Answer:
the rate of heat transfer after the system achieves steady state is -3.36 kW
Explanation:
Given the data in the question;
mass of water m = 50 kg
N = 300 rpm
Torque T = 0.1 kNm
V = 110 V
I = 2 A
Electric work supplied W₁ = PV = 2 × 110 = 220 W = 0.22 kW
Now, work supplied by paddle wheel W₂ is;
W₂ = 2πNT/60
W₂ = (2π × 0.1 × 300) / 60
W₂ = 188.495559 / 60
W₂ = 3.14 kW
So the total work will be;
W = 0.22 + 3.14
W = 3.36 kW
Hence total work done on the system is 3.36 kW.
At steady state, the properties of the system does not change so the heat transfer will be 3.36 KW.
The heat will be rejected by the system so the sign of heat will be negative.
i.e Q = -3.36 kW
Therefore, the rate of heat transfer after the system achieves steady state is -3.36 kW
what is the application of a spherometer in the medical field?
Answer:
To correct the defects of vision by measuring the radius of curvature and thus the power of the lenses.
Explanation:
A spherometer is an instrument used to measure the curvature of objects such as lenses and curved mirrors.
Generally it consists of a fine screw which is moving in a nut carried on the center of a 3 small legged table or frame. The feet forms the vertices of an equilateral triangle. The lower end of the screw and those of the table legs are finely tapered and terminate in hemispheres.
If the screw has two turns of the thread to the milli meter the head is generally divided into 50 equal parts, so that differences of 0.01 millimeter may be measured without using a vernier scale.
The spherometer is used to measure the radius of curvature of the lenses so that the opthalmologist find the focal length of the lens and then give the power to the lens to correct the defects of vision.
A hockey puck is sliding across the ice with an initial velocity of 25 m/s. If the coefficient of friction between the hockey puck and the ice is 0.08, how much time (in seconds) will it take before the hockey puck slides to a stop
Answer: 31.89seconds
Explanation:
Based on the information given, we are meant to calculate deceleration which will be:
t = V/a
where, a = mg
Therefore, t = V/mg
t = 25/0.08 × 9.8
t = 25/0.784
t = 31.89seconds
Therefore, the time that it will take before the hockey puck slides to a stop is 31.89seconds.
An electric drill starts from rest and rotates with a constant angular acceleration. After the drill has rotated through a certain angle, the magnitude of the centripetal acceleration of a point on the drill is 8.2 times the magnitude of the tangential acceleration. What is the angle?
Answer:
The angle is 4.1 rad.
Explanation:
The centripetal acceleration (α) is given by:
[tex] \alpha = \omega^{2} r [/tex] (1)
Where:
ω: is the angular velocity
r: is the radius
And the tangential acceleration (a) is:
[tex] a = \alpha r [/tex] (2)
Since the magnitude of "α" is 8.2 times the magnitude of "a" (equating (2) and (1)) we have:
[tex] \omega^{2} r = 8.2\alpha r [/tex]
[tex] \omega^{2} = 8.2\alpha [/tex] (3)
Now, we can find the angle with the following equation:
[tex] \omega_{f}^{2} = \omega_{0}^{2} + 2\alpha \Delta \theta [/tex]
Where:
[tex] \omega_{f}[/tex]: is the final angular velocity [tex] \omega_{0}[/tex]: is the initial angular velocity = 0 (it starts from rest)
[tex]\Delta \theta[/tex]: is the angle
[tex] \omega^{2} = 2\alpha \Delta \theta [/tex] (4)
By entering equation (3) into (4) we can calculate the angle:
[tex] 8.2\alpha = 2\alpha \Delta \theta [/tex]
[tex] \Delta \theta = 4.1 rad [/tex]
Therefore, the angle is 4.1 rad.
I hope it helps you!
The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of 3.0 rev/s in 13.0 s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub slows to rest in 12.0 s. Through how many revolutions does the tub turn during this 25 s interval
Answer:
The tub turns 37.520 revolutions during the 25-second interval.
Explanation:
The total number of revolutions done by the tub of the washer ([tex]\Delta n[/tex]), in revolutions, is the sum of the number of revolutions done in the acceleration ([tex]\Delta n_{1}[/tex]), in revolutions, and deceleration stages ([tex]\Delta n_{2}[/tex]), in revolutions:
[tex]\Delta n = \Delta n_{1} + \Delta n_{2}[/tex] (1)
Then, we expand the previous expression by kinematic equations for uniform accelerated motion:
[tex]\Delta n = \frac{1}{2}\cdot ( \ddot n_{1}\cdot t_{1}^{2} - \ddot n_{2} \cdot t_{2}^{2})[/tex] (1b)
Where:
[tex]\ddot n_{1}, \ddot n_{2}[/tex] - Angular accelerations for acceleration and deceleration stages, in revolutions per square second.
[tex]t_{1}, t_{2}[/tex] - Acceleration and deceleration times, in seconds.
And each acceleration is determined by the following formulas:
Acceleration
[tex]\ddot n_{1} = \frac{\dot n}{t_{1}}[/tex] (2)
Deceleration
[tex]\ddot n_{2} = -\frac{\dot n}{t_{2} }[/tex] (3)
Where [tex]\dot n[/tex] is the maximum angular velocity of the tub of the washer, in revolutions per second.
If we know that [tex]\dot n = 3\,\frac{rev}{s}[/tex], [tex]t_{1} = 13\,s[/tex] and [tex]t_{2} = 12\,s[/tex], then the quantity of revolutions done by the tub is:
[tex]\ddot n_{1} = \frac{3\,\frac{rev}{s} }{13\,s}[/tex]
[tex]\ddot n_{1} = 0.231\,\frac{rev}{s^{2}}[/tex]
[tex]\ddot n_{2} = -\frac{3\,\frac{rev}{s} }{12\,s}[/tex]
[tex]\ddot n_{2} = -0.25\,\frac{rev}{s^{2}}[/tex]
[tex]\Delta n = \frac{1}{2}\cdot ( \ddot n_{1}\cdot t_{1}^{2} + \ddot n_{2} \cdot t_{2}^{2})[/tex]
[tex]\Delta n = \frac{1}{2}\cdot \left[\left(0.231\,\frac{rev}{s^{2}} \right)\cdot (13\,s)^{2}-\left(-0.25\,\frac{rev}{s^{2}} \right)\cdot (12\,s)^{2}\right][/tex]
[tex]\Delta n = 37.520\,rev[/tex]
The tub turns 37.520 revolutions during the 25-second interval.
You are using a constant force to speed up a toy car from an initial speed of 6.5 m/s
to a final speed of 22.9 m/s. If the toy car has a mass of 340 g, what is the work
needed to speed this car up?
By the work-energy theorem, the total work done on the car is equal to the change in its kinetic energy:
W = ∆K
W = 1/2 (0.34 kg) (22.9 m/s)² - 1/2 (0.34 kg) (6.5 m/s)²
W ≈ 82 J
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue). Light from a hydrogen lamp illuminates a diffraction grating with 550 lines/mm , and the light is observed on a screen 1.7 m behind the grating.
What is the distance between the first-order red and blue fringes?
Express your answer to two significant figures and include the appropriate units.
Answer:
Δd = 7.22 10⁻² m
Explanation:
For this exercise we must use the dispersion relationship of a diffraction grating
d sin θ = m λ
let's use trigonometry
tan θ = y / L
how the angles are small
tant θ = sinθ /cos θ = sin θ
we substitute
sin θ = y / L
d y / L = m λ
y = m λ L / d
let's use direct ruler rule to find the distance between two slits
If there are 500 lines in 1 me, what distance is there between two lines
d = 2/500
d = 0.004 me = 4 10⁻⁶ m
diffraction gratings are built so that most of the energy is in the first order of diffraction m = 1
let's calculate for each wavelength
λ = 656 nm = 656 10⁻⁹ m
d₁ = 1 656 10⁻⁹ 1.7 / 4 10⁻⁶
d₁ = 2.788 10⁻¹ m
λ = 486 nm = 486 10⁻⁹ m
d₂ = 1 486 10⁻⁹ 1.7 / 4 10⁻⁶
d₂ = 2.066 10⁻¹ m
the distance between the two lines is
Δd = d1 -d2
Δd = (2,788 - 2,066) 10⁻¹
Δd = 7.22 10⁻² m
in which states of matter will a substance have a fixed volume
Answer:
Solid is the state in which Matter maintains a fixed volume
Answer:
The state of matter that has a fixed volume is Solid.
Explanation:
Solid substances will maintain a fixed volume and shape.
A wave has a frequency of 87.00 Hz and has a wavelength of 74.62 m. What is its
velocity?
Answer:
v = 6491.94 m/s
Explanation:
We are given;
Frequency; f = 87 Hz
Wavelength;λ = 74.62 m
Formula for velocity(v) of waves from the wave equation is;
v = fλ
Thus;
v = 87 × 74.62
v = 6491.94 m/s
Which shows the formula for converting from degrees Celsius to degrees Fahrenheit?
°F = (9/5 × °C) +32
°F = 5/9 × (°C – 32)
°F = °C – 273
°F = °C + 273
Answer:
the first answer
Explanation:
(32°F − 32) × 5/9 = 0°C
Answer:
Answer: A
Explanation:
Newton's law of cooling states that the rate of change of temperature of an object in a surrounding medium is proportional to the difference of the temperature of the medium and the temperature of the object. Suppose a metal bar, initially at temperature 50 degrees Celsius, is placed in a room which is held at the constant temperature of 40 degrees Celsius. One minute later the bar has cooled to 40.18316 degrees . Write the differential equation that models the temperature in the bar (in degrees Celsius) as a function of time (in minutes). Hint: You will need to find the constant of proportionality. Start by calling the constant k and solving the initial value problem to obtain the temperature as a function of k and t . Then use the observed temperature after one minute to solve for k .
Answer:
Newton's law of cooling says that the temperature of a body changes at a rate proportional to the difference between its temperature and that of the surrounding medium (the ambient temperature); dT/dt = -K(T - Tₐ) where T = the temperature of the body (°C), t = time (min), k = the proportionality constant (per minute),
Explanation:
who is corazon aquino?
Answer:
Maria Corazon Sumulong Cojuangco Aquino, popularly known as Cory Aquino, was a Filipino politician who served as the 11th President of the Philippines, the first woman to hold that office.
Answer:
Former President of the Philippines
Explanation:
A certain microscope is provided with objectives that have focal lengths of 20 mm , 4 mm , and 1.4 mm and with eyepieces that have angular magnifications of 5.00 × and 15.0 × . Each objective forms an image 120 mm beyond its second focal point.
Answer:
Explanation:
Given that:
Focal length for the objective lens = 20 mm, 4 mm, 1.4 mm
For objective lens of focal length f₁ = 20 mm
s₁' = 120 mm + 20 mm = 140 mm
∴
Magnification [tex]m_1 = \dfrac{s'_1}{f_1}[/tex]
[tex]m_1 = \dfrac{140}{20}[/tex]
[tex]m_1 = 7 \ m[/tex]
For objective lens of focal length f₁ = 4 mm
s₁' = 120 mm + 4 mm = 124 mm
[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]
[tex]m_1 = \dfrac{124}{4}[/tex]
[tex]m_1 = 31 \ m[/tex]
For objective lens of focal length f₁ = 1.4 mm
s₁' = 120 mm + 1.4 mm = 121.4 mm
[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]
[tex]m_1 = \dfrac{121.4}{1.4}[/tex]
[tex]m_1 = 86.71 \ m[/tex]
The magnification of the eyepiece is given as:
[tex]m_e = 5X \ and \ m_e = 15X[/tex]
Thus, the largest angular magnification when [tex]m_1 \ and \ m_e \ are \ large \ is:[/tex]
[tex]M_{large}= (m_1)_{large} \times (m_e)_{large}[/tex]
= 86.71 × 15
= 1300.65
The smallest angular magnification derived when [tex]m_1 \ and \ m_e \ are \ small \ is:[/tex]
[tex]M_{small}= (m_1)_{small} \times (m_e)_{small}[/tex]
= 7 × 5
= 35
The largest magnification will be 1300.65 and the smallest magnification will be 35.
What is magnification?Magnification is defined as the ratio of the size of the image of an object to the actual size of the object.
Now for objective lens and eyepieces, it is defined as the ratio of the focal length of the objective lens to the focal length of the eyepiece.
It is given in the question:
Focal lengths for the objective lens is = 20 mm, 4 mm, 1.4 mm
now we will calculate the magnification for all three focal lengths of the objective lens.
Also, each objective forms an image 120 mm beyond its second focal point.
(1) For an objective lens of focal length [tex]f_1=20 \ mm[/tex]
[tex]s_1'=120\ mm +20 \ mm =140\ mm[/tex]
Magnification will be calculated as
[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{140}{20} =7[/tex]
(2) For an objective lens of focal length [tex]f_1= \ 4 \ mm[/tex]
s₁' = 120 mm + 4 mm = 124 mm
[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{124}{4} =31[/tex]
(3) For an objective lens of focal length [tex]f_1=1.4\ mm[/tex]
s₁' = 120 mm + 1.4 mm = 121.4 mm
[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{121.4}{1.4} =86.71[/tex]
Now the magnification of the eyepiece is given as:
[tex]m_e=5x\ \ \ & \ \ m_e=15x[/tex]
Thus, the largest angular magnification when
[tex]m_1 = 86.17\ \ \ \ m_e=15x[/tex]
[tex]m_{large}= (m_1)_{large}\times (m_e)_{large}[/tex]
[tex]m_{large}=86.71\times 15=1300.65[/tex]
The smallest angular magnification derived when
[tex]m_1=7\ \ \ \ m_e=5[/tex]
[tex]m_{small}=(m_1)_{small}\times (m_e)_{small}[/tex]
[tex]m_{small}=7\times 5=35[/tex]
Thus the largest magnification will be 1300.65 and the smallest magnification will be 35.
To know more about magnification follow
https://brainly.com/question/1599771
URGENT
The component of solid-state physics that works with and/or heats metals and alloys to give them certain desired
shapes or properties is..
Answer:
the is metallurgy .....
At the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.35 m above where it started. Using conservation of energy, find the height of the ball when it has a speed of 2.5 m/s.
Answer:
0.32 m.
Explanation:
To solve this problem, we must recognise that:
1. At the maximum height, the velocity of the ball is zero.
2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.
With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:
Mass (m) = constant
Acceleration due to gravity (g) = 9.8 m/s²
Velocity (v) = 2.5 m/s
Height (h) =?
PE = KE
Recall:
PE = mgh
KE = ½mv²
Thus,
PE = KE
mgh = ½mv²
Cancel m from both side
gh = ½v²
9.8 × h = ½ × 2.5²
9.8 × h = ½ × 6.25
9.8 × h = 3.125
Divide both side by 9.8
h = 3.125 / 9.8
h = 0.32 m
Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.
When a condenser discharges electricity, the instantaneous rate of change of the voltage is proportional to the voltage in the condenser. Suppose you have a discharging condenser and the instantaneous rate of change of the voltage is -0.01 of the voltage (in volts per second). How many seconds does it take for the voltage to decrease by 90 %?
Answer:
460.52 s
Explanation:
Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that
dV/dt ∝ V
dV/dt = kV
separating the variables, we have
dV/V = kdt
integrating both sides, we have
∫dV/V = ∫kdt
㏑(V/V₀) = kt
V/V₀ = [tex]e^{kt}[/tex]
Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V
Since dV/dt = kV
-0.01V = kV
k = -0.01
So, V/V₀ = [tex]e^{-0.01t}[/tex]
V = V₀[tex]e^{-0.01t}[/tex]
Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀
So, V = 0.1V₀
Thus
V = V₀[tex]e^{-0.01t}[/tex]
0.1V₀ = V₀[tex]e^{-0.01t}[/tex]
0.1V₀/V₀ = [tex]e^{-0.01t}[/tex]
0.1 = [tex]e^{-0.01t}[/tex]
to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have
㏑(0.01) = -0.01t
So, t = ㏑(0.01)/-0.01
t = -4.6052/-0.01
t = 460.52 s
A rock is thrown from the top of a building 146 m high, with a speed of 14 m/s at an angle 43 degrees above the horizontal. When it hits the ground, what is the magnitude of its velocity (i.e. its speed).
Answer:
time is 32 s and speed is 304.3 m/s
Explanation:
Height, h = 146 m
speed, u = 14 m/s
Angle, A = 43 degree
Let it hits the ground after time t.
Use second equation of motion
[tex]h = u t +0.5 at^2\\\\- 146 =14 sin 43 t - 4.9 t^2\\\\4.9 t^2 - 9.5 t - 146 =0 \\\\t =\frac{9.5\pm\sqrt {90.25 + 2861.6}}{9.8}\\\\t=\frac{9.5\pm 54.3}{9.8}\\\\t = 32.05 s, - 22.4 s[/tex]
Time cannot be negative so the time is t = 32 s .
The vertical velocity at the time of strike is
v' = u sin A - g t
v' = 14 sin 43 - 9.8 x 32 = 9.5 - 313.6 = - 304.1 m/s
horizontal velocity
v'' = 14 cos 43 =10.3 m/s
The resultant velocity at the time of strike is
[tex]v=\sqrt{v'^2 + v''^2}\\\\v = \sqrt{304.1^2 +10.3^2 }\\\\v = 304.3 m/s[/tex]
The liquid and gaseous state of hydrogen are in thermal equilibrium at 20.3 K. Even though it is on the point of condensation, model the gas as ideal and determine the most probable speed of the molecules (in m/s). What If? At what temperature (in K) would an atom of xenon in a canister of xenon gas have the same most probable speed as the hydrogen in thermal equilibrium at 20.3 K?
Answer:
a) the most probable speed of the molecules is 409.2 m/s
b) required temperature of xenon is 1322 K
Explanation:
Given the data in the question;
a)
Maximum probable speed of hydrogen molecule (H₂)
[tex]V_{H_2[/tex] = √( 2RT / [tex]M_{H_2[/tex] )
where R = 8.314 m³.Pa.K⁻¹.mol⁻¹ and given that T = 20.3 K
molar mass of H₂; [tex]M_{H_2[/tex] = 2.01588 g/mol
we substitute
[tex]V_{H_2[/tex] = √( (2 × 8.314 × 20.3 ) / 2.01588 × 10⁻³ )
[tex]V_{H_2[/tex] = √( 337.5484 / 2.01588 × 10⁻³ )
[tex]V_{H_2[/tex] = 409.2 m/s
Therefore, the most probable speed of the molecules is 409.2 m/s
b)
Temperature of xenon = ?
Temperature of hydrogen = 20.3 K
we know that;
T = (Vxe² × Mxe) / 2R
molar mass of xenon; Mxe = 131.292 g/mol
so we substitute
T = ( (409.2)² × 131.292 × 10⁻³) / 2( 8.314 )
T = 21984.14167 / 16.628
T = 1322 K
Therefore, required temperature of xenon is 1322 K
A horizontal, uniform board of weight 125 N and length 4 m is supported by vertical chains at each end. A person weighing 500 N is sitting on the board. The tension in the right chain is 250 N. How far from the left end of the board is the person sitting
Answer:
the person is sitting 1.5 m from the left end of the board
Explanation:
Given the data in the question;
Wb = 125 N
Wm = 500 N
T₂ = 250 N
Now, we know that;
T₁ + T₂ = Wb + Wm
T₁ + 250 = 125 + 500
T₁ = 125 + 500 - 250
T₁ = 375 N
so tension of the left chain is 375 N.
Now, taking torque about the left end
500 × d + 125 × 2 = 250 × 4
500d + 250 = 1000
500d = 1000 - 250
500d = 750
d = 750 / 500
d = 1.5 m
Therefore, the person is sitting 1.5 m from the left end of the board.
Water with a volume flow rate of 0.001 m3/s, flows inside a horizontal pipe with diameter of 1.2 m. If the pipe length is 10m and we assume fully developed internal flow, find the pressure drop across this pipe length.
Answer:
[tex]\triangle P=1.95*10^{-4}[/tex]
Explanation:
Mass [tex]m=0.001[/tex]
Diameter [tex]d=1.2m[/tex]
Length [tex]l=10m[/tex]
Generally the equation for Volume flow rate is mathematically given by
[tex]Q=AV[/tex]
[tex]V=\frac{Q}{\pi/4D^2}[/tex]
[tex]V=\frac{0.001}{\pi/4(1.2)^2}[/tex]
[tex]V=8.84*10^{-4}[/tex]
Generally the equation for Friction factor is mathematically given by
[tex]F=\frac{64}{Re}[/tex]
Where Re
Re=Reynolds Number
[tex]Re=\frac{pVD}{\mu}[/tex]
[tex]Re=\frac{1000*8.84*10^{-4}*1.2}{1.002*10^{-3}}[/tex]
[tex]Re=1040[/tex]
Therefore
[tex]F=\frac{64}{Re}[/tex]
[tex]F=\frac{64}{1040}[/tex]
[tex]F=0.06[/tex]
Generally the equation for Friction factor is mathematically given by
[tex]Head loss=\frac{fLv^2}{2dg}[/tex]
[tex]H=\frac{0.06*10*(8.9*10^-4)^2}{2*1.2*9.81}[/tex]
[tex]H=19.9*10^{-9}[/tex]
Where
[tex]H=\frac{\triangle P}{\rho g}[/tex]
[tex]\triangle P=\frac{19.9*10^{-9}}{10^3*(9.81)}[/tex]
[tex]\triangle P=H*\rho g[/tex]
[tex]\triangle P=1.95*10^{-4}[/tex]
galileo was a contemporary of
Give the number of protons and the number of neutrons in the nucleus of each of the following isotopes Aluminum 25 :13 protons and 12 neutrons
Answer:
No of proton is 13 and nucleus is 13
You want to calculate how long it takes a ball to fall to the ground from a
height of 20 m. Which equation can you use to calculate the time? (Assume
no air resistance.)
O A. vz? = v? +2aAd
B. a =
V₂-vi
At
O c. At=V1
4
a
O D. At=
2Ad
a
If a person wants to calculate the length of time it takes for a ball to fall from a height of 20m, the correct equation that they should use is:
D. Δt= √2Δd/a
What is the equation for finding the length of time for a free fall?The free fall formula should be used to obtain the length of time that it takes for a ball to fall from a given height. This formula also factors the height or distance from which the fall occurred and this is denoted by the letter d. The small letter 'a' is denotative of acceleration due to gravity and this is a constant pegged at -9.98 m/s².
So, the change in height is obtained and multiplied by two. This is further divided by the acceleration and the square root of the derived answer translates to the time taken for the ball to fall from the height of 20m. Of all the options listed, option D represents the correct equation.
Learn more about free fall here:
https://brainly.com/question/12167131
#SPJ1
From 2 King 6:1-6, one of the disciples of Elisha was cutting a tree and the ax head fell into the water. While we do not know how high the ax head was when it fell into the water, we will work through a physics example of the ax head's vertical motion as if it were dropped into the water. ( Due date 09/07)
Write your name and date. The due date of this assignment is the height the ax head falls from in meters into the water. For example, if the due date is July 15, then the ax head fell 15 meters to the water.
Write Newton’s 2nd Law in Equation Form.
Write the quantity and units of average gravitational acceleration on the surface of Earth.
Given the ax head mentioned in the opening portion with the height being equal in numerical value of the due day of this assignment. How long does it take for the ax to fall to the river surface?
Compute the final speed of the ax when it hits the water.
Answer:
time of fall is 1.75 s and the velocity with which it strikes the water is 17.15 m/s.
Explanation:
Height, h = 15 m
Newton's second law
Force = mass x acceleration
The unit of gravitational force is Newton and the value is m x g.
where, m is the mas and g is the acceleration due to gravity.
Let the time of fall is t.
Use second equation of motion
[tex]s= u t +0.5 at^2\\\\15 = 0 +0.5\times 9.8\times t^{2}\\\\t = 1.75 s[/tex]
Let the final speed is v.
Use third equation of motion
[tex]v^2 = u^2 + 2 a s\\\\v^2 = 0 + 2 \times 9.8\times 15\\\\v =17.15 m/s[/tex]
Ion how to do this at all
A toy car of mass 600g moves through 6m in 2 seconds. The average kinetic energy of the toy car is
Answer:
12
Explanation:
I'm a beginner so am not sureeeeee
How can i prove the conservation of mechanical energy?
Answer:
We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved
Explanation:
how can the starch be removed from the leaves of potted plants
Answer:
Explanation:
There are two main ways to de-starch leaves of a plant - the 'Light Exclusion' Method and the 'Carbon Dioxide Deprivation' Method. The 'Light Exclusion' method is a simpler procedure and is used often. Leaves can be destarched by depriving them of light for an extended period of time, usually 24-48 hours.
In air an object weighs 15N, when immersed in water it weighs 12N, when immersed in another liquid, it weighs 13N, Calculate the density of the object and that of the other liquid?
M1 = 15/g = 15/9.8 = 1.53 kg = mass of object in air. M2 = 12/9.8 = 1.22 kg = mass of object immersed. M1-M2 = 1.53-1.22 = 0.31 kg lost by object = mass of water displaced. ... Do = 4.94 g/cm^3 = density of object.
The engine of a locomotive exerts a constant force of 6.8 105 N to accelerate a train to 80 km/h. Determine the time (in min) taken for the train of mass 1.1 107 kg to reach this speed from rest.
Answer:
t = 6 minutes
Explanation:
Given that,
Force,[tex]F=6.8\times 10^5\ N[/tex]
Initial speed of the train, u = 0
Final speed of the train, v = 80 km/h = 22.22 m/s
The mass of the train, [tex]m=1.1\times 10^7\ kg[/tex]
We need to find the time taken by the train to come to rest. We know that,
F = ma
[tex]F=\dfrac{m(v-u)}{t}\\\\t=\dfrac{m(v-u)}{F}\\\\t=\dfrac{1.1\times10^7\times (22.22-0)}{6.8\times 10^5}\\\\t=359.44\ s[/tex]
or
t = 6 minutes (approx)
So, the required time is equal to 6 minutes.
The diagram shows the molecular structure of ethane. What is the chemical
formula for ethane?
Ethane
H H
H-C-C-H
| |
H H