = 3 and 3 is less than 10
12(1 - p)
= 12 x 0.75
= 9 and is less than 10
b. True
the sample distribution of the population is normal when
sample size x population > or equal to 10
40 x 0.75
= 30 and 30 is greater than 10
c. false
50 x 0.25 = 12.5
50 x 0.20 = 10
z = 10 - 12.5/sqrt(12.5)
= -2.5/3.54
= -0.70
H0: Young american family who delayed
H1: young american family who did not delay
p(z = -0.70)
0.2420>0.005
therefore we accept the null hypothesis
d. false
150 x 0.20 = 30
150 x 0.75 = 37.5
z = 30 - 37.5/sqrt(37.5) = -7.5/6.12 = -1.22
p(z = -1.22) = 0.1112 > 0.05
therefore we do not reject the null hypothesis
e. false
se1 = sqrt(p(1-p)/n
se2 = sqrt(p(1-p)/3n
se2 = 1/sqrt(3)se2