A student is performing a Benedict’s test on an unknown substance. He adds the reagent (the chemical required to make a color change), and nothing happens. What can he conclude? A- The substance is glucose-based. B- The substance is not glucose-based. C- The test was inconclusive because he needed to also test with iodine or vinegar. D- The test was inconclusive because he forgot to add heat.

Answers

Answer 1

Answer:

The correct answer is : option D. The test was inconclusive because he forgot to add heat.

Explanation:

Benedict's test is a test that is used to confirm the presence of the simple carbohydrates (mono saccharides and some disaccharides). It is a reagent made by mixture of solution of CuSO4 with sodium citrate and Na2CO3.

Benedict's reagent is added to the substance to test and then heated if it turns yellow to orange or red the presence of simple sugar is confirmed.

Thus, the correct answer is : option D. The test was inconclusive because he forgot to add heat.

Answer 2

Answer:

The test was inconclusive because the student forgot to add heat.

Explanation:

If the test revealed it was not glucose, then the student could run these tests. The student, however, does not need these substances to run the glucose test properly.


Related Questions

What can you learn about the pH of a substance with the conductivity test? hint: gives you no info on concentration.

Answers

Answer:

See explanation

Explanation:

So, I'm gonna take a shot at this one and say this:

With a strongly acidic/basic solution, you'll get a high conductivity when preforming a conductivity test.

The more acidic or basic a substance is, the higher the electrical conductivity.

Based on how high or low the conductivity is, it will give you an idea of the substance's pH.

Hope that made since or gave you an idea of what you're looking for. Good luck :)

While balancing a chemical equation, we change the _____ to balance the number of atoms on each side of the equation.

Answers

Answer:

While balancing a chemical equation, we change the coefficient  to balance the number of atoms on each side of the equation

Explanation:

While balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

What is chemical equation?

To summarize in chemistry terms, a chemical equation depicts the initial chemicals, or reactants, on the left-hand side and the final compounds, or products, just on right-hand side, divided by an arrow. In the chemical equation, the number of atoms in each element as well as the total charge are the same on opposite of the equation's sides.

Chemical equations are used in chemistry to depict chemical processes by writing the reactants and products in terms of their corresponding chemical formulas. While balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

Therefore, while balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

To know more about chemical equation, here:

https://brainly.com/question/29028257

#SPJ6

What is the pH of a solution made by mixing 15.00 mL of 0.10 M acetic acid with 15.00 mL of 0.10 M KOH? Assume that the volumes of the solutions are additive. K a = 1.8 ×× 10-5 for CH3CO2H.

Answers

Answer:

pH = 8.72

Explanation:

This is like a titration of a weak acid and a strong base, in this case, we are at the equivalence point plus we have the same mmoles of acid and base. We have completely neutralized the acid.

CH₃COOH      +     OH⁻        ⇄    CH₃COO⁻   +   H₂O

0.1M . 15 mL      0.1M . 15 mL

We only have (0.1M . 15 mL) mmoles of acetate ion. → 1.5 mmoles

As this compound acts like a base, we propose this equilibrium:

CH₃COO⁻   +  H₂O  ⇄  CH₃COOH      +     OH⁻   Kb

We need to work with Kb and we know, that Kw = Ka. Kb so, Kb = Kw/Ka

Kb = 1×10⁻¹⁴ /1×10 ⁻⁵ = 5.55×10⁻¹⁰

Concentration of CH₃COO⁻ → 1.5 mmol / 30mL (volumes of the solutions are additive) = 0.05M

So: [CH₃COOH] . [OH⁻] / [CH₃COO⁻] = Kb

x²/ 0.05-x = 5.55×10⁻¹⁰

We can avoid the quadractic equation because Kb is so small

[OH⁻] = √(5.55×10⁻¹⁰ . 0.05) = 5.27×10⁻⁶

pOH = - log [OH⁻]  → 5.28

pH = 14 - pOH = 8.72

The pH of a solution made by mixing 15.00 mL of 0.10 M acetic acid should be 8.72.

Calculation of the pH of the solution:

Since the following equation should be used.

CH₃COOH      +     OH⁻        ⇄    CH₃COO⁻   +   H₂O

0.1M . 15 mL      0.1M . 15 mL

Now

(0.1M . 15 mL) mmoles of acetate ion. → 1.5 mmoles

So,

CH₃COO⁻   +  H₂O  ⇄  CH₃COOH      +     OH⁻   Kb

Now

Kw = Ka. Kb

Kb = Kw/Ka

And,

Kb = 1×10⁻¹⁴ /1×10 ⁻⁵

= 5.55×10⁻¹⁰

Now

[CH₃COOH] . [OH⁻] / [CH₃COO⁻] = Kb

x²/ 0.05-x = 5.55×10⁻¹⁰

Now

[OH⁻] = √(5.55×10⁻¹⁰ . 0.05) = 5.27×10⁻⁶

pOH = - log [OH⁻]  → 5.28

pH = 14 - pOH

= 8.72

Hence, The pH of a solution made by mixing 15.00 mL of 0.10 M acetic acid should be 8.72.

Learn more about an acid here: https://brainly.com/question/4519963

Using the standard reduction potentials Ni2+(aq) + 2 e‑Ni(s) ‑0.25 volt Fe3+(aq) + e‑Fe2+(aq) +0.77 volt Calculate the value of E°cell for the cell with the following reaction. Ni2+(aq) + 2 Fe2+(aq) →Ni(s) + 2 Fe3+(aq)

Answers

Answer:

The correct answer is - 1.02 V

Explanation:

From the reduction-oxidation reaction:

Ni²⁺(aq) + 2 Fe²⁺(aq) → Ni(s) + 2 Fe³⁺(aq)

Ni²⁺ is reduced to Ni(s) while Fe²⁺ is oxidized to Fe³⁺. Thus, the half reactions are:

Reduction (cathode) : Ni²⁺(aq) + 2 e‑ → Ni(s)                    Eº= ‑0.25 V

Oxidation (anode) :  2 x (Fe²⁺ → Fe³⁺ + e-)(aq)                Eº= -0.77 V

                                -------------------------------------

                     Ni²⁺(aq) + 2 Fe²⁺(aq) → Ni(s) + 2 Fe³⁺(aq)

In order to calculate the Eºcell, we have to add the reduction potential of the reaction in cathode (reduction) to the oxidation potential of the anode (oxidation):

Eºcell= Eºr + Eºo= (-0.25 V) + (-0.77 V) = - 1.02 V

Aqueous potassium nitrate (KNO3) and solid silver bromide are formed by the reaction of aqueous potassium bromide and aqueous silver nitrate (AgNO3). Write a balanced chemical equation for this reaction

Answers

Answer:

For the mentioned reaction, the balanced chemical equation is:  

KBr (aq) + AgNO3 (s) ⇒ KNO3 (aq) + AgBr (s)

The number written in front of the ion, atoms, and molecules in a chemical reaction so that each of the elements on both the sides of reactants and products of the equation gets balanced is known as the stoichiometric coefficient.  

From the mentioned balanced equation, the stoichiometric coefficient before KBr is 1, AgNO3 is 1, KNO3 is 1, as well as before AgBr is also 1. Thus, it is clear that 1 mole of potassium bromide reacts with 1 mole of silver nitrate to produce 1 mole of potassium nitrate and 1 mole of silver bromide.  

To calculate changes in concentration for a system not at equilibrium, the first step is to determine the direction the reaction will proceed. To do so, we calculate Q and compare it to the equilibrium concentration, K. We can then determine that a reaction will shift to the right if:__________

Answers

Answer:

We can then determine that a reaction will shift to the right if Q<K

Explanation:

Comparing Q with K allows to find out the status and evolution of the system:

If the reaction quotient is equal to the equilibrium constant, Qc = Kc, the system has reached chemical equilibrium. If the reaction quotient is greater than the equilibrium constant, Qc> Kc, the system is not in equilibrium and will evolve spontaneously, decreasing the value of Qc until it equals the equilibrium constant. In this way, the concentrations of the products will decrease and the concentrations of the reagents will increase. In other words, the reverse reaction is favored to achieve equilibrium. Then the system will evolve to the left (ie products will be consumed and more reagents will be formed).If the reaction quotient is less than the equilibrium constant, Qc <Kc, the system is not in equilibrium and will evolve spontaneously increasing the value of Qc until it equals the equilibrium constant. This implies that the concentrations of the products will increase and those of the reagents will decrease. In other words, to achieve balance, direct reaction is favored. Then the reaction will shift to the right, that is, reagents will be consumed and more products will be formed.

In this case, we can then determine that a reaction will shift to the right if Q<K

A piece of solid Fe metal is put into an aqueous solution of Cu(NO3)2. Write the net ionic equation for any single-replacement redox reaction that may be predicted. Assume that the oxidation state of in the resulted solution is 2 . (Use the lowest possible coefficients for the reaction. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank. If no reaction occurs, leave all boxes blank and click on Submit.)

Answers

Answer:

Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)

Explanation:

The ionic equation shows the actual reaction that took place. It excludes the spectator ions. Spectator ions are ions that do not really participate in the reaction even though they are present in the system.

For the reaction between iron and copper II nitrate, the molecular reaction equation is;

Fe(s) + Cu(NO3)2(aq)----> Fe(NO3)2(aq) +Cu(s)

Ionically;

Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)

Which of the following pieces of information is given in a half-reaction?
O A. The number of electrons transferred in the reaction
B. The compounds that the atoms in the reaction came from
C. The state symbol of each compound in the reaction
D. The spectator ions that are involved in the reaction

Answers

Answer:

The number of electrons transferred in the reaction

Explanation:

Answer:

A

Explanation:

Arrange the compounds in order of decreasing magnitude of lattice energy:


a. LiBr

b. KI

c. CaO.


Rank from largest to smallest.

Answers

Answer:

The correct answer is CaO > LiBr > KI.

Explanation:

Lattice energy is directly proportional to the charge and is inversely proportional to the size. The compound LiBr comprises Li+ and Br- ions, KI comprises K+ and I- ions, and CaO comprise Ca²⁺ and O²⁻ ions.  

With the increase in the charge, there will be an increase in lattice energy. In the given case, the lattice energy of CaO will be the highest due to the presence of +2 and -2 ions. K⁺ ions are larger than Li⁺ ion, and I⁻ ions are larger than Br⁻ ion.  

The distance between Li⁺ and Br⁻ ions in LiBr is less in comparison to the distance between K⁺ and I⁻ ions in KI. As a consequence, the lattice energy of LiBr is greater than KI. Therefore, CaO exhibits the largest lattice energy, while KI the smallest.  

Arranging the chemical compounds in order of decreasing magnitude of lattice energy, we have:

c. CaO.

a. LiBr

b. KI

Lattice energy can be defined as a measure of the energy required to dissociate one (1) mole of an ionic compound into its constituent anions and cations, in the gaseous state.

Hence, it is typically used to measure the bond strength of ionic compounds.

Generally, lattice energy is inversely proportional to the size of the ions and directly proportional to their electric charges.

Lithium bromide (LiBr) comprises the following ions:

[tex]Li^+[/tex] and [tex]Br^-[/tex]

Potassium iodide (KI) comprises the following ions:

[tex]K^+[/tex] and [tex]I^-[/tex]

Calcium oxide (CaO) comprises the following ions:

[tex]Ca^{2+}[/tex] and [tex]O^{2-}[/tex]

From the above, we can deduce that there is an increase in the charge possessed by the ionic chemical compounds and as such this would result in an increase in the lattice energy.

In order of decreasing magnitude of lattice energy, the chemical compounds are arranged as:

I. CaO.

II. KI.

III. LiBr.

Read more: https://brainly.com/question/24605723

Given the following equivalents, make the following conversion: 1.00 knop = ? knips

4 clips = 5 blips
1 knop = 6 bippy
3 blip = 18 pringle
1 clip = 10 knip
10 bippy = 8 pringle

Answers

Answer:

[tex]6.4knips[/tex]

Explanation:

Hello,

In this case, given the stated equivalences, we can use the following proportional factor in order to compute the required knips:

[tex]knips=1.00knop*\frac{6bippy}{1knop} *\frac{8pringle}{10bippy}* \frac{3blip}{18pringle} *\frac{4clips}{5blips} *\frac{10knip}{1clip} \\\\=6.4knips[/tex]

Regards.

1 knop=6.4 knips

First convert knop to bippy:-

[tex]1\ knop\times\frac{6\ bippy}{1\ knop} =6\ bippy[/tex]

Now, Convert 6 bippy to pringle:-

[tex]6\ bippy\times\frac{8\ pringle}{10\ bippy} =4.8\ pringle[/tex]

Now, convert 4.8 pringle to blip:-

[tex]4.8\ pringle\times\frac{3\ blip}{18\ priangle} =0.8\ blip[/tex]

Now, convert 0.8 blip to clips as follows:-

[tex]0.8\ blip\times\frac{4\ clips}{5\ blip} =0.64\ clip[/tex]

Now, convert 0.64 clip to knips:-

[tex]0.64\ clip\times\frac{10\ knip}{1\ clip} =6.4\ knip[/tex]

Hence, the following conversion is as follows:-

1.00 knop=6.4 knips

To know more about:-

https://brainly.com/question/17229463

Calculate the energy required to heat 1.30kg of water from 22.4°C to 34.2°C . Assume the specific heat capacity of water under these conditions is 4.18·J·g−1K−1 . Round your answer to 3 significant digits.

Answers

Answer:

The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J

Explanation:

Calorimetry is the measurement of the amount of heat that a body gives up or absorbs in the course of a physical or chemical process.

The sensible heat of a body is the amount of heat received or transferred by a body when undergoing a temperature variation (Δt) without there being a change in physical state. That is, when a system absorbs (or gives up) a certain amount of heat, it may happen that it experiences a change in its temperature, involving sensible heat. Then, the equation for calculating heat exchanges is:

Q = c * m * ΔT

Where Q is the heat or quantity of energy exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature (ΔT=Tfinal - Tinitial).

In this case:

[tex]c=4.18 \frac{J}{g*K}[/tex]m= 1.30 kg= 1,300 g (1 kg=1,000 g)ΔT= 34.2 °C - 22.4 °C= 11.8 °C= 11.8 °K  Being a temperature difference, it is independent if they are degrees Celsius or degrees Kelvin. That is, the temperature difference is the same in degrees Celsius or degrees Kelvin.

Replacing:

[tex]Q=4.18 \frac{J}{g*K}*1,300 g*11.8 K[/tex]

Q= 64,121.2 J

The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J

One way the U.S. Environmental Protection Agency (EPA) tests for chloride contaminants in water is by titrating a sample of silver nitrate solution. Any chloride anions in solution will combine with the silver cations to produce bright white silver chloride precipitate. Suppose an EPA chemist tests a sample of groundwater known to be contaminated with nickel(II) chloride, which would react with silver nitrate solution like this:

Answers

Answer:

6.5 mg/L.

Explanation:

Step one: write out and Balance the chemical reaction in the Question above:

NiCl2 + 2AgNO3 =====> 2AgCl + Ni(NO3)2.

Step two: Calculate or determine the number of moles of AgCl.

So, we are given that the mass of AgCl = 3.6 mg = 3.6 × 10^-3 g. Therefore, the number of moles of AgCl can be calculated as below:

Number of moles AgCl = mass/molar mass = 3.6 × 10^-3 g / 143.32. = 2.5118 × 10^-5 moles.

Step three: Calculate or determine the number of moles of NiCl2.

Thus, the number of moles of NiCl2 = 2.5118 × 10^-5/ 2 = 1.2559 × 10^-5 moles.

Step four: detemine the mass of NiCl2.

Therefore, the mass of NiCl2 = number of moles × molar mass = 1.2559 × 10^-5 moles × 129.6 = 1.6 × 10^-3 g.

Step five: finally, determine the concentration of NiCl2.

1000/ 250 × 1.6 × 10^-3 g. = 6.5 mg/L.

The number of moles of H2O which contains 4g of oxygen?

Answers

Answer:

16G = 1 mole ; then 4G = how many moles? 4/16 = 0.25 mole; That means 4 grams of oxygen is 0.25 moles.

Explanation:

A mole of water molecules contains 2 moles of hydrogen atoms and 1 mole of oxygen atoms.

Determine whether the following statement about equilibrium is true or false.
(a) When a reaction system reaches a state of equilibrium, the concentration of the products is equal to the concentration of the reactants.
(b) When a system is at equilibrium, Keq = 1.
(c) At equilibrium, the rates of the forward reaction and the reverse reaction are equal.
(d) Adding a catalyst to a reaction system will shift the position of equilibrium to the right so there are more products at equilibrium than if there was no catalyst present.

Answers

Answer:

(a) when a reaction system reaches a state of equilibrium, the concentration of the products is equal to the concentration of the reactants

Determining whether the statements about equilibrium is True or False

A) The concentration of the products is equal to the concentration of the reactants at equilibrium : TRUE

B) When a system is at equilibrium, Keq = 1 : TRUE

C) The rates of the forward reaction and the reverse reaction are equal at equilibrium :  TRUE

D) Adding a catalyst to a reaction system will shift the position of equilibrium to the right : FALSE

Reaction at equilibrium

In a chemical reaction at equilibrium the value of Keq will be equal to 1 because the concentration of the products is equal to the concentration of the reactants in the chemica reaction. Also at equilibrium the rate of forward reaction is same as the rate of reverse reaction.

A catalyst can only affect the rate of reaction and not the amount of product ( yield of reaction).

Hence we can conclude that the answers to your questions are as listed above.

Learn more about Equilibrium : https://brainly.com/question/517289

#SPJ2

From the following balanced equation, CH4(g)+2O2(g)⟶CO2(g)+2H2O(g) how many grams of H2O can be formed when 1.25g CH4 are combined with 1.25×10^23 molecules O2? Use 6.022×10^23 mol−1 for Avogadro's number.

Answers

Answer:

2.81 g of H2O.

Explanation:

We'll begin by calculating mass of O2 that contains 1.25×10²³ molecules O2.

This can be obtained as follow:

From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.022×10²³ molecules. This implies that 1 mole of O2 also contains 6.022×10²³ molecules.

1 mole of O2 = 16x2 = 32 g.

Thus 6.022×10²³ molecules is present in 32 g of O2,

Therefore, 1.25×10²³ molecules will be present in =

(1.25×10²³ × 32) / 6.022×10²³ = 6.64 g of O2.

Therefore, 1.25×10²³ molecules present in 6.64 g of O2.

Next, the balanced equation for the reaction. This is given below:

CH4(g) + 2O2(g) —> CO2(g) + 2H2O(g)

Next, we shall determine the masses of CH4 and O2 that reacted and the mass of H2O produced from the balanced equation.

This can be obtained as follow:

Molar mass of CH4 = 12 + (4x1) = 16 g/mol.

Mass of CH4 from the balanced equation = 1 x 16 = 16 g

Molar mass of O2 = 16x2 = 32 g/mol.

Mass of O2 from the balanced equation = 2 x 32 = 64 g

Molar mass of H2O = (2x1) + 16 = 18 g/mol.

Mass of H2O from the balanced equation = 2 x 18 = 36 g

From the balanced equation above,

16 g of CH4 reacted with 64 g of O2 to produce 36 g if H2O.

Next, we shall determine the limiting reactant.

This can be obtained as follow:

From the balanced equation above,

16 g of CH4 reacted with 64 g of O2.

Therefore, 1.25 g of CH4 will react with = (1.25 x 64)/16 = 5 g of O2.

From the above calculations, we can see that only 5 g out of 6.64 g of O2 is needed to react completely with 1.25 g of CH4.

Therefore, CH4 is the limiting reactant.

Finally, we shall determine the mass of H2O produced from the reaction.

In this case, the limiting reactant will be used because it will give the maximum yield of H2O.

The limiting reactant is CH4 and the mass of H2O produced from the reaction can be obtained as follow:

From the balanced equation above,

16 g of CH4 reacted to produce produce 36 g if H2O.

Therefore, 1.25 g of CH4 will react to produce = (1.25 x 36)/16 = 2.81 g of H2O.

Therefore, 2.81 g of H2O were obtained from the reaction.

The mass in grams of H₂O which can be formed when 1.25g CH₄ are combined with 1.25×10²³ molecules O₂ is 2.8 grams.

What is stoichiometry?

Stoichiometry of any reaction tells about the amount of species present before and after the completion of the reaction.

Given chemical reaction is:

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g)

Moles of CH₄ will b calculate as:

n = W/M, where

W = given mass = 1.25g

M = molar mass = 16g/mol

n = 1.25/16 = 0.078 moles

Molecues of CH₄ in 0.078 moles = 0.078×6.022×10²³ = 0.46×10²³

Given molecules of O₂ = 1.25×10²³

Required molecules of CH₄ is less as compared to the molecules of O₂, so here CH₄ is the limiting reagent and formation of water is depends on it only.

From the stoichiometry of the reaction it is clear that:

1 mole of CH₄ = will produce 2 moles of H₂O

0.078 moles of CH₄ = will produce 2×0.078=0.156 moles of H₂O

Mass of H₂O will be calculated by using its moles as:

W = (0.156)(18) = 2.8g

Hence required mass of H₂O is 2.8g.

To know more about limiting reagent, visit the below link:

https://brainly.com/question/1163339

A 1.0 L buffer solution is 0.250 M HC2H3O2 and 0.050 M LiC2H3O2. Which of the following actions will destroy the buffer?

A. adding 0.050 moles of NaOH
B. adding 0.050 moles of LiC2H3O2
C. adding 0.050 moles of HC2H3O2
D. adding 0.050 moles of HCl
E. None of the above will destroy the buffer.

Answers

Answer:

D

Explanation:

Addition of 0.05 M HCl, will react with all of the C2H3O2- from LiAc which will give 0.05 M more HAc. So there will be no Acetate ion left to make the solution buffer. Hence, the correct option for the this question is d, which is adding 0.050 moles of HCl.

The action that destroys the buffer is option c. adding 0.050 moles of HCl.

What is acid buffer?

It is a solution of a weak acid and salt.

Here, The buffer will destroy at the time when either HC2H3O2 or NaC2H3O2 should not be present in the solution.

The addition of equal moles of HCl finishly reacts with equal moles of NaC2H3O2. Due to this,  there will be only acid in the solution.

Since

moles of HC2H3O2 = 1*0.250 = 0.250

moles of NaC2H3O2 = 1*0.050 = 0.050.

moles of HCl is added = 0.050

Now

The reaction between HCl and NaC2H3O2

[tex]HCl + NaC_2H_3O_2 \rightarrow HC_2H_3O_2 + NaCl[/tex]

Now

BCA table is

            NaC2H3O2  HCl       HC2H3O2

Before 0.050 0.050 0.250

Change -0.050 -0.050 +0.050

After 0 0 0.300

Now, the solution contains the acid (HC2H3O2 ) only.

Therefore addition of 0.050 moles of HCl will destroy the buffer.

Learn more about moles here: https://brainly.com/question/24817060

Provide the name(s) for the tertiary alcohol(s) with the chemical formula C6H14O that have a 4-carbon chain. Although stereochemistry may be implied in the question, DO NOT consider stereochemistry in your name. Alcohol #1______ Alcohol #2: ______Alcohol #3______

Answers

Answer:

Explanation:

A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.

Based on the question, the only tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain is

2-hydroxy-2,3-dimethylbutane

     H  OH   H    H

      |     |       |      |

H - C - C -   C  - C - H

      |     |       |      |

     H  CH₃  CH₃ H

From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain

Of the following two gases, which would you predict to diffuse more rapidly? PLZZ HELPP PLZ PLZ PLZ

Answers

Answer:

CO2 will diffuse more rapidly.

Explanation:

From Graham's law of diffusion, we understood that the rate of diffusion of a gas is inversely proportional to the square root of its density as shown below:

Rate (R) & 1/√Density (d)

R & 1/√d

But, the density of a gas is directly proportional to the relative molecular mass (M) of the gas.

Thus, we can say that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass of the gas. This can be represented mathematically as:

Rate (R) & 1/√Molar mass (M)

R & 1/√M

From the above illustration, we can say that the lighter the gas, the faster the rate of diffusion and the heavier the gas, the slower the rate of diffusion.

Now, to answer the question given above,let us determine the molar mass of Cl2 and CO2.

This is illustrated below:

Molar mass of Cl2 = 2 x 35.5 = 71 g/mol

Molar mass of CO2 = 12 + (2x16) = 12 + 32 = 44 g/mol

Summary

Gas >>>>>> Molar mass

Cl2 >>>>>> 71 g/mol

CO2 >>>>> 44 g/mol

From the illustration above, we can see that CO2 is lighter than Cl2.

Therefore, CO2 will diffuse more rapidly.

Answer: CO2

Explanation:

When the nuclide bismuth-210 undergoes alpha decay:
The name of the product nuclide is_____.
The symbol for the product nuclide is_____
Fill in the nuclide symbol for the missing particle in the following nuclear equation.
_____ rightarrow 4He+ 234Th
2 90
Write a balanced nuclear equation for the following:
The nuclide radium-226 undergoes alpha emission.

Answers

Explanation:

An atom undergoes alpha decay by losing a helium atom.

So when bismuth undergoes alpha decay, we have;

²¹⁰₈₃Bi --> ⁴₂He + X

Mass number;

210 = 4 + x

x = 206

Atomic number;

83 = 2 + x

x = 81

The element is Thallium. The symbol is Ti.

For the second part;

X --> ⁴₂He + ²³⁴₉₀Th

Mass number;

x = 4 + 234 = 238

Atomic Number;

x = 2 + 90 = 92

The balanced nuclear equation is;

²³⁸₉₂U --> ⁴₂He + ²³⁴₉₀Th

. You have two solutions, both with a concentration of 0.1M. Solution A contains a weak acid with a pKa of 5. ThepH of solution A is 3. Solution B contains a weak acid with a pKa of 9. The pH of solution B is:

Answers

Answer:

pH of solution B is 5

Explanation:

A weak acid, HA, is in equilibrium with water as follows:

HA(aq) + H₂O(l) ⇄ A⁻(aq) + H₃O⁺(aq)

Where Ka (10^-pKa = 1x10⁻⁹) is:

Ka = 1x10⁻⁹ = [A⁻] [H₃O⁺] / [HA]

Where concentrations of this species are equilibrium concentrations

As initial concentration of HA is 0.1M, the equilibrium concentrations of the species are:

[HA] = 0.1M - X

[A⁻] = X

[H₃O⁺] = X

Where X is the amount of HA that reacts until reach the equilibrium, X is reaction coordinate.

Replacing in Ka expression:

1x10⁻⁹ = [A⁻] [H₃O⁺] / [HA]

1x10⁻⁹ = [X] [X] / [0.1 - X]

1x10⁻¹⁰ - 1x10⁻⁹X = X²

1x10⁻¹⁰ - 1x10⁻⁹X - X² = 0

Solving for X:

X = -0.00001 → False solution, there is no negative concentrations.

X = 1x10⁻⁵ → Right solution.

As [H₃O⁺] = X

[H₃O⁺] = 1x10⁻⁵M

And pH = -log[H₃O⁺]

pH = 5

pH of solution B is 5

Zinc is used as a coating for steel to protect the steel from environmental corrosion. If a piece of steel is submerged in an electrolysis bath for 24 minutes with a current of 6.5 Amps, how many grams of zinc will be plated out? The molecular weight of Zn is 65.38, and Zn+2 + 2e– → Zn. Question 7 options: A) 3.17 g of Zn B) 1.09 g of Zn C) 6.34 g of Zn D) 12.68 g of Zn

Answers

Answer:

A) 3.17 g of Zn

Explanation:

Let's consider the reduction of Zn(II) that occurs in an electrolysis bath.

Zn⁺²(aq) + 2e⁻ → Zn(s)

We can establish the following relations:

1 min = 60 s1 A = 1 C/sThe charge of 1 mole of electrons is 96,468 C (Faraday's constant).When 2 moles of electrons circulate, 1 mole of Zn is deposited.The molar mass of Zn is 65.38 g/mol

The mass of Zn deposited under these conditions is:

[tex]24min \times \frac{60s}{1min} \times \frac{6.5C}{s} \times \frac{1mol\ e^{-} }{96,468C} \times \frac{1molZn}{2mol\ e^{-}} \times \frac{65.38g}{1molZn} = 3.17 g[/tex]

Answer:

A.) 3.17

Explanation:

I got it right in class!

Hope this Helps!! :))

A solution is known to contain only one type of cation. Addition of Cl1- ion to the solution had no apparent effect, but addition of (SO4)2- ion resulted in a precipitate. Which cation is present

Answers

Answer:

We can have: Calcium, strontium, or barium

Explanation:

In this case, we have to remember the solubility rules for sulfate [tex]SO_4~^-^2[/tex] and the chloride [tex]Cl^-[/tex]:

Sulfate

All sulfate salts are SOLUBLE-EXCEPT those also containing: Calcium, silver, mercury (I), strontium, barium or lead.([tex]Ca^+^2~,Ag^+~,Hg_2^+^2~,Sr^+2~,Ba^+^2~,Pb^+^2[/tex]), which are NOT soluble.

Chloride

All chloride salts as SOLUBLE-EXCEPT those also containing: lead, silver, or mercury (I). ([tex]Pb^+^2~,Ag^+~,Hg_2~^+^2[/tex]), which are NOT soluble.

If we the salt formed a precipitated with the sulfate anion, we will have as possibilities "Calcium, silver, mercury (I), strontium, barium or lead". If We dont have any precipitated with the Chloride anion we can discard "Silver, mercury (I),  lead" and our possibilities are:

"Calcium, strontium, or barium".

I hope it helps!

The substance formed on addition of water to an aldehyde or ketone is called a hydrate or a/an:_______
A) vicinal diol
B) geminal diol
C) acetal
D) ketal

Answers

Answer:

B) geminal diol

Explanation:

Hello,

In this case, considering the attached picture, you can see that the substance resulting from the hydrolysis of an aldehyde or a ketone is a geminal diol since the two hydroxyl groups are in the same carbon. Such hydrolysis could be carried out in either acidic or basic conditions depending upon the equilibrium constant.

Regards.

Consider the reaction: C(s) + O2(g)CO2(g) Write the equilibrium constant for this reaction in terms of the equilibrium constants, Ka and Kb, for reactions a and b below: a.) C(s) + 1/2 O2(g) CO(g) Ka b.) CO(g) + 1/2 O2(g) CO2(g) Kb

Answers

Answer:

A. Ka = [CO2] / [C] [O2]^1/2

B. Kb = [CO2] / [CO] [O2]^1/2

Explanation:

Equilibrium constant is simply defined as the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.

Now, we shall obtain the expression for the equilibrium constant for the reaction as follow:

A. Determination of the expression for equilibrium constant Ka.

This is illustrated below:

C(s) + 1/2 O2(g) <==> CO(g)

Ka = [CO2] / [C] [O2]^1/2

B. Determination of the expression for equilibrium constant Kb.

This is illustrated below:

CO(g) + 1/2 O2(g) <==> CO2(g)

Kb = [CO2] / [CO] [O2]^1/2

What are the correct half reactions for the following reaction: Cu2+ + Mg -> Cu + Mg2+

Answers

Answer:

Cu2 + 2Mg-> 2Cu+ Mg2

Explanation:

Balance the equation and make sure both the reactant and the products are the same

Hope it will be helpful

[tex]Cu^{+2} + 2Mg[/tex]  -> [tex]2Cu + Mg^+2[/tex]  is the correct half-reactions.

What is a balanced equation?

A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total oxidation numbers is the same for both the reactants and the products.

[tex]Cu^{+2} + 2Mg[/tex]  -> [tex]2Cu + Mg^+2[/tex] is the correct half-reactions.

Magnesium is oxidized because its oxidation state increased from 0 to +2 while Cu is reduced because its oxidation state decreased from +2 to 0.

Learn more about balanced equations here:

brainly.com/question/15052184

#SPJ5

Find the density if the volume is 15 mL and the mass is 8.6 g. (5 pts)
Find the volume if the density is 2.6 g/mL and the mass is 9.7 g.(5 pts)
Find the mass if the density is 1.6 g/cm3 and the volume is 4.1 cm3 (5 pts)
Find the density if the initial volume of water is 12.8 mL, the final volume is 24.6 mL and the mass of the object is 4.3 g. Make a drawing to show the water displacement using a graduated cylinder. (gdoc, gdraw)

Answers

Answer:

[tex]\large \boxed{\text{0.57 g/mL; 3.7 mL; 6.6 g; 0.366 g/mL}}[/tex]

Explanation:

1. Density from mass and volume

[tex]\text{Density} = \dfrac{\text{mass}}{\text{volume}}\\\\\rho = \dfrac{m}{V}\\\\\rho = \dfrac{\text{8.6 g}}{\text{15 mL}} = \text{0.57 g/mL}\\\text{The density is $\large \boxed{\textbf{0.57 g/mL}}$}[/tex]

2. Volume from density and mass

[tex]V = \text{9.7 g}\times\dfrac{\text{1 mL}}{\text{2.6 g}} = \text{3.7 mL}\\\\\text{The volume is $\large \boxed{\textbf{3.7 mL}}$}[/tex]

3. Mass from density and volume

[tex]\text{Mass} = \text{4.1 cm}^{3} \times \dfrac{\text{1.6 g}}{\text{1 cm}^{3}} = \textbf{6.6 g}\\\\\text{The mass is $\large \boxed{\textbf{6.6 g}}$}[/tex]

4. Density by displacement

Volume of water + object = 24.6 mL

Volume of water                = 12.8 mL

Volume of object               = 11.8 mL

[tex]\rho = \dfrac{\text{4.3 g}}{\text{11.8 mL}} = \text{0.36 g/mL}\\\text{The density is $\large \boxed{\textbf{0.36 g/mL}}$}[/tex]

Your drawing showing water displacement using a graduated cylinder should resemble the figure below.

 

Calculate the concentration of H3O+ in a solution that contains 5.5 × 10-5 M OH- at 25°C. Identify the solution as acidic, basic, or neutral.

Answers

Explanation:

To calculate [H3O+] in the solution we must first find the pH from the [ OH-]

That's

pH + pOH = 14

pH = 14 - pOH

To calculate the pOH we use the formula

pOH = - log [OH-]

And [OH-] = 5.5 × 10^-5 M

So we have

pOH = - log 5.5 × 10^ - 5

pOH = 4.26

Since we've found the pOH we can now find the pH

That's

pH = 14 - 4.26

pH = 9.74

Now we can find the concentration of H3O+ in the solution using the formula

pH = - log H3O+

9.74 = - log H3O+

Find the antilog of both sides

H3O+ = 1.8 × 10^ - 10 M

The solution is basic since it's pH lies in the basic region.

Hope this helps you

A sample of argon gas (molar mass 40 g) is at four times the absolute temperature of a sample of hydrogen gas (molar mass 2 g). Find the ratio of the rms speed of the argon molecules to that of the hydrogen. Assume hydrogen molecule has only translational degree of freedom.

Answers

Answer:

Ratio of Vrms of argon to Vrms of hydrogen = 0.316 : 1

Explanation:

The root-mean-square speed measures the average speed of particles in a gas, and is given by the following formula:  

Vrms = [tex]\sqrt{3RT/M}[/tex]

where R is molar gas constant = 8.3145 J/K.mol, T is temperature in kelvin, M is molar mass of gas in Kg/mol

For argon, M = 40/1000 Kg/mol = 0.04 Kg/mol, T = 4T , R = R

Vrms = √(3 * R *4T)/0.04 = √300RT

For hydrogen; M = 1/1000 Kg/mol = 0.001 Kg/mol, T = T, R = R

Vrms = √(3 * R *T)/0.001 = √3000RT

Ratio of Vrms of argon to that of hydrogen = √300RT / √3000RT = 0.316

Ratio of Vrms of argon to that of hydrogen = 0.316 : 1

An ice cube at 0.00C with a mass of 8.32g is placed Into 55g of water, initially at 25C. If no heat is lost to the surroundings, what is the final temperature of the entire water sample after all the ice is melted (answer must be in 3 sig figs)

Answers

Answer:

The final temperature of the entire water sample after all the ice is melted, is 12,9°C. We should realize that if there is no loss of heat in our system, the sum of lost or gained heat is 0.  It is logical to say that the temperature has decreased because the ice gave the water "heat" and cooled it

Thats all i know

2. Which one is the odd one
out and why?
o Water
• Hydrogen
Chlorine
o Aluminum

Answers

Answer:

Reaction of Chlorine with Hydrogen Chlorine and Hydrogen mixed together explodes when exposed to sunlight, which produces Hydrogen Chloride. In the dark away from sunlight, no reaction occurs, so light energy is required for a reaction. Cl2 + H2 = 2 HCl Reaction of Chlorine with Non-Metals Chlorine directly combines with most non-metals.

Explanation:

I hope this helps bro

Other Questions
which approach does procedural programming follow? bottom up, top down, random, or object oriented It seems almost unbelievable that so many students are sick during midterms and final exams, but actually these are times of _________ stress that _________ the effectiveness of the immune system to fight off illness. Group of answer choices please help !!!!!!!!!! Please help ! First one to give correct answer gets brainliest! Though not specifically cited in the producer's contract, the producer is expected to telephone prospects on the insurer's behalf to arrange sales appointments. This is an example of what kind of producer authority? A share of stock is now selling for $110. It will pay a dividend of $8 per share at the end of the year. Its beta is 1. What do investors expect the stock to sell for at the end of the year? Assume the risk-free rate is 4% and the expected rate of return on the market is 15%. (Round your answer to 2 decimal places.) Expected selling price $ Help a friend out I dont understand it what is the lcm of 725 and 325 The three-dimensional figure shown consists of a cylinder and a right circular cone. The radius of the base is 10 centimeters. The height of the cylinder is 16 centimeters, and the total height of the figure is 28 centimeters. The slant height of the cone is 13 centimeters. Which choice is the best approximation of the surface area of the figure? Use 3.14 to approximate pi. Molar mass is reported on the periodic table in the unitsA. kg/m3B. grams/mole.C. moles/gram.D. atoms/gram. Examples of innovation,creativity and entrepreneurship What caused problems during Grant's presidency?O A. ReconstructionO B. Corrupt staff membersO C. The Civil WarXO D. Grant's own dishonesty What is the definition of czar. Vector has a magnitude of 6.0 m and points 30 north of east. Vector has a magnitude of 4.0 m and points 30 east of north. The resultant vector + is given by What is the proper way to form the negative t command "don't buy it?"O A. No lo compres.O B. No lo compras.O C. No lo compraO D. No lo compris. Question 15 please and i will mark the brainliest!!! And thank you to whoever answers Which cause-and-effect diagram best illustrates one main effect of informedcitizens on the political system?A.Citizens educatethemselves onimportant issuesPoliticians cancommunicate theirplans to citizensmore easilyOBCitizens read newssources they agreewith.These citizensbecome moreengaged in politics.11O c.Citizens understandhow to acquireInformationCitizens are morelikely to know howto vote.OD.Citizens analyze theactions and words ofelected officials.officials are held toaccount when theymisbehavePREVIOUS An employer plans to pay bonus to each of his employees. Those earning Rs. 2000 or above are to be paid 10 percent of their salary and those earning less than 2000 are to be paid Rs. 200. The input record contains employee number, name and salary of an employee. The output should be employee name and their bonus. Write pseudo code algorithm to process the requirement. if b is the midpoint of ac and if c is the midpoint of bd, then what percent of cd is ac A line passes through point (4,-3) and has a slope of 5/4. Write an equation in Ax + By = C