Assuming a single-issue pipeline, the loop would look as follows when unscheduled by the compiler:
To know more compiler schedules about refer here: https://brainly.com/question/30008837#
#SPJ11
The scale on the horizontal axis is 9 s per division and on the vertical axis 9 m per division
What is the time represented by the third tic mark on the horizontal axis
Answer in units of s
Each tic mark indicates a time period of 9 seconds if the scale on the horizontal axis has a division of 9 seconds. As a result, the third tic point on the horizontal axis would denote the following period of time:
3 x 9 s = 27 s
Hence, 27 seconds are indicated by the third tic point on the horizontal axis.
It is true! The third tic point would represent three times nine seconds, or 27 seconds, as each tic mark on the horizontal axis denotes a time interval of nine seconds.Each tic mark indicates a time period of 9 seconds if the scale on the horizontal axis has a division of 9 seconds. As a result, the third tic point on the horizontal axis would denote the following period of time:Hence, 27 seconds are indicated by the third tic point on the horizontal axis.
learn more about horizontal axis here:
https://brainly.com/question/29774083
#SPJ4
consider a single crystal of some hypothetical metal that has the fcc crystal structure and is oriented such that a tensile stress is applied along a direction. if slip occurs on a (111) plane and in a direction, compute the stress at which the crystal yields if its critical resolved shear stress is 3.42 mpa.
Consider a single crystal of some hypothetical metal that has the FCC crystal structure and is oriented such that a tensile stress is applied along a direction. If slip occurs on a (111) plane and in a direction, compute the stress at which the crystal yields if its critical resolved shear stress is 3.42 MPa.
The resolved shear stress (τR) can be calculated using the following formula:τR = σs cos φ cos λWhere,σs = tensile stress applied along a directionφ = angle between tensile stress direction and (111) planeλ = angle between the slip direction and [110] directionThe resolved shear stress (τR) should be compared to the critical resolved shear stress (τc) to determine if slip will occur. If τR > τc, slip will occur. If τR < τc, the crystal will remain undeformed.In this case, the slip direction is also along [110] and therefore φ = λ.
The critical resolved shear stress (τc) = 3.42 MPa. Hence, for slip to occur,τR > τc ⇒ σs cos φ cos λ > τc cos φ cos λ = 3.42 MPaSince φ = λ, we can simplify the above equation toσs > τc / cos φ⇒ σs > 3.42 MPa / cos φIf we assume φ = 45°, we can substitute in this value to get the value of σs at which slip occurs:σs > 4.83 MPa. Therefore, the stress at which the crystal yields is 3.42 MPa.
Learn more about shear stress at:
https://brainly.com/question/30530774
#SPJ11
Five docks are being tested in a laboratory. Exactly at noon, as determined by the WWV
Exactly at noon, as determined by the WWV time signal, on successive days of a week the clocks according to their relative value as good timekeepers, best to worst.
Time signals are also used in many everyday applications, such as GPS navigation, where precise timing is essential for calculating positions accurately. A time signal refers to any signal that provides information about the passage of time. Time signals are often used in experiments to measure the duration of events or to synchronize the timing of multiple processes.
One common type of time signal is a periodic signal, which repeats itself at regular intervals. This can be used to measure the period or frequency of a phenomenon, such as the oscillation of a pendulum or the vibration of a guitar string. Another type of time signal is a pulse signal, which provides a brief burst of energy at a specific time. This can be used to trigger the start or stop of a process or to measure the time delay between different events.
To learn more about Time signal visit here:
brainly.com/question/28875779
#SPJ4
A block of weight w = 25.0 N sits on a frictionless inclined plane, which makes an angle 8 = 29.0° with respect to the horizontal, as shown in the figure. (Figure 1) A force of magnitude F = 12.1 N, applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed.
Part B: What is We, the work done on the block by the force of gravity was the block moves a distance L = 3.40 m up the incline?
Part C. What is Wf the work done on the block by the applied force F as the block moves a distance L = 3.40 mm up the incline? Express your answer in Joules
a) The net Work done is zero. b) The work done on the block by the applied force F as the block moves a distance L is -41.2 J. c) The work done on the block by the applied force F as the block moves a distance L is 41.2 J.
Given:
Weight of the block (w) = 25.0 N
Distance moved by the block (d) = 3.40 m
The angle of the inclined plane (θ) = 29.0°
a) we know that from the work-energy theorem,
W = change in kinetic energy
But since speed is constant which means no change in KE, hence the net Work done is zero.
b) W = -mgy
W = -25 × (3.10 × sin29°)
W = -41.2 J
Therefore, the work done on the block by the force of gravity is -41.2 J.
c) The work done on the block by the applied force F as the block moves a distance L = 3.10m up the incline is,
W = Fd
W = 12.1 × 3.1
W = 41.2 J
Therefore, the work done on the block by the applied force F as the block moves a distance L is 41.2 J.
To know more about the work done:
https://brainly.com/question/26622905
#SPJ12
a fixed amount of a molecular substance in the liquid phase is placed in a flask at constant temperature. the flask is closed and is allowed to come to equilibrium. select all the statements that correctly describe the processes occurring in the flask. multiple select question. a. the relative amounts of liquid and vapor in the flask remain constant. b. molecules are leaving and entering the liquid phase at the same rate. c. no changes are occurring because the system is at equilibrium. d. the amount of liquid remains the same because evaporation is no longer occurring.
The statements that correctly describe the processes occurring in the flask are A and B. C and D are incorrect statetment.
a) States that the relative amounts of liquid and vapor in the flask remain constant, which is true as equilibrium has been reached, meaning that the rate of evaporation equals the rate of condensation. b) states that molecules are leaving and entering the liquid phase at the same rate, which is also true as equilibrium has been reached.
c) and d) are incorrect because they do not accurately describe the processes occurring in the flask; while the system is at equilibrium, it is still in a state of change with molecules leaving and entering the liquid phase at the same rate.
Learn more about term of equilibrium: brainly.com/question/517289
#SPJ11
An electric lamp consumes 60 watts at 220 volts. How many dry cells of EMF 1. 5 volt and internal resistance 1 ohm are required to glow the lamp?
We must figure out the total voltage and current required to generate 60 watts of electricity in order to calculate the number of dry cells necessary to light the bulb.
Voltage (V) x Current Equals Power (P) (I)
We are provided 220 volts of voltage and 60 watts of power (P). Hence, the current (I) may be determined as follows:
I equals P / V at 60 W and 220 V, or 0.273 A.
We must sum the EMFs of the cells in series in order to determine the overall voltage needed to power the light using dry cells:
n times EMF = V total
the number of cells is n.
Since the EMF of each cell is 1.5 volts, the total voltage needed may be written as follows:
1.5 n V total
learn more about electricity here:
https://brainly.com/question/8971780
#SPJ4
Need help on my homework! Thanks.
Answer: Noble Gases (Blue)
suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then rolled back down to a final point 20 m below the start. we would find in that case that its final speed is the same as its initial. explain in terms of conservation of energy.
In this case, the roller coaster starts with kinetic energy because it has an initial speed of 5 m/s.
Since the roller coaster's total energy is conserved throughout the ride, its final speed when it reaches the bottom will be the same as its initial speed of 5 m/s.
As it goes uphill, the kinetic energy is gradually converted into potential energy, so its speed decreases until it reaches the top, where it has only potential energy. When it stops, all the kinetic energy has been converted to potential energy. As the roller coaster rolls back down, the potential energy is converted back to kinetic energy, and its speed increases until it reaches the bottom, where all the potential energy has been converted back to kinetic energy.
This is because the roller coaster's potential energy at the top is equal to the sum of its initial kinetic energy and the work done by gravity as it went uphill. The roller coaster then converts all of its potential energy back into kinetic energy as it rolls back down the hill.
For more similar questions on conservation of energy and physics:
brainly.com/question/381281
#SPJ11
if a force is exerted on an object, is it possible for that object to be moving with constant velocity? explain
Yes, it is possible for an object to be moving with a constant velocity even when force is exerted on the object. When an object is in a state of rest, a force is required to move it from that position.
What is Newton's second law of motion?Newton’s second law states that the acceleration of an object is directly proportional to the force exerted on it and inversely proportional to its mass. Thus, a larger force results in a greater acceleration of the object. If there is no force applied to the object, the object will remain stationary or move at a constant velocity.
However, if there is a force applied to the object, it will accelerate. If the force applied is balanced by an equal and opposite force, the object will continue to move with a constant velocity. An object in motion is said to be in equilibrium when the net force acting on the object is zero. When the net force acting on an object is zero, it moves at a constant velocity. Therefore, if a force is exerted on an object, it is possible for the object to be moving with a constant velocity if the forces are balanced.
Learn more about Newton's law here:
https://brainly.com/question/13447525
#SPJ11
If the velocity field is V = (y-1)i + (x)j
what is the direction of the flow? for credit, include hand-calculations under assignment's tab and test 2 dropbox access. carefully identify the problem number.
The direction of the flow of the object in space can be calculated by unit vector of the velocity field.
What is the direction of flow?The given velocity field is V = (y-1)i + (x)j. Let's assume a unit vector, u in the direction of the flow, then the direction of the flow is the same as the direction of the vector, u.
To find the direction of the vector u, we can use the following formula: u = V/|V|
where |V| is the magnitude of the vector V. Since V = (y-1)i + (x)j, we have |V| = sqrt((y - 1)² + x²)
Hence, the unit vector, u in the direction of the flow is given by: u = V / |V| = ((y-1)i + (x)j) / sqrt((y - 1)² + x²)
Therefore, the direction of the flow is given by the unit vector u = ((y-1)i + (x)j) / sqrt((y - 1)² + x²).
Learn more about Vector here:
https://brainly.com/question/29740341
#SPJ11
A car’s cooling system contains 25 kg of water. What is the increased change in temperature of the water if 872. 0 kJ of thermal energy is added?
When 872.0 kJ of thermal energy are injected, the temperature of the 25 kg of water in the car's cooling system changes by 35.0 degrees Celsius.
Water's specific heat capacity (J/(gK), or 4,180 J/ (kgK). Thus, we can use the following formula to get the temperature change:
Q = mcΔT
where Q is the extra thermal energy (872 000 J), m the water mass (25 kg), c the water's specific heat capacity (4,180 J/(kg*K)), and T the temperature change.
When we solve for T, we get:
The equation T = Q/(mc) Equals 872,000 J/(25 kg * 4,180 J/(kgK)) = 35.0 °C.
When 872.0 kJ of thermal energy are injected, the temperature of the 25 kg of water in the car's cooling system changes by 35.0 degrees Celsius.
learn more about energy here:
https://brainly.com/question/1932868
#SPJ4
he radius of a sphere is increasing at a rate of 4 mm/s. how fast is the volume increasing when the diameter is 40 mm? incorrect: your answer is incorrect. mm3/s
The volume is increasing at a rate of approximately 20,106 mm³/s.
The volume of a sphere can be given by the formula V = 4/3πr³. To determine the rate of change of volume of the sphere, we need to differentiate the formula with respect to time.
The derivative of V w.r.t. t is given by dV/dt = 4πr²(dr/dt)
Where dV/dt is the rate of change of volume of the sphere and dr/dt is the rate of change of radius.
It is given that the radius is increasing at a rate of 4 mm/s; therefore, we have dr/dt = 4 mm/s
Radius r = (diameter)/2
When the diameter is 40mm, radius r = 20 mm. Substituting the values into the formula, we get;
dV/dt = 4π(20)²(4) = 6400π mm³/s
Therefore, the rate of change of volume of the sphere is 6400π mm³/s or approximately 20,106 mm³/s.
Learn more about rate of change here: https://brainly.com/question/28520282.
#SPJ11
How can chemical energy be converted into mechanical energy?
Chemical energy can be converted into mechanical energy through a process called combustion.
In this process, a fuel (such as gasoline or diesel) is burned in the presence of oxygen to release energy in the form of heat. The heat produced by the combustion reaction is used to create high-pressure gases, which expand and push against a piston or turbine. This pressure creates mechanical energy, which can be used to power various types of machinery, such as vehicles, generators, and industrial equipment. The conversion of chemical energy into mechanical energy is a fundamental principle behind many modern technologies and plays a vital role in our daily lives.
To know more about combustion, here
brainly.com/question/15117038
#SPJ4
You stand 3.5 m in front of a large mirror, and your little sister stands 2.0 m directly in front of you. At what distance should you focus your camera if you want to take a picture of your sister in the mirror?
Answer:
D = 3.5 m to mirror
d = 1.50 m from mirror to sister
Total distance from camera to sister = d + D = 5.0 m
Light with wavelength equal to 105 nm falls on & metal surface. What is the minimum de Broglie wavelength of the photoelectrons emitted from this metal? Assume that the metal has & work function equal to 5.00 eV and use: h = 6.626 10-34 J.8 = 4.14 * 10-15 eV . 8; c = 3.00 x 108 m/s; mel = 9.11 x 10-31 kg; 1 eV 1.60 x 10-19 J.
The minimum de Broglie wavelength of the photoelectrons emitted from the metal is 2.19 x 10⁻⁹ m.
The energy of the incident photon can be calculated using the equation:
E = hc/λ
where h is the Planck constant, c is the speed of light, and λ is the wavelength of the light.
E = (6.626 x 10⁻³⁴J.s)(3.00 x 10⁸ m/s) / (105 x 10⁻⁹m)
E = 1.89 x 10⁻¹⁸ J
The work function of the metal is given as 5.00 eV, which can be converted to joules:
5.00 eV x 1.60 x 10⁻¹⁹ J/eV
= 8.00 x 10⁻¹⁹ J
The minimum energy required to eject an electron from the metal is the work function, so the kinetic energy of the emitted photoelectron can be calculated as:
K.E. = E - Work function
K.E. = 1.89 x 10⁻¹⁸ J - 8.00 x 10⁻¹⁹ J
K.E. = 1.09 x 10⁻¹⁸ J
The de Broglie wavelength of the photoelectron can be calculated using the equation:
λ = h/p
where h is the Planck constant and p is the momentum of the particle.
The momentum of the photoelectron can be calculated as:
p = √(2mK.E.)
where m is the mass of the electron.
p = √(2 x 9.11 x 10⁻³¹ kg x 1.09 x 10⁻¹⁸ J)
p = 3.03 x 10⁻²⁵ kg.m/s
Now, we can calculate the de Broglie wavelength of the photoelectron:
λ = h/p
λ = 6.626 x 10⁻³⁴ J.s / 3.03 x 10⁻²⁵ kg.m/s
λ = 2.19 x 10⁻⁹ m
Therefore, the minimum de Broglie wavelength of the photoelectrons emitted from the metal is 2.19 x 10⁻⁹ m.
Learn more about de Broglie wavelength here:
https://brainly.com/question/30404168
#SPJ11
What does the average kinetic energy of gas depend on?
Answer: temperature
Explanation: The last postulate of the kinetic molecular theory states that the average kinetic energy of a gas particle depends only on the temperature of the gas. Thus, the average kinetic energy of the gas particles increases as the gas becomes warmer.
Since moving charges create magnetic fields and magnetic fields exert forces on moving charges, devices that are used to measure field strengths often affect the system they are being used to measure. Consider the wire segment in the figure, which is used to measure the magnetic field by determining the foree exerted on the current flowing through it. Part (a) Estimate the field the loop creates by calculating the field strength, in teslas, at the center of a circular loop 20.0 cm in diameter carrying
Part (b) What is the smallest field strength this loop can be used to measure with a 4.5 -A current, if its field should alter the measured field by 0.0100% or less?
a) The magnetic field at the center of loop 20.0 cm in diameter carrying is equals to the 2.8274×10⁻⁵ T.
b) Smallest magnetic field that change measured value by 0.0100% is equals to the 2.8274×10⁻⁹ T.
We know that moving charges create magnetic fields and magnetic fields exert forces on moving charges, devices that are used to measure field strengths. Consider the wire segment present in above figure.
A) Diameter of wire segment, d = 20 cm or 0.2 m carrying current I = 4.5 A
Magnetic Field at the center of current loop of segment, B= μ₀I/d
= 4π×10⁻⁷×4.5/0.2
= 2.8274×10⁻⁵ T
Therefore magnetic Field at the center of current loop 2.8274×10⁻⁵ T.
B) Current in carrying wire, I = 4.5 A
The field should be less than the measured field by 0.0100%. So, smallest field that change measured value by 0.0100% = 0.0100% of 2.8274×10⁻⁵ T
= 2.8274×10⁻⁹ T
Therefore Smallest field that change measured value by 0.0100% = 2.8274×10⁻⁹ T
For more information about magnetic field, visit :
https://brainly.com/question/26257705
#SPJ4
Complete question:
The above figure completes the question.
Since moving charges create magnetic fields and magnetic fields exert forces on moving charges, devices that are used to measure field strengths often affect the system they are being used to measure. Consider the wire segment in the figure, which is used to measure the magnetic field by determining the foree exerted on the current flowing through it. Part (a) Estimate the field the loop creates by calculating the field strength, in teslas, at the center of a circular loop 20.0 cm in diameter carrying
Part (b) What is the smallest field strength this loop can be used to measure with a 4.5 -A current, if its field should alter the measured field by 0.0100% or less?
A 71. 0 kg
football player is gliding across very smooth ice at 2. 05 m/s. He throws a 0. 440 kg
football straight forward
Using conservation of momentum the player's speed afterward if the ball is thrown at 17.5 ms relative to the player is 3.02 m/s.
We can use the principle of conservation of momentum to solve this problem, which states that the total momentum of a closed system remains constant if no external forces act on it.
Initially, the momentum of the system is the sum of the momentum of the football player and the football, given by:
p_initial = m_player × v_player + m_football × v_football
where:
m_player = 71 kg is the mass of the football player
v_player = 2 m/s is the initial velocity of the football player
m_football = 0.430 kg is the mass of the football
v_football = 17.5 m/s is the velocity of the football relative to the football player
Plugging in the values, we get:
p_initial = (71 kg)(2 m/s) + (0.430 kg)(17.5 m/s) = 15.325 kg m/s
After the football is thrown, the football player will move in the opposite direction with a new velocity v_player'. The momentum of the system after the throw is:
p_final = m_player × v_player' + m_football × v_football'
where v_football' = 0 m/s since the football has left the system.
Since the total momentum of the system is conserved, we have:
p_initial = p_final
which gives us:
m_player × v_player + m_football × v_football = m_player × v_player'
Solving for v_player', we get:
v_player' = (m_player × v_player + m_football × v_football) / m_player
Plugging in the values, we get:
v_player' = (71 kg × 2 m/s + 0.430 kg × 17.5 m/s) / 71 kg = 3.02 m/s
Therefore, the football player's speed after throwing the football is 3.02 m/s.
Learn more about the momentum at
https://brainly.com/question/30677308
#SPJ4
The question is -
A 71 kg football player is gliding across very smooth ice at 2 ms. He throws a 0.430 kg football straight forward. What is the player's speed afterward if the ball is thrown at 17.5 ms relative to the player?
In the context of the motor control process related to the speed-accuracy trade-off, the _____ phase of movement includes the beginning of limb movement in the direction of a target.
In the context of the motor control process related to the speed-accuracy trade-off, the initiation phase of movement includes the beginning of limb movement in the direction of a target.
What is motor control?Motor control is the ability to regulate and coordinate motor skills to achieve a desired outcome. The central nervous system (CNS) is in charge of regulating these skills. The CNS is divided into two parts: the peripheral nervous system (PNS) and the central nervous system (CNS). Motor skills are regulated by both parts of the nervous system. The CNS, on the other hand, is more involved in higher-level motor control.
A motor control system can be divided into three stages: planning, initiation, and execution. When the central nervous system processes the desired movement, it activates the motor program in the initiation stage, which produces the motor command sent to the muscles. Movement is initiated by the initiation stage. Following that, the movement is executed to meet the task's requirements. The motor program adjusts movement by making corrections based on previous trials and feedback. Therefore, the initiation phase is critical in the context of the motor control process related to the speed-accuracy trade-off.
Learn more about Motor control here:
https://brainly.com/question/29769703
#SPJ11
question 6: circuit balance given 6 , what is the current of the ideal current source, , for which there is no current flowing through the 5 resistor?
The current of the ideal current source in the given circuit is zero.
This is because the current source is not providing any current and the 5 ohm resistor is not providing any resistance. Thus, no current can flow through the circuit.
In this circuit, there is a current source with 6 volts and a 5 ohm resistor. The current source does not provide any current since it is ideal, meaning it does not create any voltage drops. Therefore, no current can flow through the circuit.
This is because there is no voltage difference between the two nodes (points) between which the current is supposed to flow.
The 5 ohm resistor also does not provide any resistance, meaning the same current would flow through the resistor as well. Thus, the current of the ideal current source in the given circuit is zero.
To know more about voltage drops click on below link:
https://brainly.com/question/28164474#
#SPJ11
what maximum speed can the car have without flying off the road at the top of the hill? express your answer to two significant figures and include the appropriate units.
The maximum speed of a car at the top of a hill without flying off the road depends on the angle of the slope and the coefficient of friction between the car tires and the road. Generally speaking, if the angle is not too steep, the car can usually travel up to around 50 km/h without risking flying off the road.
To determine the maximum speed that a car can have without flying off the road at the top of the hill, the centripetal force should be equal to the gravitational force on the car. In addition, the frictional force should be equal to the centrifugal force. At the top of the hill, the gravitational force acting on the car is given by F = mg where m is the mass of the car and g is the acceleration due to gravity. The centrifugal force is given by F = mv²/r where m is the mass of the car, v is the velocity of the car, and r is the radius of curvature. The frictional force is given by F = μmg where μ is the coefficient of friction between the tires and the road. Setting the centrifugal force equal to the gravitational force gives mv²/r = mg. Solving for v gives:v = √(gr) Setting the frictional force equal to the centrifugal force gives μmg = mv²/r. Solving for v gives:v = √(μgr)The smaller of these two speeds is the limiting speed that the car can have without flying off the road. Therefore, the maximum speed that the car can have without flying off the road at the top of the hill is given by: v = √(μgr) where μ is the coefficient of friction, g is the acceleration due to gravity, and r is the radius of curvature. The speed should be expressed in units of meters per second.
For more details follow the link: https://brainly.com/question/22610586
#SPJ11
a bullet of mass, m is fired horizontally into a block of mass, m as shown. the block with the embedded bullet rises to height, h. acceleration due to gravity is g acting downward. part a: what is the speed, v of the block (with the bullet embedded in it) immediately after the collision, in terms of the variables provided in the problem?
The speed of the block (with the bullet embedded in it) immediately after the collision, in terms of the variables provided in the problem, is given by [tex]v = (m/(m + M)) * (2gh)^{0.5}[/tex], where m is the mass of the bullet, M is the mass of the block, and h is the height to which the block rises.
First, we assume that the collision is perfectly inelastic, meaning that the bullet becomes embedded in the block and they move together as a single mass. In this case, the conservation of momentum equation can be written as:
[tex]m_{bullet} * v_{bullet} = (m_{block} + m_{bullet}) * v_{final}[/tex]
where v_bullet is the initial velocity of the bullet, v_final is the final velocity of the block with the embedded bullet, and we have used the fact that the block and bullet move together as a single mass after the collision.
Next, we can apply conservation of energy to find the velocity of the block with the embedded bullet at the height h. Since the collision is inelastic, some of the initial kinetic energy is lost as heat and deformation. We can express the conservation of energy equation as:
[tex](1/2) * m_{bullet} * v_{bulle}t^2 = (m_{block} + m_{bullet}) * g * h[/tex]
where g is the acceleration due to gravity and we have used the fact that the potential energy gained by the block-bullet system is equal to the initial kinetic energy of the bullet.
Solving for v_final in the momentum equation and substituting it into the energy equation, we get:
[tex](1/2) * m_{bullet} * v_{bullet}^{2} = (m_{block} + m_{bullet}) * g * h[/tex]
[tex]v_{final} = v_{bullet} * (m_{bullet} / (m_{block} + m_{bullet}))^{0.5}[/tex]
So the speed of the block with the bullet embedded in it immediately after the collision can be calculated using this equation, where we plug in the values of [tex]m_{bullet}, m_{block}, v_{bullet}[/tex], and h.
To know more about speed of the block, refer here:
https://brainly.com/question/30079068#
#SPJ11
You are standing on the surface of a spherical asteroid 10 km in diameter, of density 3000 kg/m3.
Part A
Calculate the escape velocity from the asteroid in km/s.
Express your answer in kilometers per second using two significant figures.
Calculate the escape velocity from the asteroid in mph.
Express your answer in miles per hour using three significant figures
The correct answer for the (A) Escape velocity is [tex]570[/tex] (B) Escape velocity is [tex]0.57[/tex] in Km/h and (c). Escape velocity is [tex]1.27[/tex] in mph.
Given:
Diameter of asteroid D = [tex]10[/tex] km
Radius R = [tex]5[/tex] Km
Density [tex]\rho[/tex] = [tex]3000[/tex] kg/m³
Unit conversion;
[tex]1[/tex] m/s = [tex]0.001[/tex] Km/s
[tex]1[/tex] m/s = [tex]2.23694[/tex] mph
(A)To calculate Escape velocity:
Use the formula;
[tex]v_e = \sqrt{\dfrac{2GM}{R} }[/tex]
Gravitational Constant [tex]G[/tex] = [tex]6.67430[/tex]
To calculate Mass([tex]M[/tex]) of the asteroid, Calculate Volume([tex]V[/tex]) of the sphere and multiply it with density([tex]\rho[/tex]).
[tex]V= \dfrac{4}{3} \pi R^3 \\\\\rho = \dfrac{M}{V}[/tex]
[tex]M = \rho*V[/tex]
= [tex]523598775000[/tex] Kg
Escape velocity:
[tex]v_e = \sqrt{\dfrac{2*6.67430 * 10^{-11} * 523598775000}{5000} }[/tex]
[tex]= 570[/tex] m/s
(B)Escape velocity in Km/s:
[tex]v_e = \dfrac{570}{1000}[/tex]
[tex]= 0.57[/tex] Km/s
(B)Escape velocity in mph:
[tex]v_e = 0.57 * 2.23694[/tex]
[tex]= 1.27[/tex] mph
Escape velocity is [tex]570[/tex] m/s. In Km/h is [tex]0.57[/tex] and In mph is [tex]1.27[/tex] .
Learn more about Escape velocity here:
https://brainly.com/question/31201121
#SPJ12
Based on the equation given in the lab manual, what is the equation to find the equivalent resistance of two resistors in parallel? Note: I do not want inverse resistance, I'm asking for R = ..) R1 + R2 Req + R2 Req R2 R1 Rea R1 R2 R1+R2
This equation can be used to determine the equivalent resistance of two parallel resistors: 1/Req = 1/R1 + 1/R2 Upon solving for Req, we obtain: Requirement = (R1-R2) / (R1+R2)
What is the parallel pairing of two resistors' equivalent resistance?The equivalent resistance of two identical resistors connected in parallel is equal to one-half the value of each resistor. Both share an equal amount of the current.
How are resistance and resistance calculated?Resistors are connected in series when they are connected one after the other. This is seen below. You add up the individual resistances to determine the total overall resistance of several resistors connected in this manner. The following equation is used to accomplish this: Rtotal = R1 + R2 + R3 and so forth.
To know more about resistance visit:-
https://brainly.com/question/13110234
#SPJ1
consider a 10 m length of 2 cm-i.d tube. what is the average convective heat transfer coefficient and pressure gradient inside the tube when the tube wall is at 330 k and water enters at 300 k, 1 atm pressure, and flows at a velocity of 3 m/s?
The average convective heat transfer coefficient and pressure gradient inside a 10 m long tube with a 2 cm inner diameter when the tube wall is at 330 K and water enters at 300 K and 1 atm pressure, flowing at a velocity of 3 m/s, is: 1420 W/m²K and 2.6 x 10⁴ Pa
This can be calculated using the equations of fluid mechanics. The average convective heat transfer coefficient, or h, is determined using the following equation:
[tex]h = (k/d) x (v/P).[/tex]
k is the thermal conductivity of the fluid (water), d is the tube inner diameter, v is the velocity of the fluid, and P is the pressure gradient across the tube wall.
The pressure gradient is found using the equation: [tex]P = (v²/2g) + P₀[/tex],
where v is the fluid velocity, g is the acceleration due to gravity, and P₀ is the pressure at the inlet of the tube (1 atm in this case). Plugging the given values into the equations yields a heat transfer coefficient of 1420 W/m²K and a pressure gradient of 2.6 x 10⁴ Pa.
In conclusion, the average convective heat transfer coefficient and pressure gradient inside a 10 m long tube with a 2 cm inner diameter when the tube wall is at 330 K and water enters at 300 K and 1 atm pressure, flowing at a velocity of 3 m/s, is 1420 W/m²K and 2.6 x 10⁴ Pa, respectively.
To know more about heat transfer refer here:
https://brainly.com/question/30416117#
#SPJ11
For which of the following properties does the Moon have the largest value compared to the other planetary satellites (not moons of dwarf planets) in the Solar System?
The moon is a natural satellite that orbits Earth. It is the fifth-largest satellite in the solar system and the largest among planetary satellites.
What are the properties of the moon?The following properties are the ones where the Moon has the largest value compared to other planetary satellites:
Size: The moon is the fifth-largest satellite in the solar system, with a diameter of 3474 km. No other planetary satellite is as large as the moon. The closest satellite in terms of size is Ganymede, which is the largest moon of Jupiter and the ninth-largest object in the solar system, with a diameter of 5268 km.
Mass: The moon has a mass of 7.342 × 1022 kg, which is about 1.2% of Earth's mass. No other planetary satellite has a mass comparable to the moon, although a few come close. Ganymede has a mass of 1.5 × 1023 kg, which is about twice the mass of the moon, but it is a moon of Jupiter, not a planet.
Synchronous rotation: The moon is the only planetary satellite that is in synchronous rotation with its planet. This means that it takes the same amount of time for the moon to complete one orbit around Earth as it does to complete one rotation around its axis. As a result, the same side of the moon always faces Earth. No other planetary satellite has this property.
To know more about planetary satellites:
https://brainly.com/question/9545310
#SPJ11
The Mofo Dam holds back a depth of 60 feet of water, but the lake behind the dam is 100 feet wide. The Fus-Ro-Dah Dam holds back a depth of 50 feet of water, but the lake behind the dam is 2 miles wide.
If the dams are to be constructed in the same way, which dam had to be constructed to be strongest? (The water levels do not vary seasonally. )
The correct option is 3, Mofo dam because water apply same pressure at same depth irrespective of the width of the lake behind the lake .
So the only effective factor is depth , the dam which would be deeper should be made stronger.The Mofo dam has a depth of 60 feet of water, and Fus-Ro-Dah Dam has a depth of 50 feet of water. Hence, the Mofo dam is constructed to be the strongest.
The Mofo Dam holds back a depth of 60 feet of water
The Fus-Ro-Dah Dam holds back a depth of 50 feet of water,
the lake behind the dam is 2 miles wide.
Generally, The main independent factor to be considered is the depth of a dam, as its the depth of water that applies the most pressure on dams, So the only effective factor is depth.
In conclusion, the Mofo dam because it holds back a depth of 60 feet of water, While the Fus-Ro-Dah Dam holds back a depth of 50 feet of water,
Pressure is an important concept in many fields, including physics, engineering, and medicine. It is the amount of force applied to a given area, and it is expressed in units such as Pascals (Pa), pounds per square inch (psi), or atmospheres (atm). Pressure can be exerted by a gas, liquid, or solid, and it can be static or dynamic.
In a static situation, such as a gas trapped in a container, the pressure is determined by the number of gas molecules and their kinetic energy. If the volume of the container is decreased, the pressure will increase as the molecules collide with the walls more frequently. In a dynamic situation, such as a fluid flowing through a pipe, the pressure is determined by the flow rate and the resistance of the pipe.
To learn more about Pressure visit here:
brainly.com/question/30673967
#SPJ4
Complete Question: -
The Mofo Dam holds back a depth of 60 feet of water, but the lake bchind the dam is 100 feet wide. The Fus-Ro-Dah Dam holds back a depth of 50 feet of water, but the lake behind the dam is 2 miles wide. If the dams are to be constructed in the same way, which dam had to be constructed to be strongest? (The water levels do not vary seasonally.) 1. The Fus-Roh-Dah Dam 2. Both dams would have to be constructed to be the same in strength. 3. The Mofo Dam 4. Insufficient information has been supplied to give an answer.
one electron collides elastically with a second electron initially at rest. after the collision, the radii of their trajectories are 0.00 cm and 3.00 cm. the trajectories are perpendicular to a uniform magnetic field of magnitude 0.0350 t. determine the energy (in kev) of the incident electron.
The energy of the incident electron is 26.3 keV. The energy is calculated from the conservation of energy which states that the initial energy is equal to the final energy of the electrons. Total energy is sum of kinetic energy and potential energy of the electrons.
The initial energy of the incident electron can be determined using the following equation:
[tex]E_{initial}= \Delta K + E_{final} + U[/tex]
where ΔK is the change in kinetic energy, [tex]E_{final}[/tex] is the final energy, and U is the potential energy.
Here, the second electron is initially at rest, and after the collision, the trajectories of the two electrons are at 90° to a uniform magnetic field. The magnetic force is perpendicular to the direction of motion, and hence, there is no work done. The potential energy U is, therefore, zero.
Initially, only the incident electron has energy, and hence, its initial energy is equal to its kinetic energy.
[tex]E_{initial} = \Delta K + E_{final}[/tex]
But, [tex]E_{final} = \frac{1}{2}mv_f^2[/tex]
Therefore,
[tex]E_{initial} = \Delta K + \frac{1}{2}mv_f^2[/tex]
The change in kinetic energy ΔK can be calculated using the following equation:
[tex]\Delta K = K_f - K_i[/tex]
But, [tex]K_i = \frac{1}{2}mv_i^2[/tex] where, [tex]v_i[/tex] is the initial velocity of the incident electron.
Therefore,
[tex]\Delta K = K_f - K_i= \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2[/tex]
Substituting the given values,
[tex]\Delta K = \frac{1}{2}(9.11 \times 10^{-31} kg)(4.24\times 10^5 m/s)^2 - \frac{1}{2}(9.11\times10^{-31} kg)(3\times10^8 m/s)^2\\= -4.22\times10^{-15} Joules[/tex]
The energy of the incident electron can be converted to keV by dividing it by the charge of an electron and then multiplying by 1000.eV .
Therefore,
[tex]E_{initial} = 4.22 \times 10^{-15} J / (1.602 \times 10^{-19} C/eV)\\ = 26.3 keV[/tex]
Thus, the energy of the incident electron is 26.3 keV.
For further detail on the kinetic energy, click on the following link:
https://brainly.com/question/18461965
#SPJ11
to be credible an rca must be internally consistent
Be regularly applied, have strong backing from the organization's leadership, involve people who are close to you, and take into account relevant literature and EBM.
What is RCA?An RCA must: Involve participation from the organization's leadership and those who are most directly involved in the systems and processes if it is to be considered credible. Maintain intrinsic coherence. Take into account any pertinent literature.RCA is a structured, assisted team procedure used to find the underlying reasons why an event led to an undesirable outcome and create appropriate corrective measures. You can determine process and system flaws that contributed to the occurrence and how to avoid it in the future by using the RCA procedure.For more information on root cause analysis kindly visit to
https://brainly.com/question/28960819
#SPJ1
Complete question: to be credible an rca must be _______.
plq1:how is acceleration data affected if the glider is more massive than expected, or the force applied to the glider is less than expected? explain your reasoning. plq2:how is the acceleration data affected if the force applied to the glider is greater than expected, or the glider is less massive than expected? explain your reasoning.
plq1. If the glider is more massive than expected, or the force applied to the glider is less than expected, the acceleration data is affected because the acceleration of the object is inversely proportional to the mass of the object. plq2. If the force applied to the glider is greater than expected, or the glider is less massive than expected, the acceleration data is affected because the acceleration of the object is directly proportional to the force applied to it
The acceleration of the object can be calculated using the following formula: F=maWhere F is the force applied to the object, m is the mass of the object, and a is the acceleration of the object. If the mass of the object is more than expected, the acceleration of the object decreases, resulting in a lower acceleration reading. Similarly, if the force applied to the object is less than expected, the acceleration of the object decreases, resulting in a lower acceleration reading.
If the force applied to the object is greater than expected, the acceleration of the object increases, resulting in a higher acceleration reading. Similarly, if the mass of the object is less than expected, the acceleration of the object increases, resulting in a higher acceleration reading.
Learn more about acceleration at:
https://brainly.com/question/28743430
#SPJ11