Complete Question
The complete question is shown on the first uploaded image
Answer:
a
[tex]P(3) = 0.154[/tex]
b
[tex]P(4) = 0.026[/tex]
c
[tex]P( X \ge 3 ) = 0.18[/tex]
d
option C is correct
Step-by-step explanation:
From the question we are told that
The probability of success is p = 0.4
The sample size is n= 4
This adults believe follow a binomial distribution is because there are only two outcome one is an adult believes in reincarnation and the second an adult does not believe in reincarnation
The probability of failure is mathematically evaluated as
[tex]q = 1 - p[/tex]
substituting values
[tex]q = 1 - 0.4[/tex]
[tex]q = 0.6[/tex]
Considering a
The probability that exactly 3 of the selected adults believe in reincarnation is mathematically represented as
[tex]P(3) = \left n} \atop {}} \right. C_ 3 * p^3 * q^{n-3}[/tex]
substituting values
[tex]P(3) = \left 4} \atop {}} \right. C_ 3 * (0.40)^3 * (0.60)^{4-3}[/tex]
Here [tex]\left 4} \atop {}} \right.C_3[/tex] means 4 combination 3 . i have calculated this using a calculator and the value is
[tex]\left 4} \atop {}} \right.C_3 = 4[/tex]
So
[tex]P(3) = 4* (0.4)^3 * (0.6)[/tex]
[tex]P(3) = 0.154[/tex]
Considering b
The probability that all of the selected adults believe in reincarnation is mathematically represented as
[tex]P(n) = \left n} \atop {}} \right. C_ n * p^n * q^{n-n}[/tex]
substituting values
[tex]P(4) = \left 4} \atop {}} \right. C_ 4 * (0.40)^4 * (0.60)^{4-4}[/tex]
Here [tex]\left 4} \atop {}} \right.C_3[/tex] means 4 combination . i have calculated this using a calculator and the value is [tex]\left 4} \atop {}} \right.C_4 = 1[/tex]
so
[tex]P(4) = 1* (0.4)^4 * 1[/tex]
=> [tex]P(4) = 0.026[/tex]
Considering c
the probability that at least 3 of the selected adults believe in reincarnation is mathematically represented as
[tex]P( X \ge 3 ) = P(3 ) + P(n )[/tex]
substituting values
[tex]P( X \ge 3 ) = 0.154 + 0.026[/tex]
[tex]P( X \ge 3 ) = 0.18[/tex]
From the calculation the probability that all the 4 randomly selected persons believe in reincarnation is [tex]p(4) = 0.026 < 0.05[/tex]
But the the probability of 3 out of the 4 randomly selected person believing in reincarnation is [tex]P(3) = 0.154 \ which \ is \ > 0.05[/tex]
Hence 3 is not a significantly high number of adults who believe in reincarnation because the probability that 3 or more of the selected adults believe in reincarnation is greater than 0.05.
What is the value of 1/3x-3/4 when x =1/4
Answer:
The value of 1/3x-3/4 when x=1/4 is 0.08333 repeated.
Step-by-step explanation:
Find the point(s) on the ellipse x = 3 cost, y = sin t, 0 less than or equal to t less than or equal to 2pi closest to the point(4/3,0) (Hint: Minimize the square of the distance as a function of t.) The point(s) on the ellipse closest to the given point is(are) . (Type ordered pairs. Use a comma to separate answers as needed.)
Answer and Step-by-step explanation:
The computation of points on the ellipse is shown below:-
Distance between any point on the ellipse
[tex](3 cos t, sin t) and (\frac{4}{3},0) is\\\\ d = \sqrt{(3 cos\ t - \frac{4}{3}^2) } + (sin\ t - 0)^2\\\\ d^2 = (3 cos\ t - \frac{4}{3})^2 + sin^2 t[/tex]
To minimize
[tex]d^2, set\ f' (t) = 0\\\\2(3cos\ t - \frac{x=4}{3} ).3(-sin\ t) + 2sin\ t\ cos\ t = 0\\\\ 8 sin\ t - 16 sin\ t\ cos\ t = 0\\\\ 8 sin\ t (1 - 2 cos\ t) = 0\\\\ sin\ t = 0, cos\ t = \frac{1}{2} \\\\ t= 0, \ 0, \pi,2\pi,\frac{\pi}{3} , \frac{5\pi}{3}[/tex]
Now we create a table by applying the critical points which are shown below:
t [tex]d^{2} = (3\ cos t - \frac{4}{3})^{2} + sin^{2}t[/tex]
0 [tex]\frac{25}{9}[/tex]
[tex]\pi[/tex] [tex]\frac{169}{9}[/tex]
[tex]2\pi[/tex] [tex]\frac{25}{9}[/tex]
[tex]\frac{\pi}{3}[/tex] [tex]\frac{7}{9}[/tex]
[tex]\frac{5\pi}{3}[/tex] [tex]\frac{7}{9}[/tex]
When t = [tex]\frac{\pi}{3}[/tex], x is [tex]\frac{3}{2}[/tex] and y is [tex]\frac{\sqrt{3} }{2}[/tex]. So, the required points are [tex](\frac{3}{2},\frac{\sqrt{3} }{2})[/tex]
When t = [tex]\frac{5\pi}{3}[/tex], x is [tex]\frac{3}{2}[/tex] and y is [tex]\frac{-\sqrt{3} }{2}[/tex]. So, the required points are [tex](\frac{3}{2},\frac{-\sqrt{3} }{2})[/tex]
The X- and y-coordinates of point P are each to be chosen at random from the set of integers 1 through 10.
What is the probability that P will be in quadrant II ?
О
1/10
1/4
1/2
Answer:
Ok, as i understand it:
for a point P = (x, y)
The values of x and y can be randomly chosen from the set {1, 2, ..., 10}
We want to find the probability that the point P lies on the second quadrant:
First, what type of points are located in the second quadrant?
We should have a value negative for x, and positive for y.
But in our set; {1, 2, ..., 10}, we have only positive values.
So x can not be negative, this means that the point can never be on the second quadrant.
So the probability is 0.
line m in the xy-plane above is to be reflected through the x-axis. if the slope of line m is 2/3,whats is the slope of the image of line m under the reflection.
Answer: The new slope is -(2/3)
Step-by-step explanation:
Ok, we know that our line can be written as:
y = (2/3)*x + b
where b is the y-intercept, and here does not really matter.
Ok, remember that if we have a point (x, y) and we reflect it over the x-axis, the new point will be (x, -y).
For our linear equation, the point (x, y) can be written as:
(x, y = (2/3)*x + b) = (x, (2/3)*x + b)
Now, after the reflection, our point is:
(x, - ( (2/3)*x + b)) = (x, -(2/3)*x - b)
Then our new line is y = -(2/3)*x - b
The new slope is -(2/3)
Find the area of the shaded regions:
area of Arc subtending [tex]360^{\circ}[/tex] (i.e. the whole circle) is $\pi r^2$
so area of Arc subtending $\theta^{\circ}$ is, $\frac{ \pi r^2}{360^{\circ}}\times \theta^{\circ}$
$\theta =72^{\circ}$ so the area enclosed by one such arc is $\frac{\pi (10)^272}{360}$
abd there are 2 such arcs, so double the area.
[tex] \LARGE{ \underline{ \boxed{ \rm{ \purple{Solution}}}}}[/tex]
Given:-Radius of the circle = 10 inchesAngle of each sector = 72°Number of sectors = 2To FinD:-Find the area of the shaded regions....?How to solve?For solving this question, Let's know how to find the area of a sector in a circle?
[tex] \large{ \boxed{ \rm{area \: of \: sector = \frac{\theta}{360} \times \pi {r}^{2} }}}[/tex]
Here, Θ is the angle of sector and r is the radius of the circle. So, let's solve this question.
Solution:-We have,
No. of sectors = 2Angle of sector = 72°By using formula,
⇛ Area of shaded region = 2 × Area of each sector
⇛ Area of shaded region = 2 × Θ/360° × πr²
⇛ Area of shaded region = 2 × 72°/360° × 22/7 × 10²
⇛ Area of shaded region = 2/5 × 100 × 22/7
⇛ Area of shaded region = 40 × 22/7
⇛ Area of shaded region = 880/7 inch. sq.
⇛ Area of shaded region = 125.71 inch. sq.
☄ Your Required answer is 125.71 inch. sq(approx.)
━━━━━━━━━━━━━━━━━━━━
Which rule describes this transformation? (Zoom in to see it clearly)
Answer:
(x,y) -> (x+6, y-3)
Step-by-step explanation:
I followed c and it translated like the last ans choice.
How many dimensions does an angle have?
Answer:
the length has dimension 1, the area has the dimension 2, the volume has dimension 3, etc. And the angle has dimension 0.
Step-by-step explanation:
2. Use the diagram and given information to answer the questions and prove the statement.
a. Re-draw the diagram of the overlapping triangles so that the two triangles are separated.
b. What additional information would be necessary to prove that the two triangles, XBY and ZAY , are congruent? What congruency would be applied?
c. Prove (AZ) is congruent to (BX) using a flow chart proof. ( ):both have a line over them
[tex] \huge{ \underline{ \tt{ \purple{Solution:}}}}[/tex]
2) a)⚘ Refer to the attachment....
After separating, we will get two triangles △XYB and △ZYA where ∠Y is common to both the triangles, hence their measure is equal. This will be use in further proof.
b) We have,
∠X = ∠Z (Given, ATQ)∠Y = common to both triangles. XY = ZYSo, here
Two pairs of corresponding angles are equal along the side contained between them. So, The above triangles are congurent by ASA criterion.
✤ No more additional information Required to prove the above triangles be congurent.
➝ △XYB ≅ △ZYA (By ASA Criterion)
c) By using flow chart proof:
[tex] \boxed{ \sf{ \angle X = \angle Z}} \searrow[/tex]
[tex] \boxed{ \sf{\small{ \angle Y = com.}}} \rightarrow \boxed{\small{ \sf{ \triangle XYB \cong \triangle ZYA}}}\rightarrow \small{\boxed{ \sf{AZ= XB}}}[/tex]
[tex] \boxed{ \sf{XY = ZY}} \nearrow[/tex]
━━━━━━━━━━━━━━━━━━━━
Step-by-step explanation:
Hey mate ut answer is in the given attachment.
hope i help u
Solve for 2 in the diagram below.
45°
150
42°
ea
Stuck? Watch a video or use a hint.
Step-by-step explanation:
Hi, there!!!
It's so simple..
Let me clear you, alright.
Here, On the fig line, OE is just a confusing line. If you look it in simple way,
AB and CD are interested at a point O.
so, angle AOD and angle COB are equal.{ because they are vertically opposite angle}
so, angle AOD= angle COB
or, 4x°=45°+15°
or, 4x°= 60°
or, x= 60°/4
Therefore, x= 15°.
Hope it helps....
The radius of a right circular cylinder is increasing at the rate of 7 in./sec, while the height is decreasing at the rate of 6 in./sec. At what rate is the volume of the cylinder changing when the radius is 20 in. and the height is 16 in.
Answer:
[tex]\approx \bold{6544\ in^3/sec}[/tex]
Step-by-step explanation:
Given:
Rate of change of radius of cylinder:
[tex]\dfrac{dr}{dt} = +7\ in/sec[/tex]
(This is increasing rate so positive)
Rate of change of height of cylinder:
[tex]\dfrac{dh}{dt} = -6\ in/sec[/tex]
(This is decreasing rate so negative)
To find:
Rate of change of volume when r = 20 inches and h = 16 inches.
Solution:
First of all, let us have a look at the formula for Volume:
[tex]V = \pi r^2h[/tex]
Differentiating it w.r.to 't':
[tex]\dfrac{dV}{dt} = \dfrac{d}{dt}(\pi r^2h)[/tex]
Let us have a look at the formula:
[tex]1.\ \dfrac{d}{dx} (C.f(x)) = C\dfrac{d(f(x))}{dx} \ \ \ (\text{C is a constant})\\2.\ \dfrac{d}{dx} (f(x).g(x)) = f(x)\dfrac{d}{dx} (g(x))+g(x)\dfrac{d}{dx} (f(x))[/tex]
[tex]3.\ \dfrac{dx^n}{dx} = nx^{n-1}[/tex]
Applying the two formula for the above differentiation:
[tex]\Rightarrow \dfrac{dV}{dt} = \pi\dfrac{d}{dt}( r^2h)\\\Rightarrow \dfrac{dV}{dt} = \pi h\dfrac{d }{dt}( r^2)+\pi r^2\dfrac{dh }{dt}\\\Rightarrow \dfrac{dV}{dt} = \pi h\times 2r \dfrac{dr }{dt}+\pi r^2\dfrac{dh }{dt}[/tex]
Now, putting the values:
[tex]\Rightarrow \dfrac{dV}{dt} = \pi \times 16\times 2\times 20 \times 7+\pi\times 20^2\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 22 \times 16\times 2\times 20 +3.14\times 400\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 14080 -7536\\\Rightarrow \dfrac{dV}{dt} \approx \bold{6544\ in^3/sec}[/tex]
So, the answer is: [tex]\approx \bold{6544\ in^3/sec}[/tex]
A diameter that is perpendicular to a chord bisects the chord. True False
Answer:
[tex]\Large \boxed{\sf True}[/tex]
Step-by-step explanation:
[tex]\sf A \ diameter \ that \ is \ perpendicular \ to \ a \ chord \ bisects \ the \ chord.[/tex]
Answer:
True!!
I just did the assignment and got it right
A researcher wants to determine the impact of soil type on the growth of a certain type of plant. She grows three plants in each of four different types of soil and measures the growth in inches for each plant after one month resulting in the data below.
Soil 1 Soil 2 Soil 3 Soil 4
12.6 12.2 12.2 11.1
12.6 12 10.6 11.7
14.3 13 9.1 9.6
1. What null hypothesis is the researcher testing if she runs an ANOVA with this data?
a.The mean growth of the plant in each type of soil is the same.
b. One type of soil has a higher mean growth for the plant than the others.
c. The variability in growth of the plant in each type of soil is the same.
d. Oil 3 provides a lower mean growth for the plant than the other types of soil.
e. The mean growth of the plant is different in each type of soil.
2. What is the SStrt for the ANOVA? Give your answer to at least three decimal places.
3. What is DFerr for the ANOVA?
4. What is the value of the F statistic for the ANOVA? Give your answer to at least three decimal places.
5. Using a 0.05 level of significance, what conclusion should the researcher reach?
a. There is not enough evidence to reject the claim that the mean growth of the plant is the same in each type of soil.
b. Soil 1 has a higher mean growth for the plant than the other types of soil.
c. The mean growth of the plant is not the same for all soil types .
d. Soil 3 has a lower mean growth for the plant than the other types of soil.
Answer:
(1) Option a
(2) 13.737
(3) 8
(4) 3.803
(5) Option a
Step-by-step explanation:
In this case, we need to determine whether the soil type effects the growth of a certain type of plant.
Perform the ANOVA test for the provided data on Excel.
Go to Data - Data Analysis - Anova: Single factor
Select the data for the growth.
Press OK.
The output is attached below.
(1)
The hypothesis for the study can be defined as follows:
H₀: The mean growth of the plant in each type of soil is the same.
Hₐ: The mean growth of the plant is different in each type of soil.
Correct option a.
(2)
The sum of square for treatment is:
[tex]\text{SS}_{trt}=\text{SS}_{BG}=13.737[/tex]
(3)
The degrees of freedom of error is:
[tex]\text{DF}_{err}=\text{DF}_{WG}=8[/tex]
(4)
The F statistic for the ANOVA is:
[tex]F=3.803[/tex]
(5)
The p-value of the test is:
[tex]p-value=0.058[/tex]
Decision Rule:
Reject H₀ if the p-value of the test is less than the level of significance.
[tex]\text{p-value}=0.058>\alpha=0.05[/tex]
The null hypothesis was failed to be rejected.
Conclusion:
There is not enough evidence to reject the claim that the mean growth of the plant is the same in each type of soil.
Correct option a.
A company has 8 mechanics and 6 electricians. If an employee is selected at random, what is the probability that they are an electrician
Answer:
[tex]Probability = \frac{3}{7}[/tex]
Step-by-step explanation:
Given
Electrician = 6
Mechanic = 8
Required
Determine the probability of selecting an electrician
First, we need the total number of employees;
[tex]Total = n(Electrician) + n(Mechanic)[/tex]
[tex]Total = 6 + 8[/tex]
[tex]Total = 14[/tex]
Next, is to determine the required probability using the following formula;
[tex]Probability = \frac{n(Electrician)}{Total}[/tex]
[tex]Probability = \frac{6}{14}[/tex]
Divide numerator and denominator by 2
[tex]Probability = \frac{3}{7}[/tex]
Hence, the probability of selecting an electrician is 3/7
Solve the equation using square roots x^2+20=4
Answer:
Step-by-step explanation:
x^2+20=4 first isolate the variable by subtracting 20 on both sides.
x^2=-16 again isolate the variable but this time you square root both sides.
[tex]\sqrt{x}^2[/tex]=[tex]\sqrt{-16[/tex] then simplify
x= ±4
can someone help me answer this??
Answer:
hkkr
need school the long said
Answer:
That would indicate 20.0 ml
id appreciate a rating thanks XP
if 2500 amounted to 3500 in 4 years at simple interest. Find the rate at which interest was charged
Answer:
35%
Step-by-step explanation:
[tex]Principal = 2500\\\\Simple\:Interest = 3500\\\\Time = 4 \:years\\\\Rate = ?\\\\Rate = \frac{100 \times Simple \: Interest }{Principal \times Time}\\\\Rate = \frac{100 \times 3500}{2500 \times 4} \\\\Rate = \frac{350000}{10000}\\\\ Rate = 35 \%[/tex]
[tex]S.I = \frac{PRT}{100}\\\\ 100S.I = PRT\\\\\frac{100S.I}{PT} = \frac{PRT}{PT} \\\\\frac{100S.I}{PT} = R[/tex]
Answer:
35%
Step-by-step explanation:
I REALLY HOPE I HELPED
HOPE I HELPED
PLS MARK BRAINLIEST
DESPERATELY TRYING TO LEVEL UP
✌ -ZYLYNN JADE ARDENNE
JUST A RANDOM GIRL WANTING TO HELP PEOPLE!
PEACE!
Answer the question :)
Answer:
A. -11
Step-by-step explanation:
In the function, replace x with -2
R(x) = x^2 - 3x - 1 ➡ R(-2) = (-2)^2 - 3 × 2 -1 = -11
Use parenthesis to make each number sentence true.
124 - 6 x 0 + 15 = 34
Answer:
12 - 6 x (0 + 15) = 34
How I got my answer
First, how i got my answer was that I had to solve the equation first, ignoring the answer. I got 0 x 6 = 0, then I did 124 - 0 = 124, then I did 124 - 15 = 109, which clearly isn't 34. I figured that we have to put the parentheses around the zero because if we don't, we are going have to multiply something by zero, which always gets zero. After that, I decided that I should put the parentheses around either the 6, or the 15. I did both, and saw which one was correct. If we put it around the 6, we get, 124 - (6 x 0) + 15 = 124 - 0 - 15 = 124 - 15 = 109, which isn't 34. Then I checked 124 - 6 x (0 + 15) = 124 - 6 x 15 = 124 - 90 = 34, and we just got the answer.
P.S. Sorry if it was confusing, I didn't really know how to explain it
The net of a triangular prism is shown below. What is the surface area of the prism? A. 128 cm^2 B. 152 cm^2 C. 176 cm^2 D. 304 cm^2
Answer:
B. 152 cm²
Step-by-step explanation:
To find the surface area using a net, do this:
Take apart the figure. We see that there are three rectangles and two triangles. Find the area of each ([tex]A=l*w[/tex]) and then add the values together:
The first rectangle on the left is the same as the one on the right.
[tex]5*8=40[/tex]
Two measures are 40 cm².
The middle rectangle is:
[tex]6*8=48[/tex]
48 cm²
The formula for the area of a triangle is [tex]A=\frac{1}{2}*b*h[/tex]:
[tex]A=\frac{1}{2}*6*4\\\\A=\frac{1*6*4}{2}\\\\A=\frac{24}{2}\\\\ A=12[/tex]
The area of the two triangles is 12 cm².
Now add the values:
[tex]40+40+48+12+12=152[/tex]
The area of the figure is 152 cm².
:Done
3 divided by 6 it hard
Answer:
3/6 = 1/2 = 0.5
Step-by-step explanation:
3 / 6 = 1/2 = 0.5
Factor of
x2 – 14x + 24
A. (x - 6)(x - 4)
B. (x - 8)(x - 3)
C. (x - 12)(x - 2)
D. (x - 24)(x - 1)
Answer: The answer is C.
Step-by-step explanation:
Hi, there!!!
The answer is option C.
The solution is in picture.
I hope it helps....
GIVING OUT BRAINLIEST TO THE FIRST PERSON TO ANSWER!!
One circle has a diameter of 6 inches. A second, larger circle has a diameter that is four times the diameter of the first circle. What is the ratio of the area of the smaller circle to the larger circle?
A. 2:3
B. 1:6:4
C. 1:16
D. 1:64
Please include ALL work! <3
Answer:
The answer is option CStep-by-step explanation:
To find the ratio first find the diameter of the larger circle
Diameter of first circle = 6 inches
Diameter of second circle = 4 × diameter of the first circle
Which is
Diameter of second circle
= 4 × 6 = 24 inches
Area of a circle = πr²
r is the radius
Area of smaller circle
Diameter = 6 inches
Radius = 6 / 2 = 3 inches
Area = (3)² π = 9π in²
Area of larger circle
Diameter = 24 inches
Radius = 24 / 2 = 12 inches
Area = (12)²π = 144π in²
The ratio of the smaller circle to the larger circle is
[tex] \frac{9\pi}{144\pi} [/tex]
Reduce the fraction by 9π
That's
[tex] \frac{1}{16} [/tex]
We have the final answer as
1 : 16Hope this helps you
Answer:
C. 1:16
Step-by-step explanation:
Area of a circle is:
[tex]\pi \times {r}^{2} [/tex]
Small circle Area:
radius = diameter/2
radius = 6/2 = 3
[tex]area \: of \: a \: circle \: = \pi {3}^{2} [/tex]
a = 28.27
Large circle 4 times larger diameter
6*4 = 24
diameter = 24
r = 24/2
r = 12
[tex]a \: = \pi {12}^{2} [/tex]
a = 452.39
area of large circle/ area of small circle
452.39/28.27 = 16.00
ratio is 1:16
Chloe wants to wrap a present in a box for Sarah. The top and bottom of the box is 8 in. by 3 in., the sides are both 3 in by 2 in. and the front and back are 8 in by 2 in. How much wrapping
paper will Chloe need to wrap the present?
Answer:
92 inches squared
Step-by-step explanation:
T/P = 8 * 3
L/R = 3 * 2
F/B = 8 * 2
Solving for surface area!
2(24) + 2(6) + 2(16) = 92
change 4 5/9 from a mixed number to an improper fraction
Step-by-step explanation:
Hello, there!!
The answer would be 41/9.
The reason for above answer is to change any mixed fraction into improper fraction we should follow a simple step:
multiply the denominator with whole number.Add the answer (after mutiplied ).look here,
=[tex] \frac{4 \times 9 + 5}{9} [/tex]
we get 41/9.
Hope it helps...
The given fraction into the improper fraction should be [tex]\frac{41}{9}[/tex]
Given that,
The mixed number fraction is [tex]4 \frac{5}{9}[/tex]Computation:[tex]= 4\frac{5}{9}\\\\ = \frac{41}{9}[/tex]
Here we multiply the 9 with the 4 it gives 36 and then add 5 so that 41 arrives.
learn more about the fraction here: https://brainly.com/question/1301963?referrer=searchResults
How many solutions does the following equation have ?
−3x+9−2x=−12−5x
[tex]\text{Solve for x:}\\\\-3x+9-2x=-12-5x\\\\\text{Combine like terms}\\\\-5x+9=-12-5x\\\\\text{Add 5x to both sides}\\\\9=-12\\\\\text{Since that's not valid, there would be no solutions}\\\\\boxed{\text{No solutions}}[/tex]
g a video game claims that the drop rate for a certain item is 5% according to the game publisher. in online forums, a number of players are complaining that the drop rate seems to be low. in order to test the drop rate claim, 100 players agree to attempt to get the drop, each attempting 10 times. of the 1000 tries, the item only drops 40 times state the null hypothesis needed to test this claim group of answer choices
Answer:
p0 = 0.05
Step-by-step explanation:
Jill works at a cell phone store. Jill earns $175 every week plus $45 for every phone p that she sells. if Jill makes $445 at the end of the week how many phones did she sell?
━━━━━━━☆☆━━━━━━━
▹ Answer
6 phones
▹ Step-by-Step Explanation
$445 - $175 = $270
$270 ÷ $45 = 6
6 phones
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Fiona wrote the linear equation y = y equals StartFraction 2 over 5 EndFraction x minus 5.x – 5. When Henry wrote his equation, they discovered that his equation had all the same solutions as Fiona’s. Which equation could be Henry’s? x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 2 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 2 EndFraction.y =
Answer:
D. [tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Step-by-step explanation:
Given
[tex]y = \frac{2}{5}x - 5[/tex]
Required
Determine its equivalent
From the list of given options, the correct answer is
[tex]x - \frac{5}{2}y = \frac{25}{2}[/tex]
This is shown as follows;
[tex]y = \frac{2}{5}x - 5[/tex]
Multiply both sides by [tex]\frac{5}{2}[/tex]
[tex]\frac{5}{2} * y = \frac{5}{2} * (\frac{2}{5}x - 5)[/tex]
Open Bracket
[tex]\frac{5}{2} * y = \frac{5}{2} * \frac{2}{5}x - \frac{5}{2} *5[/tex]
[tex]\frac{5}{2}y = x - \frac{25}{2}[/tex]
Subtract x from both sides
[tex]\frac{5}{2}y - x = x -x - \frac{25}{2}[/tex]
[tex]\frac{5}{2}y - x = - \frac{25}{2}[/tex]
Multiply both sides by -1
[tex]-1 * \frac{5}{2}y - x * -1 = - \frac{25}{2} * -1[/tex]
[tex]-\frac{5}{2}y + x = \frac{25}{2}[/tex]
Reorder
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Hence, the correct option is D
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Answer:
The 4th option
Step-by-step explanation:
Using Normal Distribution, what is the area to the right of 0.72 under the
standard normal curve?
Answer: 0.2358
Step-by-step explanation:
Using Normal Distribution, under the standard normal curve
The area to the right of z is given by P(Z>z)=1-P(Z<z)
So, the area to the right of z= 0.72 under the standard normal curve would be:
P(Z>0.72)=1-P(z<0.72)
=1-0.7642 [By using p-value table]
= 0.2358
Hence, the area to the right of z= 0.72 under the standard normal curve is 0.2358 .
he sum of two nonnegative numbers is 300. What is the maximum value of the product of these two numbers?
Answer:
[tex]\boxed{22,500}[/tex]
Step-by-step explanation:
Hey there!
Well, half of 300 is 150, and 150•150 = 22500
So 150 and 150 are it's highest numbers.
Hope this helps :)