Question 15 please and i will mark the brainliest!!! And thank you to whoever answers

Question 15 Please And I Will Mark The Brainliest!!! And Thank You To Whoever Answers

Answers

Answer 1
Answer: C) 12

Explanation:

We have 4 options for the first choice and 3 options for the next. So there are 4*3 = 12 different combos possible. The tree diagram below shows 12 different paths to pick from. For instance, the right-most path has us pick the number 4 and the color yellow.

Question 15 Please And I Will Mark The Brainliest!!! And Thank You To Whoever Answers

Related Questions

Kenji earned the test scores below in English class.
79, 91, 93, 85, 86, and 88
What are the mean and median of his test scores?

Answers

Answer:

mean=87

median=87

Step-by-step explanation:

mean=sum of test score/number of subject

mean=79+91+93+85+86+88/6

mean=522/6

mean=87

Literal meaning of median is medium.

To find the number which lies in the medium, we must rearrange the number in ascending.

79, 91, 93, 85, 86, 88

79, 85, 86, 88, 91, 93

86+88/2=87

Hope this helps ;) ❤❤❤

Let me know if there is an error in my answer.

Findℒ{f(t)}by first using a trigonometric identity. (Write your answer as a function of s.)f(t) = 12 cost −π6

Answers

Answer:

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

Step-by-step explanation:

Given that:

[tex]f(t) = 12 cos (t- \dfrac{\pi}{6})[/tex]

recall that:

cos (A-B) = cos AcosB + sin A sin B

[tex]f(t) = 12 [cos\ t \ cos \dfrac{\pi}{6}+ sin \ t \ sin \dfrac{\pi}{6}][/tex]

[tex]f(t) = 12 [cos \ t \ \dfrac{3}{2}+ sin \ t \ sin \dfrac{1}{2}][/tex]

[tex]f(t) = 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t)[/tex]

[tex]L(f(t)) = L ( 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \ L [cos \ (t) ] + 6\ L [ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \dfrac{S}{S^2 + 1^2}+ 6 \dfrac{1}{S^2 +1^2}[/tex]

[tex]L(f(t)) = \dfrac{6 \sqrt{3} +6 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6( \sqrt{3} \ S +1 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of 10sin( t ) N(newtons) and moves in a medium that imparts a viscous force of 2 N
when the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 3 cm/s, formulate the initial value problem describing the motion of the mass.
A)Find the solution of the initial value problem in the above problem.
B)Plot the graph of the steady state solution
C)If the given external force is replaced by a force of 2 cos(ωt) of frequency ω , find the value of ω for which the amplitude of the forced response is maximum.

Answers

Answer:

A) C1 = 0.00187 m = 0.187 cm,  C2 = 0.0062 m = 0.62 cm

B)  A sample of how the graph looks like is attached below ( periodic sine wave )

C) w = [tex]\sqrt[4]{3}[/tex] is when the amplitude of the forced response is maximum

Step-by-step explanation:

Given data :

mass = 5kg

length of spring = 10 cm = 0.1 m

f(t) = 10sin(t) N

viscous force = 2 N

speed of mass = 4 cm/s = 0.04 m/s

initial velocity = 3 cm/s = 0.03 m/s

Formulating initial value problem

y = viscous force / speed = 2 N / 0.04 m/s = 50 N sec/m

spring constant = mg/ Length of spring = (5 * 9.8) / 0.1 = 490 N/m

f(t) = 10sin(t/2) N

using the initial conditions of u(0) = 0 m and u"(0) = 0.03 m/s to express the equation of motion

the equation of motion = 5u" + 50u' + 490u = 10sin(t/2)

A) finding the solution of the initial value

attached below is the solution and

B) attached is a periodic sine wave replica of how the grapgh of the steady state solution looks like

C attached below

Is {(4,2),(4,-2),(9,3),(9,-3)} a function

Answers

Answer:

  no

Step-by-step explanation:

If any x-value is repeated, the relation is not a function. Both x=4 and x=9 are repeated values, so this relation is not a function.

The heat evolved in calories per gram of a cement mixture is approximately normally distributed. The mean is thought to be 100, and the standard deviation is 2. You wish to test H0: μ = 100 versus H1: μ ≠ 100 with a sample of n = 9 specimens.
A. If the acceptance region is defined as 98.5 le x- 101.5, find the type I error probability alpha.
B. Find beta for the case where the true mean heat evolved is 103.
C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

Answers

Answer:

A.the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. β  = 0.0122

C. β  = 0.0000

Step-by-step explanation:

Given that:

Mean = 100

standard deviation = 2

sample size = 9

The null and the alternative hypothesis can be computed as follows:

[tex]\mathtt{H_o: \mu = 100}[/tex]

[tex]\mathtt{H_1: \mu \neq 100}[/tex]

A. If the acceptance region is defined as [tex]98.5 < \overline x > 101.5[/tex] , find the type I error probability [tex]\alpha[/tex] .

Assuming the critical region lies within [tex]\overline x < 98.5[/tex] or [tex]\overline x > 101.5[/tex], for a type 1 error to take place, then the sample average x will be within the critical region when the true mean heat evolved is [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P( type \ 1 \ error ) = P( reject \ H_o)}[/tex]

[tex]\mathtt{\alpha = P( \overline x < 98.5 ) + P( \overline x > 101.5 )}[/tex]

when  [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P \begin {pmatrix} \dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{\overline 98.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} + \begin {pmatrix}P(\dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} > \dfrac{101.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} }[/tex]

[tex]\mathtt{\alpha = P ( Z < \dfrac{-1.5}{\dfrac{2}{3}} ) + P(Z > \dfrac{1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) + P(Z > 2.25) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) +( 1- P(Z < 2.25) })[/tex]

From the standard normal distribution tables

[tex]\mathtt{\alpha = 0.0122+( 1- 0.9878) })[/tex]

[tex]\mathtt{\alpha = 0.0122+( 0.0122) })[/tex]

[tex]\mathbf{\alpha = 0.0244 }[/tex]

Thus, the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. Find beta for the case where the true mean heat evolved is 103.

The probability of type II error is represented by β. Type II error implies that we fail to reject null hypothesis [tex]\mathtt{H_o}[/tex]

Thus;

β = P( type II error) - P( fail to reject [tex]\mathtt{H_o}[/tex] )

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 103[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -103}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-103}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-4.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-6.75 \leq Z \leq -2.25) }[/tex]

[tex]\mathtt{\beta = P(z< -2.25) - P(z < -6.75 )}[/tex]

From standard normal distribution table

β  = 0.0122 - 0.0000

β  = 0.0122

C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 105[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -105}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-105}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-6.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-3.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-9.75 \leq Z \leq -5.25) }[/tex]

[tex]\mathtt{\beta = P(z< -5.25) - P(z < -9.75 )}[/tex]

From standard normal distribution table

β  = 0.0000 - 0.0000

β  = 0.0000

The reason why the value of beta is smaller here is that since the difference between the value for the true mean and the hypothesized value increases, the probability of type II error decreases.

Max believes that the sales of coffee at his coffee shop depend upon the weather. He has taken a sample of 5 days. Below you are given the results of the sample.
Cups of Coffee Sold Temperature
350 50
200 60
210 70
100 80
60 90
40 100
A. Which variable is the dependent variable?
B. Compute the least squares estimated line.
C. Compute the correlation coefficient between temperature and the sales of coffee.
D. Predict sales of a 90 degree day.

Answers

Answer:

1. cups of coffee sold

2.Y = 605.7 - 5.943x

3. -0.952

4. 70.84

Step-by-step explanation:

1. the dependent variable in this question is the cups of coffee sold

2. least square estimation line

Y = a+bx

we have y as the cups of coffee sold

x as temperature.

first we will have to solve for a and then b

∑X = 450

∑Y = 960

∑XY = 61600

∑X² = 35500

∑Y² = 221800

a = ∑y∑x²-∑x∑xy/n∑x²-(∑x)²

a = 960 * 35500-450*61600/6*35500-450²

a = 6360000/10500

= 605.7

b = n∑xy - ∑x∑y/n∑x²-(∑x)²

= 6*61600 - 450*960/6*35500 - 450²

= -5.943

the regression line

Y = a + bx

Y = 605.7 - 5.943x

3. we are to find correlation coefficient

r = n∑xy - ∑x∑y multiplied by√(n∑x²-(∑x)² * (n∑y² - (∑y)²)

= 6*61600 -960*450/√(6*35500 - 450²)*(6*221800 - 960²)

=-62400/√4296600000

= -62400/65548.5

= -0.952

4. we have to predict sales of a 90 degree day fro the regression line

Y = 605.7 - 5.943x

y = 605.7 - 5.943(90)

y = 605.7 - 534.87

= 70.84

Which of the following represents "next integer after the integer n"? n + 1 n 2n

Answers

Answer:

n + 1

Step-by-step explanation:

Starting with the integer 'n,' we represent the "next integer" by n + 1.

Relating a Polynomial Identity to Pythagorean Triples
In this activity you'll relate polynomial identities with Pythagorean triples. Answer the following questions
based on this triangle with side lengths x^2 – 1, 2x, and x^2 + 1.

Answers

Answer:

Step-by-step explanation:

Hello, please consider the following.

For x > 1, we can apply Pythagoras theorem as below.

[tex]\text{Let's estimate this sum of two squares.} \\\\(2x)^2+(x^2-1)^2=4x^2+x^4-2x^2+1=x^4+2x^2+1\\\\\text{Let's estimate this square, now.} \\\\(x^2+1)^2=x^4+2x^2+1\\\\\text{The two expressions are equal, meaning.} \\\\(2x)^2+(x^2-1)^2=(x^2+1)^2\\\\\text{Using Pythagoras' theorem, we can say that this is a right triangle.}[/tex]

Thank you

please help me in these question ????

A school bag contains 12 pens of which 5 are red and the other are black. 4 pens are selected from the bag.
(a) How many different samples of size 4 pens are possible?
(b) How many samples have 3 red pens and 1 black pen?
(c) How many samples of size 4 contain at least two red pens?
(d) How many samples of size 4 contain


If the average yield of cucumber acre is 800 kg, with a variance 1600 kg, and that the amount of the cucumber follows the normal distribution.
1- What percentage of a cucumber give the crop amount between and 834 kg?
2- What the probability of cucumber give the crop exceed 900 kg ?

Answers

Answer:

Step-by-step explanation:

A school bag contains 12 pens of which 5 are red and the other are black. 4 pens are selected from the bag.

(a) How many different samples of size 4 pens are possible?

12C4=12!/(4!*8!)=495

(b) How many samples have 3 red pens and 1 black pen?

5C3*7C1

5C3=5!/(3!*2!)=10

7C1=7!/(1!*6!)=7

=>5C3*7C1=10*7=70

(c) How many samples of size 4 contain at least two red pens?

(5C2*7C2)+(5C3*7C1)+(5C4*7C0)

5C2=5!/(2!*3!)=10

7C2=7!/(2!*5!)=21

5C3=5!/(3!*2!)=10

7C1=7!/(1!*6!)=7

5C4=5!/(4!*1!)=5

7C0=7!/(0!*7!)=1

=>(5C2*7C2)+(5C3*7C1)+(5C4*7C0)=285

(d) How many samples of size 4 contain at most one black pen?

(7C1*5C3)+(7C0*5C4)

7C1=7!/(1!*6!)=7

7C0=7!/(0!*7!)=1

5C3=5!/(3!*2!)=10

5C4=5!/(4!*1!)=5

=>(7C1*5C3)+(7C0*5C4)=(7*10)+(1*5)=75

Foram prescritos 500mg de dipirona para uma criança com febre.Na unidade tem disponivel ampola de 1g/2ml.Quantos g vão ser administrados no paciente

Answers

De acordo com a disponibilidade da unidade, há apenas a seguinte dosagem: 1g/2mL - ou seja, uma grama de dipirona a cada 2mL

O enunciado está meio mal formulado, pois é dito que foram prescritos 500mg de dipirona e é essa quantidade de farmaco que a criança tem que tomar. Deseja-se saber quantos mL deverao ser administrados.

Fazendo a classica regra de 3, podemos chegar no volume desejado:

(atentar que 500mg = 0,5g)

     g               mL

     1    ---------   2

    0,5  ---------  X    

1 . X = 0,5 . 2

X = 1mL

The quotient of 3 and the cube
of y+2

Answers

Answer:

  [tex]\dfrac{3}{(y+2)^3}[/tex]

Step-by-step explanation:

Maybe you want this written using math symbols. It will be ...

  [tex]\boxed{\dfrac{3}{(y+2)^3}}[/tex]

Time

(minutes)

Water

(gallons)

1

16.50

1.5

24.75

2

33

find the constant of proportionality for the second and third row

Answers

Answer:

16.50

Step-by-step explanation:

Constant of proportionality = no of gallons of water per 1 minute.

In the first row, we have 16.50 gallons of water per 1 minute.

In the 2nd row, we have 24.75 gallons of water in 1.5 minutes. In 1 minute, we will have 24.75 ÷ 1.5 = 16.50 gallons

In the 3rd row, we have 33 gallons in 2 minutes. In 1 minute, we will have 33 ÷ 2 = 16.50 gallons.

We can see that there seems to be the same constant of proportionality for the 2nd and 3rd row, which is 16.50.

Thus, a relationship between gallons of water (w) and time (t), considering the constant, 16.50, can be written as: [tex] w = 16.50t [/tex]

This means the constant of proportionality, 16.50, is same for all rows.

find the area of square whose side is 2.5 cm

Answers

Answer:

6.25

Step-by-step explanation:

2.5 *2.5=6.25

Answer:

6.25cm^2.

Step-by-step explanation:

To find the area of a square, you multiply the two sides, 2.5✖️2.5.

This gives the area of 6.25cm^2.

Hope this helped!

Have a nice day:)

What is the most precise name for quadrilateral ABCD with vertices A(–5,2), B(–3, 5),C(4, 5),and D(2, 2)?

Answers

Answer: ABCD is a parallelogram.

Step-by-step explanation:

First we plot these point on a graph as given in attachment.

From the attachment we can observe that AD || BC || x-axis .

also, AB ||CD, that will make ABCD a parallelogram ,  but to confirm we check the property of parallelogram "diagonals bisect each other" , i.e . "Mid point of both diagonals are equal".

Mid point of AC= [tex](\dfrac{-5+4}{2},\dfrac{2+5}{2})=(\dfrac{-1}{2},\dfrac{7}{2})[/tex]

Mid point of BD= [tex](\dfrac{-3+2}{2},\dfrac{5+2}{2})=(\dfrac{-1}{2},\dfrac{7}{2})[/tex]

Thus, Mid point of AC=Mid point of BD

i.e. diagonals bisect each other.

That means ABCD is a parallelogram.

Answer: ABCD is a parallelogram.

Step-by-step explanation:

First, we plot these points on a graph as given in the attachment. From the attachment, we can observe that AD || BC || x-axis. Also, AB ||CD, which will make ABCD a parallelogram, but to confirm, we check the parallelogram property "diagonals bisect each other," i.e., "Midpoint of both diagonals is equal."

The midpoint of AC=. The midpoint of BD=. Thus, the Midpoint of AC=Mid point of BD diagonals bisects each other. That means ABCD is a parallelogram.

one third multiplied by the sum of a and b

Answers

Answer:

1/3(a+b)

hope it helps :>

a+b/3
This is the answer of ur question

The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:

Answers

Complete Question

On the uploaded image is a similar question that will explain the given question

Answer:

The value of k is  [tex]k = 214285.7[/tex]

The percentage  of the oil that will be cleaned is [tex]x = 80.77\%[/tex]

Step-by-step explanation:

From the question we are told that

   The  cost of cleaning up the spillage is  [tex]C = \frac{ k x }{100 - x }[/tex]  [tex]x \le x \le 100[/tex]

     The  cost of cleaning x =  70% of the oil is  [tex]C = \$500,000[/tex]

   

Now at  [tex]C = \$500,000[/tex] we have  

       [tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]

       [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]k = 214285.7[/tex]

Now  When  [tex]C = \$900,000[/tex]

       [tex]x = 80.77\%[/tex]

       

 

Salaries of 42 college graduates who took a statistics course in college have a​ mean, ​, of . Assuming a standard​ deviation, ​, of ​$​, construct a ​% confidence interval for estimating the population mean .

Answers

Answer:

The 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

Step-by-step explanation:

The complete question is:

Salaries of 42 college graduates who took a statistics course in college have a​ mean, [tex]\bar x[/tex] of, $64, 100. Assuming a standard​ deviation, σ of ​$10​,016 construct a ​99% confidence interval for estimating the population mean μ.

Solution:

The (1 - α)% confidence interval for estimating the population mean μ is:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

The critical value of z for 99% confidence interval is:

[tex]z_{\alpha/2}=z_{0.01/2}=z_{0.005}=2.57[/tex]

Compute the 99% confidence interval for estimating the population mean μ as follows:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

     [tex]=64100\pm 2.58\times\frac{10016}{\sqrt{42}}\\\\=64100+3987.3961\\\\=(60112.6039, 68087.3961)\\\\\approx (60112.60, 68087.40)[/tex]

Thus, the 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

logx-log(x-l)^2=2log(x-1)​

Answers

Answer:

  x = 1.00995066776

  x = 2.52925492433

Step-by-step explanation:

This sort of equation is best solved using a graphing calculator. For that purpose, I like to rewrite the equation as a function whose zeros we're seeking. Here, that becomes ...

  [tex]f(x)=\log{(x)}-\log{(x-1)}^2-2\log{(x-1)}[/tex]

The attached graph shows zeros at

  x = 1.00995066776 and 2.52925492433

_____

Comment on the equation

Note that we have taken the middle term to be the square of the log, rather than the log of a square. For the latter interpretation, see mberisso's answer at https://brainly.com/question/17210068

Comment on the answer refinement

We have used Newton's method iteration to refine the solutions to this equation. The solution near 1.00995 requires the initial guess be very close for that method to work properly. Fortunately, the 1.01 value shown on the graph is sufficient for the purpose.

Let X denote the day she gets enrolled in her first class and let Y denote the day she gets enrolled in both the classes. What is the distribution of X

Answers

Answer:

X is uniformly distributed.

Step-by-step explanation:

Uniform Distribution:

This is the type of distribution where all outcome of a certain event have equal likeliness of occurrence.

Example of Uniform Distribution is - tossing a coin. The probability of getting a head is the same as the probability of getting a tail. The have equal likeliness of occurrence.

Find a cubic polynomial with integer coefficients that has $\sqrt[3]{2} + \sqrt[3]{4}$ as a root.

Answers

Find the powers [tex]a=\sqrt{2}+\sqrt{3}[/tex]

$a^{2}=5+2 \sqrt{6}$

$a^{3}=11 \sqrt{2}+9 \sqrt{3}$

The cubic term gives us a clue, we can use a linear combination to eliminate the root 3 term $a^{3}-9 a=2 \sqrt{2}$ Square $\left(a^{3}-9 a\right)^{2}=8$ which gives one solution. Expand we have $a^{6}-18 a^{4}-81 a^{2}=8$ Hence the polynomial $x^{6}-18 x^{4}-81 x^{2}-8$ will have a as a solution.

Note this is not the simplest solution as $x^{6}-18 x^{4}-81 x^{2}-8=\left(x^{2}-8\right)\left(x^{4}-10 x^{2}+1\right)$

so fits with the other answers.

Answer:

[tex]y^3 -6y-6[/tex]

The mean salary of federal government employees on the General Schedule is $59,593. The average salary of 30 state employees who do similar work is $58,800 with \sigmaσσ= $1500. At the 0.01 level of significance, can it be concluded that state employees earn on average less than federal employees? What is the critical value? Round your answer to the nearest hundredths.

Answers

Answer:

Yes it can be concluded that state employees earn on average less than federal employees

  The critical value is  [tex]Z_{\alpha } = - 2.33[/tex]

Step-by-step explanation:

From the question we are told that

   The  population mean is  [tex]\mu = \$ 59593[/tex]

   The sample size is  n =  30

    The  sample mean is [tex]\= x = \$ 58800[/tex]

     The  standard deviation is  [tex]\sigma = \$ 1500[/tex]

     The significance level is  [tex]\alpha = 0.01[/tex]

   

The null hypothesis is  [tex]H_o : \mu = \$ 59593[/tex]

 The  alternative hypothesis is  [tex]H_a : \mu < \$ 59593[/tex]

The critical value of [tex]\alpha[/tex] from the normal distribution table is  [tex]Z_{\alpha } = - 2.33[/tex]

 Generally the test statistics is  mathematically evaluated as

            [tex]t = \frac{\= x - \mu}{ \frac{ \sigma }{ \sqrt{n} } }[/tex]

=>         [tex]t = \frac{ 58800 - 59593 }{ \frac{ 1500 }{ \sqrt{30} } }[/tex]  

=>          [tex]t = -2.896[/tex]

The  p-value is obtained from the z-table

   [tex]p-value = P(t < -2.896) = 0.0018898[/tex]

Since [tex]p-value < \alpha[/tex] , we reject the null hypothesis, hence it can be concluded that state employees earn on average less than federal employees  

   

a
A solid metal cone of base radius a cm and height 2a cm is melted and solid
spheres of radius are made without wastage. How many such spheres can be
made?​

Answers

volume of a cone

.

.

.

volume of sphere

.

.

number of spheres that can be made......

.

.

hence a hemisphere can be formed

The following shape is based only on squares, semicircles, and quarter circles. Find the area of the shaded part.

Answers

Answer:

this? hope it helps ........

Answer:

The answer is area=32pi-64 and the perimeter is 8pi

Step-by-step explanation:

The cost of a daily rental car is as follows: The initial fee is $39.99 for the car, and it costs $0.20 per mile. If Julie's final bill was $100.00 before taxes, how many miles did she drive?

Answers

Answer:

300.05 miles

Step-by-step explanation:

initial fee= $39.99

final bill = $ 100

cost =$ 0.20 per mile

remaining amount = $ 60.01

solution,

she drive = remaining amount / cost

=60.01/0.20

=300.05 miles

Answer:

500 miles

Step-by-step explanation:

Let us use cross multiplication to find the unknown amount.

Given:

1) Cost for 1 mile=$0.20

2)Cost for x miles=$100

Solution:

No of miles                             Cost

1) 1                                             $0.20

2)x                                             $100

By cross multiplying,

100 x 1= 0.20x

x=100/0.20

x=500 miles

Thank you!

A machine used to fill​ gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of ounces and a standard deviation of ounce. You randomly select cans and carefully measure the contents. The sample mean of the cans is ounces. Does the machine need to be​ reset? Explain your reasoning. ▼ Yes No ​, it is ▼ very unlikely likely that you would have randomly sampled cans with a mean equal to ​ounces, because it ▼ lies does not lie within the range of a usual​ event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means.

Answers

Complete question is;

A machine used to fill gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of 128 ounces and a standard deviation of 0.20 ounce. You randomly select 35 cans and carefully measure the contents. The sample mean of the cans is 127.9 ounces. Does the machine need to be? reset? Explain your reasoning.

(yes/no)?, it is (very unlikely/ likely) that you would have randomly sampled 35 cans with a mean equal to 127.9 ?ounces, because it (lies/ does not lie) within the range of a usual? event, namely within (1 standard deviation, 2 standard deviations 3 standard deviations) of the mean of the sample means.

Answer:

Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Step-by-step explanation:

We are given;

Mean: μ = 128

Standard deviation; σ = 0.2

n = 35

Now, formula for standard error of mean is given as;

se = σ/√n

se = 0.2/√35

se = 0.0338

Normally, the range of values should be within 2 standard deviations of mean. In this case, normal range of values will be;

μ ± 2se = 128 ± 0.0338

This gives; 127.9662, 128.0338

So, Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

5x+4(-x-2)=-5x+2(x-1)+12

Answers

Answer:

x=9/2

Step-by-step explanation:

Let's solve your equation step-by-step.

5x+4(−x−2)=−5x+2(x−1)+12

Step 1: Simplify both sides of the equation.

5x+4(−x−2)=−5x+2(x−1)+12

5x+(4)(−x)+(4)(−2)=−5x+(2)(x)+(2)(−1)+12 (Distribute)

5x+−4x+−8=−5x+2x+−2+12

(5x+−4x)+(−8)=(−5x+2x)+(−2+12) (Combine Like Terms)

x+−8=−3x+10

x−8=−3x+10

Step 2: Add 3x to both sides.

x−8+3x=−3x+10+3x

4x−8=10

Step 3: Add 8 to both sides.

4x−8+8=10+8

4x=18

Step 4: Divide both sides by 4.

4x/4=18/4

x=9/2

Transform the given parametric equations into rectangular form. Then identify the conic.

Answers

Answer:

Solution : Option B

Step-by-Step Explanation:

We have the following system of equations at hand here.

{ x = 5 cot(t), y = - 3csc(t) + 4 }

Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,

x = 5 cot(t) ⇒ x - 5 = cot(t),

y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)

Now let's square these two equations. We know that csc²θ - cot²θ = 1, so let's subtract the equations  as well. --- Step #2

 

( y - 4 / - 3 )² = (csc(t))²

- ( x - 5 / 1 )² = (cot(t))²  

___________________

(y - 4)² / 9 - x² / 25 = 1

And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.

HELP ASAP ROCKY!!! will get branliest.​

Answers

Answer:

work pictured and shown

Answer:

Last one

Step-by-step explanation:

● [ ( 3^2 × 5^0) / 4 ]^2

5^0 is 1 since any number that has a null power is equal to 1.

●[ (3^2 ×1 ) / 4 ]^2

● (9/4)^2

● 81 / 16

Find usubscript10 in the sequence -23, -18, -13, -8, -3, ...

Answers

Step-by-step explanation:

utilise the formula a+(n-1)d

a is the first number while d is common difference

Answer:

22

Step-by-step explanation:

Using the formular, Un = a + (n - 1)d

Where n = 10; a = -23; d = 5

U10 = -23 + (9)* 5

U10 = -23 + 45 = 22

Suppose that a sample mean is .29 with a lower bound of a confidence interval of .24. What is the upper bound of the confidence interval?

Answers

Answer:

The upper bound of the confidence interval is 0.34

Step-by-step explanation:

Here in this question, we want to calculate the upper bound of the confidence interval.

We start by calculating the margin of error.

Mathematically, the margin of error = 0.29 -0.24 = 0.05

So to get the upper bound of the confidence interval, we simply add this margin of error to the mean

That would be 0.05 + 0.29 = 0.34

Other Questions
Solve. 1/2(-4 2n) = -17 Please explain it to me if you can I dont really understand how to do these types of problems so it would be much appreciated! Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plates in Capacitor B are separated by twice the separation of the plates of Capacitor A. If Capacitor A has a capacitance of CA-17.8nF, what is the capacitance of Capacitor? . Which state of matter does this image represent? Image of water Solid Liquid Gas Plasma how can i solve this factorial? A 6,2- P6- A 5,3 + P5 Write a conclusion paragraph for the following essay topic: Some people think one should stay all their life in the same job, whereas others advocate changing jobs from time to time. What is your opinion? 12. Write 0.8 as a fraction,Pls explain in full detail. How did Great Britain justify levying hefty taxes on the colonies? Proposed Exercises: Strength and Acceleration in Circular Movement In the situation illustrated below, a 7kg sphere is connected to a rope so that it can rotate in a vertical plane around an O axis perpendicular to the plane of the figure. When the sphere is in position A, it has a speed of 3m/s. Determine for this position the modulus of tension on the string and the rate at which the tangential velocity is increased. Gail bought 5 pounds of oranges and 2 pounds of bananas for $14. Her husband later bought 3 pounds of oranges and 6 pounds of bananas for $18. What was the cost per pound of the oranges and the bananas? 4.Suppose you hold a PUT option on Israeli shekels with a strike price of 3.4207s/$. If the spot rate on the final day of the option is 3.4329s/$, how much profit would you make trading $1,000,000? Should you do it? A long solenoid consists of 1700 turns and has a length of 0.75 m.The current in the wire is 0.48 A. What is the magnitude of the magnetic field inside the solenoid If you randomly select a letter from the phrase "Sean wants to eat at Olive Garden," what is the probability that a vowel is randomly selected You add 500 mL of water at 10C to 100 mL of water at 70C. What is themost likely final temperature of the mixture?O A. 80COB. 10-COC. 20CO D. 60C Answer ASAP, will give brainliest What are the zeros of the quadratic function represented by this graph?A62X-6- 262--6-A.1 and 3OB.-3 and -1C.-3 and 1D. -1 and 3 Nikki gathered data about the length of time she spent listening to the radio and the number of commercials she heard. She organized the data in a scatter plot, where x represents the minutes spent listening and y represents the number of commercials. Then she used the graphing tool to find the equation of the line of best fit: y = 0.338x 1.387. Based on the line of best fit, for approximately how many minutes will Nikki need to listen to the radio to hear 20 commercials? Titan Mining Corporation has 7.6 million shares of common stock outstanding, 280,000 shares of 4.5% preferred stock outstanding, and 165,000 bonds with a semi-annual coupon rate of 5.9% outstanding, par value $2,000 each. The common stock currently sells for $61 per share and has a beta of 1.15, the preferred stock has a par value of $100 and currently sells for $95 per share, and the bonds have 19 years to maturity and sell for 109% of par. The market risk premium is 7.1%, T-bills are yielding 3.5%, and the companys tax rate is 25%.A. What is the firms market value capital structure? B. If the company is evaluating a new investment project that has the same risk as the firms typical project, what rate should the firm use to discount the projects cash flows? If the discriminant of a quadratic equation is equal to -8 , which statement describes the roots? isted below are amounts (in millions of dollars) collected from parking meters by a security service company and other companies during similar time periods. Do the limited data listed here show evidence of stealing by the security service company's employees? Security Service Company: 1.5 1.7 1.6 1.4 1.7 1.5 1.8 1.4 1.4 1.5 Other Companies: 1.8 1.9 1.6 1.7 1.8 1.9 1.6 1.5 1.7 1.8 Find the coefficient of variation for each of the two samples, then compare the variation. The coefficient of variation for the amount collected by the security service company is nothing%. (Round to one decimal place as needed.) What major geographical advantage does agriculture in the Coastal South have over most other regions of North America