About how many feet are in 3.6 kilometers? 1 m = 39.37 in

Answers

Answer 1

Answer:

11811 feet

Step-by-step explanation:

Hope it helps!

Answer 2

There are about 11,812 feet in 3.6 kilometers.

To convert kilometers to feet, we need to use the conversion factor:

1 kilometer = 3,280.84 feet.

Now, to find how many feet are in 3.6 kilometers,

we can multiply 3.6 by the conversion factor:

So, 3.6 kilometers x 3,280.84 feet/kilometer

= 11,811.504 feet.

Thus, Rounded to a whole number, there are about 11,812 feet in 3.6 kilometers.

Learn more about Unit Conversion here:

https://brainly.com/question/14573907

#SPJ6


Related Questions

Hey market sales six cans of food for every seven boxes of food the market sold a total of 26 cans and boxes today how many of each kind did the market sale

Answers

Answer:

It sold 14 cans boxes of food and 12 cans of food.

Step-by-step explanation:

The factor for the food cans depend upon every seven food boxes .So, the same no. of sets of food cans will be sold.

Let the no. of sets of food boxes be x.

According to the question,

6x+7x=26

13x=26

x=26/13

x=2

No. of food cans =6x=6×2=12 cans

No. of food boxes=7x=7×2=14 boxes

Please mark brainliest ,if it is truly the best ! Thank you!

Use the two highlighted points to find the
equation of a trend line in slope-intercept
form.

Answers

Answer: y=(4/3)x+2/3

Step-by-step explanation:

Slope-intercept form is expressed as y=mx+b

First, find the slope (m):

m= rise/run or vertical/horizontal or y/x (found between the highlighted points)

m = 4/3

Second, find b:

Use one of the highlighted points for (x, y)

2=4/3(1)+b

6/3=4/3+b

2/3=b

b=2/3

Plug it into the equation:

You get y=(4/3)x+2/3 :)

logx-log(x-l)^2=2log(x-1)​

Answers

Answer:

  x = 1.00995066776

  x = 2.52925492433

Step-by-step explanation:

This sort of equation is best solved using a graphing calculator. For that purpose, I like to rewrite the equation as a function whose zeros we're seeking. Here, that becomes ...

  [tex]f(x)=\log{(x)}-\log{(x-1)}^2-2\log{(x-1)}[/tex]

The attached graph shows zeros at

  x = 1.00995066776 and 2.52925492433

_____

Comment on the equation

Note that we have taken the middle term to be the square of the log, rather than the log of a square. For the latter interpretation, see mberisso's answer at https://brainly.com/question/17210068

Comment on the answer refinement

We have used Newton's method iteration to refine the solutions to this equation. The solution near 1.00995 requires the initial guess be very close for that method to work properly. Fortunately, the 1.01 value shown on the graph is sufficient for the purpose.

50 POINTS!!! i WILL GIVE BRAINLISET IF YOU ANSWER FAST Find the domain for the rational function f of x equals quantity x minus 3 over quantity 4 times x minus 1. (−∞, 3)(3, ∞) (−∞, −3)( −3, ∞) negative infinity to one fourth and one fourth to infinity negative infinity to negative one fourth and negative one fourth to infinity

Answers

Answer:

[tex](-\infty,1/4)\cup(1/4,\infty)[/tex]

The answer is C.

Step-by-step explanation:

We are given the rational function:

[tex]\displaystyle f(x) = \frac{x-3}{4x-1}[/tex]

In rational functions, the domain is always all real numbers except for the values when the denominator equals zero. In other words, we need to find the zeros of the denominator:

[tex]\displaystyle \begin{aligned}4x -1 & = 0 \\ \\ 4x & = 1 \\ \\ x & = \frac{1}{4} \end{aligned}[/tex]

Therefore, the domain is all real number except for x = 1/4.

In interval notation, this is:

[tex](-\infty,1/4)\cup(1/4,\infty)[/tex]

The left interval represents all the values to the left of 1/4.The right interval represents all the values to the right of 1/4. The union symbol is needed to combine the two. Note that we use parentheses instead of brackets because we do not include the 1/4 nor the infinities.  

In conclusion, our answer is C.

Answer:

The third one

Step-by-step explanation:

Josephine has a rectangular garden with an area of 2x2 + x – 6 square feet. A rectangle labeled 2 x squared + x minus 6 Which expressions can represent the length and width of the garden? length = x2 – 3 feet; width = 2 feet length = 2x + 3 feet; width = x – 2 feet length = 2x + 2 feet; width = x – 3 feet length = 2x – 3 feet; width = x + 2 feet

Answers

Answer:

2x^2 + x - 6 = rectangular garden: length = 2x – 3 feet; width = x + 2 feet

Step-by-step explanation:

(2x - 3)(x + 2) = 2x^2 + x - 6 =

2x^2 + 4x - 3x - 6 = 2x^2 + x - 6 =

2x^2 + x - 6

You get the original equation from the two sides multiplied. :)

Hope this helps, have a good day.

The length and width of the rectangle will be (2x – 3) and (x + 2). Then the correct option is D.

What is the area of the rectangle?

Let W be the rectangle's width and L its length.

The area of the rectangle is the multiplication of the two different sides of the rectangle. Then the rectangle's area will be

Area of the rectangle = L × W square units

The area is 2x² + x – 6 square feet. Then the factor of the equation is given as,

A = 2x² + x – 6

A = 2x² + 4x – 3x – 6

A = 2x(x + 2) – 3(x + 2)

L × W = (2x – 3)(x + 2)

The length and width of the rectangle will be (2x – 3) and (x + 2). Then the correct option is D.

More about the area of the rectangle link is given below.

https://brainly.com/question/20693059

#SPJ6

Extensive experience with fans of a certain type used in diesel engines has suggested that the exponential distribution provides a good model for time until failure. Suppose the mean time until failure is 23,100 hours.

(a) What is the probability that a randomly selected fan will last at least 20,000 hours?


What is the probability that a randomly selected fan will last at most 30,000 hours?


What is the probability that a randomly selected fan will last between 20,000 hours and 30,000 hours?


(b) What is the probability that the lifetime of a fan exceeds the mean value by more than 2 standard deviations?


What is the probability that the lifetime of a fan exceeds the mean value by more than 3 standard deviations?

Answers

Answer:

0.4207149;0.7271136; 0.3063987; 0.04979 ; 0.01832

Step-by-step explanation:

For an exponential distribution:

IF Mean time until failure = 23100

λ = 1/ 23100 = 0.0000432900

What is the probability that a randomly selected fan will last at least 20,000 hours

x ≥ 20000

P(X ≥ 20000) = 1 - P(X ≤ 20000)

1 - P(X ≤ 20000) = [1 - (1 - e^(-λx))]

1 - P(X ≤ 20000) = [1 - (1 - e^(-0.0000432900*20000)

1 - P(X ≤ 20000) = [1 - (1 - 0.4207148)]

1 - P(X ≤ 20000) = 1 - 0.5792851

1 - P(X ≤ 20000) = 0.4207149

11) What is the probability that a randomly selected fan will last at most 30,000 hours?

x ≤ 30000

P(X ≤ 30000) = 1 - e^(-λx)

P(X ≤ 20000) = 1 - e^(-0.0000432900*30000)

= 1 - e^(−1.2987)

= 1 - 0.2728863

= 0.7271136

111) What is the probability that a randomly selected fan will last between 20,000 hours and 30,000 hours?

0.7271136 - 0.4207149 = 0.3063987

B) What is the probability that the lifetime of a fan exceeds the mean value by more than 2 standard deviations?

More than two standard deviation

X = 23100 + 2(23100) = 23100 + 46200 = 69300

Using the online exponential probability calculator :

P(X > 69300) = 0.04979

C) What is the probability that the lifetime of a fan exceeds the mean value by more than 3 standard deviations?

X = 23100 + 3(23100) = 23100 + 69300 = 92400

P(X > 92400) = 0.01832

Findℒ{f(t)}by first using a trigonometric identity. (Write your answer as a function of s.)f(t) = 12 cost −π6

Answers

Answer:

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

Step-by-step explanation:

Given that:

[tex]f(t) = 12 cos (t- \dfrac{\pi}{6})[/tex]

recall that:

cos (A-B) = cos AcosB + sin A sin B

[tex]f(t) = 12 [cos\ t \ cos \dfrac{\pi}{6}+ sin \ t \ sin \dfrac{\pi}{6}][/tex]

[tex]f(t) = 12 [cos \ t \ \dfrac{3}{2}+ sin \ t \ sin \dfrac{1}{2}][/tex]

[tex]f(t) = 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t)[/tex]

[tex]L(f(t)) = L ( 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \ L [cos \ (t) ] + 6\ L [ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \dfrac{S}{S^2 + 1^2}+ 6 \dfrac{1}{S^2 +1^2}[/tex]

[tex]L(f(t)) = \dfrac{6 \sqrt{3} +6 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6( \sqrt{3} \ S +1 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

A machine used to fill​ gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of ounces and a standard deviation of ounce. You randomly select cans and carefully measure the contents. The sample mean of the cans is ounces. Does the machine need to be​ reset? Explain your reasoning. ▼ Yes No ​, it is ▼ very unlikely likely that you would have randomly sampled cans with a mean equal to ​ounces, because it ▼ lies does not lie within the range of a usual​ event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means.

Answers

Complete question is;

A machine used to fill gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of 128 ounces and a standard deviation of 0.20 ounce. You randomly select 35 cans and carefully measure the contents. The sample mean of the cans is 127.9 ounces. Does the machine need to be? reset? Explain your reasoning.

(yes/no)?, it is (very unlikely/ likely) that you would have randomly sampled 35 cans with a mean equal to 127.9 ?ounces, because it (lies/ does not lie) within the range of a usual? event, namely within (1 standard deviation, 2 standard deviations 3 standard deviations) of the mean of the sample means.

Answer:

Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Step-by-step explanation:

We are given;

Mean: μ = 128

Standard deviation; σ = 0.2

n = 35

Now, formula for standard error of mean is given as;

se = σ/√n

se = 0.2/√35

se = 0.0338

Normally, the range of values should be within 2 standard deviations of mean. In this case, normal range of values will be;

μ ± 2se = 128 ± 0.0338

This gives; 127.9662, 128.0338

So, Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?
A)Right
B)Obtuse
C)Can't be determined
D) Acute

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?
A)0.33 feet
B)3.75 feet
C)3 feet
D)5 feet

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?
A)Acute
B)Right
C)Can't be determined
D)Obtuse

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?
A)21.34 ft.
B)21.93 ft.
C)27.73 ft.
D)19.21 ft.

Answers

Answer:

Question 1 = D) Acute

Question 2 = C)3 feet

Question 3 = D) Obtuse

Question 4 = C)27.73 ft.

Step-by-step explanation:

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths

5 = a, 6 = b and c = 7

a² + b² = c²

5² + 6² = 7²

25 + 36 = 49

61 = 49

61 ≠ 49, Hence 61 > 49

Therefore, this is an Acute Triangle

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?

This is question that deals with proportion.

The formula to solve for this:

Height of the statue/ Length of the shadow of the person = Height of the person/ Length of the shadow of the person

Height of the statue = 15 feet

Length of the shadow of the person = 20 feet

Height of the person = unknown

Length of the shadow of the person = 4

15/ 20 = Height of the person/4

Cross Multiply

15 × 4 = 20 × Height of the person

Height of the person = 15 × 4/20

= 60/20

Height of the person = 3 feet

Therefore, the person is 3 feet tall.

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths 17, 12, 9

9 = a, 12 = b and c = 17

a² + b² = c²

9² + 12² = 17²

81 + 144 = 289

225 = 289

225 ≠ 289

225 < 289

Hence, This is an Obtuse Triangle.

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?

To calculate how far apart the two friends are we use the formula

Distance = √ ( Length² + Breadth²)

We are given dimensions: 12ft by 25ft

Length = 12ft

Breadth = 25ft

Distance = √(12ft)² + (25ft)²

Distance = √144ft²+ 625ft²

Distance = √769ft²

Distance = 27.730849248ft

Approximately ≈27.73ft

Therefore, the friends are 27.73ft apart.

Suppose that a sample mean is .29 with a lower bound of a confidence interval of .24. What is the upper bound of the confidence interval?

Answers

Answer:

The upper bound of the confidence interval is 0.34

Step-by-step explanation:

Here in this question, we want to calculate the upper bound of the confidence interval.

We start by calculating the margin of error.

Mathematically, the margin of error = 0.29 -0.24 = 0.05

So to get the upper bound of the confidence interval, we simply add this margin of error to the mean

That would be 0.05 + 0.29 = 0.34

5x+4(-x-2)=-5x+2(x-1)+12

Answers

Answer:

x=9/2

Step-by-step explanation:

Let's solve your equation step-by-step.

5x+4(−x−2)=−5x+2(x−1)+12

Step 1: Simplify both sides of the equation.

5x+4(−x−2)=−5x+2(x−1)+12

5x+(4)(−x)+(4)(−2)=−5x+(2)(x)+(2)(−1)+12 (Distribute)

5x+−4x+−8=−5x+2x+−2+12

(5x+−4x)+(−8)=(−5x+2x)+(−2+12) (Combine Like Terms)

x+−8=−3x+10

x−8=−3x+10

Step 2: Add 3x to both sides.

x−8+3x=−3x+10+3x

4x−8=10

Step 3: Add 8 to both sides.

4x−8+8=10+8

4x=18

Step 4: Divide both sides by 4.

4x/4=18/4

x=9/2

Gail paid a total of $12,000 for stock that was $6 per share. If she sold all her shares for $18,000, how much profit on each share did she make?
A
$9
B
$3
С.
S2000
D
$6.000

Answers

Answer:

$3

Step-by-step explanation:

Given

Total Cost Price: $12,000

Unit Cost Price= $6

Total Selling Price = $18,000

Required

Determine the profit on each share

First, we need to determine the units of share bought;

Units = Total cost price / Unit Cost Price

[tex]Units = \frac{\$12000}{\$6}[/tex]

[tex]Units = 2000[/tex]

Next is to determine the selling price of each share; This is calculated as follows;

Unit Selling Price = Total Selling Price / Units Sold

[tex]Unit\ Selling\ Price = \frac{\$18000}{\$2000}[/tex]

[tex]Unit\ Selling\ Price = \$9[/tex]

The profit is the difference between the unit cost price and unit selling price

[tex]Profit = Unit\ Selling\ Price - Unit\ Cost\ Price[/tex]

[tex]Profit = \$9 - \$6[/tex]

[tex]Profit = \$3[/tex]

Transform the given parametric equations into rectangular form. Then identify the conic.

Answers

Answer:

Solution : Option B

Step-by-Step Explanation:

We have the following system of equations at hand here.

{ x = 5 cot(t), y = - 3csc(t) + 4 }

Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,

x = 5 cot(t) ⇒ x - 5 = cot(t),

y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)

Now let's square these two equations. We know that csc²θ - cot²θ = 1, so let's subtract the equations  as well. --- Step #2

 

( y - 4 / - 3 )² = (csc(t))²

- ( x - 5 / 1 )² = (cot(t))²  

___________________

(y - 4)² / 9 - x² / 25 = 1

And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.

How do you compress this?

Answers

[tex]\displaystyle\\(a+b)^n\\T_{r+1}=\binom{n}{r}a^{n-r}b^r\\\\\\(x+2)^7\\a=2x\\b=3\\r+1=4\Rightarrow r=3\\n=5\\T_4=\binom{5}{3}\cdot (2x)^{5-3}\cdot3^3\\T_4=\dfrac{5!}{3!2!}\cdot 4x^2\cdot27\\T_4=\dfrac{4\cdot5}{2}\cdot 4x^2\cdot27\\\\T_4=1080x^2[/tex]

Use Lagrange multipliers to minimize the function subject to the following two constraints. Assume that x, y, and z are nonnegative. Question 18 options: a) 192 b) 384 c) 576 d) 128 e) 64

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

Option C is the correct option

Step-by-step explanation:

From the question we are told that

   The equation is  [tex]f (x, y , z ) = x^2 +y^2 + z^2[/tex]

    The constraint is  [tex]P(x, y , z) = x + y + z - 24 = 0[/tex]

Now using Lagrange multipliers  we have that  

   [tex]\lambda = \frac{ \delta f }{ \delta x } = 2 x[/tex]  

   [tex]\lambda = \frac{ \delta f }{ \delta y } = y[/tex]  

   [tex]\lambda = \frac{ \delta f }{ \delta z } = 2 z[/tex]

=>       [tex]x = \frac{ \lambda }{2}[/tex]

          [tex]y = \frac{ \lambda }{2}[/tex]

         [tex]z = \frac{ \lambda }{2}[/tex]

From the constraint  we have

      [tex]\frac{\lambda }{2} + \frac{\lambda }{2} + \frac{\lambda }{2} = 24[/tex]

=>   [tex]\frac{3 \lambda }{2} = 24[/tex]

=>   [tex]\lambda = 16[/tex]

substituting for x, y, z

=>   x =  8

=>  y =  8

=>   z =  8        

Hence

    [tex]f (8, 8 , 8 ) = 8^2 +8^2 + 8^2[/tex]

    [tex]f (8, 8 , 8 ) = 192[/tex]

 

The graph of F(x), shown below in pink, has the same shape as the graph of
G(x) = x3, shown in gray. Which of the following is the equation for F(x)?

Answers

Greetings from Brasil...

In this problem we have 2 translations: 4 units horizontal to the left and 3 units vertical to the bottom.

The translations are established as follows:

→ Horizontal

F(X + k) ⇒ k units to the left

F(X - k) ⇒ k units to the right

→ Vertical

F(X) + k ⇒ k units up

F(X) - k ⇒ k units down

In our problem, the function shifted 4 units horizontal to the left and 3 units vertical to the bottom.

F(X) = X³

4 units horizontal to the left: F(X + 4)

3 units vertical to the bottom: F(X + 4) - 3

So,

F(X) = X³

F(X + 4) - 3 = (X + 4)³ - 3

The transformed function is f ( x ) = ( x + 4 )³ - 3 and the graph is plotted

What happens when a function is transformed?

Every modification may be a part of a function's transformation.

Typically, they can be stretched (by multiplying outputs or inputs) or moved horizontally (by converting inputs) or vertically (by altering output).

If the horizontal axis is the input axis and the vertical is for outputs, if the initial function is y = f(x), then:

Vertical shift, often known as phase shift:

Y=f(x+c) with a left shift of c units (same output, but c units earlier)

Y=f(x-c) with a right shift of c units (same output, but c units late)

Vertical movement:

Y = f(x) + d units higher, up

Y = f(x) - d units lower, d

Stretching:

Stretching vertically by a factor of k: y = k f (x)

Stretching horizontally by a factor of k: y = f(x/k)

Given data ,

Let the function be represented as g ( x )

Now , the value of g ( x ) = x³

And , the transformed function has coordinates as A ( -4 , -3 )

So , when function is shifted 4 units to the left , we get

g' ( x ) = ( x + 4 )³

And , when the function is shifted vertically by 3 units down , we get

f ( x ) = ( x + 4 )³ - 3

Hence , the transformed function is f ( x ) = ( x + 4 )³ - 3

To learn more about transformation of functions click :

https://brainly.com/question/26896273

#SPJ7

What is the most precise name for quadrilateral ABCD with vertices A(–5,2), B(–3, 5),C(4, 5),and D(2, 2)?

Answers

Answer: ABCD is a parallelogram.

Step-by-step explanation:

First we plot these point on a graph as given in attachment.

From the attachment we can observe that AD || BC || x-axis .

also, AB ||CD, that will make ABCD a parallelogram ,  but to confirm we check the property of parallelogram "diagonals bisect each other" , i.e . "Mid point of both diagonals are equal".

Mid point of AC= [tex](\dfrac{-5+4}{2},\dfrac{2+5}{2})=(\dfrac{-1}{2},\dfrac{7}{2})[/tex]

Mid point of BD= [tex](\dfrac{-3+2}{2},\dfrac{5+2}{2})=(\dfrac{-1}{2},\dfrac{7}{2})[/tex]

Thus, Mid point of AC=Mid point of BD

i.e. diagonals bisect each other.

That means ABCD is a parallelogram.

Answer: ABCD is a parallelogram.

Step-by-step explanation:

First, we plot these points on a graph as given in the attachment. From the attachment, we can observe that AD || BC || x-axis. Also, AB ||CD, which will make ABCD a parallelogram, but to confirm, we check the parallelogram property "diagonals bisect each other," i.e., "Midpoint of both diagonals is equal."

The midpoint of AC=. The midpoint of BD=. Thus, the Midpoint of AC=Mid point of BD diagonals bisects each other. That means ABCD is a parallelogram.

The following shape is based only on squares, semicircles, and quarter circles. Find the area of the shaded part.

Answers

Answer:

this? hope it helps ........

Answer:

The answer is area=32pi-64 and the perimeter is 8pi

Step-by-step explanation:

Find usubscript10 in the sequence -23, -18, -13, -8, -3, ...

Answers

Step-by-step explanation:

utilise the formula a+(n-1)d

a is the first number while d is common difference

Answer:

22

Step-by-step explanation:

Using the formular, Un = a + (n - 1)d

Where n = 10; a = -23; d = 5

U10 = -23 + (9)* 5

U10 = -23 + 45 = 22

The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:

Answers

Complete Question

On the uploaded image is a similar question that will explain the given question

Answer:

The value of k is  [tex]k = 214285.7[/tex]

The percentage  of the oil that will be cleaned is [tex]x = 80.77\%[/tex]

Step-by-step explanation:

From the question we are told that

   The  cost of cleaning up the spillage is  [tex]C = \frac{ k x }{100 - x }[/tex]  [tex]x \le x \le 100[/tex]

     The  cost of cleaning x =  70% of the oil is  [tex]C = \$500,000[/tex]

   

Now at  [tex]C = \$500,000[/tex] we have  

       [tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]

       [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]k = 214285.7[/tex]

Now  When  [tex]C = \$900,000[/tex]

       [tex]x = 80.77\%[/tex]

       

 

The heat evolved in calories per gram of a cement mixture is approximately normally distributed. The mean is thought to be 100, and the standard deviation is 2. You wish to test H0: μ = 100 versus H1: μ ≠ 100 with a sample of n = 9 specimens.
A. If the acceptance region is defined as 98.5 le x- 101.5, find the type I error probability alpha.
B. Find beta for the case where the true mean heat evolved is 103.
C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

Answers

Answer:

A.the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. β  = 0.0122

C. β  = 0.0000

Step-by-step explanation:

Given that:

Mean = 100

standard deviation = 2

sample size = 9

The null and the alternative hypothesis can be computed as follows:

[tex]\mathtt{H_o: \mu = 100}[/tex]

[tex]\mathtt{H_1: \mu \neq 100}[/tex]

A. If the acceptance region is defined as [tex]98.5 < \overline x > 101.5[/tex] , find the type I error probability [tex]\alpha[/tex] .

Assuming the critical region lies within [tex]\overline x < 98.5[/tex] or [tex]\overline x > 101.5[/tex], for a type 1 error to take place, then the sample average x will be within the critical region when the true mean heat evolved is [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P( type \ 1 \ error ) = P( reject \ H_o)}[/tex]

[tex]\mathtt{\alpha = P( \overline x < 98.5 ) + P( \overline x > 101.5 )}[/tex]

when  [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P \begin {pmatrix} \dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{\overline 98.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} + \begin {pmatrix}P(\dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} > \dfrac{101.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} }[/tex]

[tex]\mathtt{\alpha = P ( Z < \dfrac{-1.5}{\dfrac{2}{3}} ) + P(Z > \dfrac{1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) + P(Z > 2.25) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) +( 1- P(Z < 2.25) })[/tex]

From the standard normal distribution tables

[tex]\mathtt{\alpha = 0.0122+( 1- 0.9878) })[/tex]

[tex]\mathtt{\alpha = 0.0122+( 0.0122) })[/tex]

[tex]\mathbf{\alpha = 0.0244 }[/tex]

Thus, the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. Find beta for the case where the true mean heat evolved is 103.

The probability of type II error is represented by β. Type II error implies that we fail to reject null hypothesis [tex]\mathtt{H_o}[/tex]

Thus;

β = P( type II error) - P( fail to reject [tex]\mathtt{H_o}[/tex] )

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 103[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -103}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-103}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-4.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-6.75 \leq Z \leq -2.25) }[/tex]

[tex]\mathtt{\beta = P(z< -2.25) - P(z < -6.75 )}[/tex]

From standard normal distribution table

β  = 0.0122 - 0.0000

β  = 0.0122

C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 105[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -105}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-105}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-6.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-3.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-9.75 \leq Z \leq -5.25) }[/tex]

[tex]\mathtt{\beta = P(z< -5.25) - P(z < -9.75 )}[/tex]

From standard normal distribution table

β  = 0.0000 - 0.0000

β  = 0.0000

The reason why the value of beta is smaller here is that since the difference between the value for the true mean and the hypothesized value increases, the probability of type II error decreases.

A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of 10sin( t ) N(newtons) and moves in a medium that imparts a viscous force of 2 N
when the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 3 cm/s, formulate the initial value problem describing the motion of the mass.
A)Find the solution of the initial value problem in the above problem.
B)Plot the graph of the steady state solution
C)If the given external force is replaced by a force of 2 cos(ωt) of frequency ω , find the value of ω for which the amplitude of the forced response is maximum.

Answers

Answer:

A) C1 = 0.00187 m = 0.187 cm,  C2 = 0.0062 m = 0.62 cm

B)  A sample of how the graph looks like is attached below ( periodic sine wave )

C) w = [tex]\sqrt[4]{3}[/tex] is when the amplitude of the forced response is maximum

Step-by-step explanation:

Given data :

mass = 5kg

length of spring = 10 cm = 0.1 m

f(t) = 10sin(t) N

viscous force = 2 N

speed of mass = 4 cm/s = 0.04 m/s

initial velocity = 3 cm/s = 0.03 m/s

Formulating initial value problem

y = viscous force / speed = 2 N / 0.04 m/s = 50 N sec/m

spring constant = mg/ Length of spring = (5 * 9.8) / 0.1 = 490 N/m

f(t) = 10sin(t/2) N

using the initial conditions of u(0) = 0 m and u"(0) = 0.03 m/s to express the equation of motion

the equation of motion = 5u" + 50u' + 490u = 10sin(t/2)

A) finding the solution of the initial value

attached below is the solution and

B) attached is a periodic sine wave replica of how the grapgh of the steady state solution looks like

C attached below

Will mark Brainliest! A stick has a length of $5$ units. The stick is then broken at two points, chosen at random. What is the probability that all three resulting pieces are longer than $1$ unit?

Answers

Answer:

0.16

Step-by-step explanation:

Length = 5 unitsNumber of broken sticks= 3Equal lengths =  5 units/3

See the picture attached for reference.

As you see the best points are the green areas which covers 2 out of 5 zones.

Since it is same for both broken points, the probability of  this is:

2/5*2/5 = 4/ 25 = 0.16

Answer is 0.16

find the perimeter of a square of sides 10.5cm​

Answers

Answer:

Perimeter = 42 cm

Step-by-step explanation:

A square has all equal sides so you would just add 10.5 + 10.5 + 10.5 + 10.5 to get 42 cm.

Answer:

42 cm

Step-by-step explanation:

Side of square = 10.5 cm (given)

Perimeter of square = Side X 4

                                  = 10.5 X 4

                                  = 42 cm

HOPE THIS HELPED YOU !

:)

What is the slope of the line shown below?



A.


B.


C.
-

D.
3

Answers

Answer:

D

Step-by-step explanation:

Option D is correct. Slope of the line shown in the graph is 3.

The slope of the line is the ratio of the rise to the run, or rise divided by the run.

It describes the steepness of line in the coordinate plane.

The slope intercept form of a line is y=mx+b, where m is slope and b is the y intercept.

The slope of line passing through two points (x₁, y₁) and (x₂, y₂) is

m=(y₂-y₁)/(x₂-x₁)

The line is passing through point (2, 2) and (4, 8).

Lets find the corresponding point values y₂= 8, y₁ = 2, x₂= 4 and x₁ =2.

Plug in the values in slope formula:

Slope = (8-2)/(4-2)  

=6/2

=3

Hence, slope of the line shown in the graph is 3. Option D is correct.

To learn more on slope of line click:

https://brainly.com/question/16180119

#SPJ4

Which of the following represents "next integer after the integer n"? n + 1 n 2n

Answers

Answer:

n + 1

Step-by-step explanation:

Starting with the integer 'n,' we represent the "next integer" by n + 1.

one third multiplied by the sum of a and b

Answers

Answer:

1/3(a+b)

hope it helps :>

a+b/3
This is the answer of ur question

Find a cubic polynomial with integer coefficients that has $\sqrt[3]{2} + \sqrt[3]{4}$ as a root.

Answers

Find the powers [tex]a=\sqrt{2}+\sqrt{3}[/tex]

$a^{2}=5+2 \sqrt{6}$

$a^{3}=11 \sqrt{2}+9 \sqrt{3}$

The cubic term gives us a clue, we can use a linear combination to eliminate the root 3 term $a^{3}-9 a=2 \sqrt{2}$ Square $\left(a^{3}-9 a\right)^{2}=8$ which gives one solution. Expand we have $a^{6}-18 a^{4}-81 a^{2}=8$ Hence the polynomial $x^{6}-18 x^{4}-81 x^{2}-8$ will have a as a solution.

Note this is not the simplest solution as $x^{6}-18 x^{4}-81 x^{2}-8=\left(x^{2}-8\right)\left(x^{4}-10 x^{2}+1\right)$

so fits with the other answers.

Answer:

[tex]y^3 -6y-6[/tex]

10) How many possible outfit combinations come from six shirts, three
slacks, and five ties? *
A 15
B 18
C 30
D 90

Answers

Answer:

The answer is D)90

Hope I helped

The mean salary of federal government employees on the General Schedule is $59,593. The average salary of 30 state employees who do similar work is $58,800 with \sigmaσσ= $1500. At the 0.01 level of significance, can it be concluded that state employees earn on average less than federal employees? What is the critical value? Round your answer to the nearest hundredths.

Answers

Answer:

Yes it can be concluded that state employees earn on average less than federal employees

  The critical value is  [tex]Z_{\alpha } = - 2.33[/tex]

Step-by-step explanation:

From the question we are told that

   The  population mean is  [tex]\mu = \$ 59593[/tex]

   The sample size is  n =  30

    The  sample mean is [tex]\= x = \$ 58800[/tex]

     The  standard deviation is  [tex]\sigma = \$ 1500[/tex]

     The significance level is  [tex]\alpha = 0.01[/tex]

   

The null hypothesis is  [tex]H_o : \mu = \$ 59593[/tex]

 The  alternative hypothesis is  [tex]H_a : \mu < \$ 59593[/tex]

The critical value of [tex]\alpha[/tex] from the normal distribution table is  [tex]Z_{\alpha } = - 2.33[/tex]

 Generally the test statistics is  mathematically evaluated as

            [tex]t = \frac{\= x - \mu}{ \frac{ \sigma }{ \sqrt{n} } }[/tex]

=>         [tex]t = \frac{ 58800 - 59593 }{ \frac{ 1500 }{ \sqrt{30} } }[/tex]  

=>          [tex]t = -2.896[/tex]

The  p-value is obtained from the z-table

   [tex]p-value = P(t < -2.896) = 0.0018898[/tex]

Since [tex]p-value < \alpha[/tex] , we reject the null hypothesis, hence it can be concluded that state employees earn on average less than federal employees  

   

Other Questions
How does technology greatly impact the way we learn? Alpha Industries is considering a project with an initial cost of $9.1 million. The project will produce cash inflows of $1.84 million per year for 7 years. The project has the same risk as the firm. The firm has a pretax cost of debt of 5.94 percent and a cost of equity of 11.49 percent. The debtequity ratio is .71 and the tax rate is 40 percent. What is the net present value of the project? What is the complete ionic equation for this reaction?2KOH(aq) + H2SO4(aq) 2H20(1) + K2SO4(aq)O A. 2K+ + OH + H2SO4 OH + 2H+ + K2SO4B. OH + 2H+ + 2H20()C. 2KOH + H2SO4 2H20 + K2SO4D. 2K+ + OH + 2H+ + SO42- 2H20() + 2K+ + SO42-SUBMIT A professor decides to perform an experiment with two of his classes. He believes that students in a hot classroom do not learn well. In one class, he leaves the room temperature at 70 degrees (normal room temperature). In another class, he turns the temperature up to 85 degrees. At the end of the semester he gives the same final exam to students from each classroom to see if one group has learned significantly more than the other. (Overall, a highly unethical study.) In this experiment, who would be the experimental group? A) The 70-degree class. B) Because of ethics, there was no experimental group. C) The 85-degree class. D) Both groups are experimental groups. Need help please will give you 5 stars and good rating Projectized organizations are especially effective at helping team members to maintain their discipline-specific competencies. Group of answer choices acid-catalyzed hydration of 1-methylcyclohexene gives two alcohols. The major product does not undergo oxidation, while the minor product will undergo oxidation. Explain A vehicle has a will 15 inches in diameter. If the vehicle travels 2 miles, how many revolutions does the wheel make? This is Applications of unit conversions answer it answer it it Two angles are adjacent and form an angle of 160. Their difference is 34. Find the angles kind of urgent!! Please describe a real-world scenario in which it would be important to know how to apply scale factors. What can we gain from knowing history? A Japan-based company, Sumo Gyms, Inc., issues a 35-year, semi-annual coupon bond, with a 300 million par value. The coupon rate is given as 5.90%, and the yield to maturity is 6.70. a. What is the value of the semi-annual coupon on the bond? On Tuesday, Dec. 3, I began drinking a glass of cola every day except Saturday and Sunday. I drank my 22nd glass of cold on A) Dec. 24 B) Dec. 25 C) Dec. 31 D) Jan. 1 Assume that females have pulse rates that are normally distributed with a mean of =73.0 beats per minute and a standard deviation of =12.5 beats per minute. Complete parts (a) through (c) below.a. If 1 adult female is randomly selected, find the probability that her pulse rate is less than 76 beats per minute.b. If 25 adult females are randomly selected, find the probability that they have pulse rates with a mean less than 76 beats per minute.c. Why can the normal distribution be used in part (b), even though the sample size does not exceed 30?A. Since the mean pulse rate exceeds 30, the distribution of sample means is a normal distribution for any sample size.B. Since the distribution is of individuals, not sample means, the distribution is a normal distribution for any sample size.C. Since the distribution is of sample means, not individuals, the distribution is a normal distribution for any sample size.D. Since the original population has a normal distribution, the distribution of sample means is a normal distribution for any sample size. x/t+m=b need to make x the subject Evaluate 3h(2) + 2k(3) = Make up an expression of your own that satisfies the following:Must have at least: 4 terms, 1 constant, 2 variables with coefficients and appropriateoperation signs. When csc(Theta)sin(Theta) is simplified, what is the result? StartFraction 1 Over cosecant squared EndFraction StartFraction 1 Over sine squared EndFraction 0 1 Two separate disks are connected by a belt traveling at 5m/s. Disk 1 has a mass of 10kg and radius of 35cm. Disk 2 has a mass of 3kg and radius of 7cm. a. What is the angular velocity of disk 1? b. What is the angular velocity of disk 2? c. What is the moment of inertia for the two disk system?