In response to the stated question, we may state that To conclude, the function problem's relation is a function for all x values except x between 3 and 4.
what is function?In mathematics, a function is a connection between two sets of numbers in which each member of the first set (known as the domain) corresponds to a single element in the second set (called the range). In other words, a function takes inputs from one set and produces outputs from another. Inputs are commonly represented by the variable x, whereas outputs are represented by the variable y. A function can be described using an equation or a graph. The equation y = 2x + 1 represents a linear function in which each value of x yields a distinct value of y.
If and only if each input has precisely one output, a relation is a function. To determine whether the connection stated in the issue is a function, we must examine whether any x values have more than one output.
We may achieve this by putting the specified points on a graph and looking for vertical lines that cross the graph more than once. If so, the relationship is not a function.
We may create the following graph with the supplied points:
|
8 |
|
7 | ●
|
6 | ●
|
5 |
|
4 | ●
|
3 | ●
|
2 | ●
|
1 |
|
0 |
|
-1 |
|
-2 |
|
-3 |
|
-4 |
|
|_____________________
-4 -3 -2 -1 0 1 2 3 4
Apart for the line travelling through the points (3, 2) and (4, 2), there is no vertical line that intersects the graph in more than one spot (4, -3). As a result, if x is between 3 and 4, the relation specified in the issue is not a function.
To conclude, the problem's relation is a function for all x values except x between 3 and 4.
To know more about function visit:
https://brainly.com/question/28193995
#SPJ1
Emma and Cooper went to Tico’s tacos for lunch. Emma ordered three tacos and one burrito and Cooper ordered one taco and two burritos Emmas order total was $3.65 and Cooper’s bill was $3.30. Write and solve a system of equations to model the situation above. Explain the solution in the context of this problem. Explain, or show your work in the box below.
In the given system of equations one taco costs $0.80 and one burrito costs $0.72.
What is a system of equations?An equation system is a finite collection of equations for which we searched for the common solutions. It is sometimes referred to as a set of simultaneous equations or an equation set. The classification of a system of equations is similar to that of a single equation. In modelling issues where the unknown values may be expressed in the form of variables, a system of equations finds use in everyday life.
Let us suppose the cost of one taco = x.
Let us suppose the cost of one burrito = y.
Then, for Emma we have:
3x + y = 3.65
For Cooper we have:
x + 2y = 3.30
Using elimination, multiply the first equation by 2 and subtract it from the second equation:
(2)(3x + y = 3.65)
6x + 2y = 7.30
x + 2y = 3.30
-5x = -4
x = 4/5
Substituting this value of x into either equation:
3(4/5) + y = 3.65
y = 2.15/3 ≈ 0.72
Therefore, one taco costs $0.80 and one burrito costs $0.72.
Learn more about system of equations here:
https://brainly.com/question/13760328
#SPJ1
A fair coin is flipped 3 times and a random variable X is defined to be 3 times the number of heads minus 2 times the number of tails. Find the probability mass function of X. (Write it in table format).
The probability mass function of X( -3, -1, 1 ,3) is P(X) 1/8 3/8 3/8 1/8.
A fair coin is flipped 3 times and the random variable X is defined as follows:
X = 3 times the number of heads - 2 times the number of tails
To find the probability mass function of X, we can list all the possible outcomes and calculate their probabilities.
The Possible outcomes are as shown:
3 heads (X = 3)
2 heads, 1 tail (X = 1)
1 head, 2 tails (X = -1)
3 tails (X = -3)
And the Probabilities are:
P(X = 3) = 1/8
P(X = 1) = 3/8
P(X = -1) = 3/8
P(X = -3) = 1/8
Therefore, the probability mass function of X is:
X( -3, -1, 1 ,3) is P(X) 1/8 3/8 3/8 1/8
To Practice more questions about probability:
https://brainly.com/question/24756209
#SPJ11
Name the shape that will result from connecting the points (-4, 1) , (-4, -4) , (0, 3) , and (0, 6) .
A: Square
B: Rectangle
C: Trapezoid
D: Parallelogram
The shape that results from connecting the points (-4, 1), (-4, -4), (0, 3), and (0, 6) is a trapezoid.
What is a trapezoid?A trapezoid is a geometric form that has four sides, two of which are parallel and two of which are nonparallel (or skew lines). A trapezoid is also known as a trapezium (UK) or a trapeze (US).
The trapezoid's parallel sides are known as the bases, and the two nonparallel sides are known as the legs or lateral sides. The trapezoid is also sometimes referred to as the irregular quadrilateral.
How to identify a trapezoid?A quadrilateral is a shape that has four sides, four vertices, and four angles. The following are the characteristics of a trapezoid:
It has four sidesIt has two parallel sides and two nonparallel sidesIt has two opposite sides that are parallel to one another and two other sides that are not parallelIt has two acute angles and two obtuse anglesIt has diagonals that intersect at a midpointThe formula for the area of a trapezoid is as follows:
Area of a trapezoid = [ (base 1 + base 2) / 2 ] x height
To know more about the "trapezoid": https://brainly.com/question/1463152
#SPJ11
find the length of the cord pt.3
According to the circle theorem, we can find the length of the cord, x = 4 units.
Define circle theorem?Geometrical assertions known as "circle theorems" set forward significant conclusions pertaining to circles. These theorems provide significant information regarding several aspects of a circle.
A circle's chord is a line segment that hits the circle twice on its edge, separating it into two equal pieces. The circle is divided into two equal pieces by the longest chord of the circle, which runs through its centre.
Here in the given circle,
As per the intersecting chords theorem,
AB × CB= BE × BD
⇒ 6 × 6 = 9× x
⇒ x = 36/9=4
Therefore, the length of the chord, x = 4 units.
To know more about circle theorem, visit:
https://brainly.com/question/19906313
#SPJ1
rita received a $80 gift card for a coffee store. she used it in buying some coffee that cost $7.37 per pound. after buying the coffee, she had $57.89 left on her card. How many pounds of coffee did she buy?
Answer:
3 pounds of coffee.
Step-by-step explanation:
Equation
y = -7.37x + 80
substitute 57.89 for y
57.89 = -7.37 + 80 Subtract 80 from both sides
57.89 - 80 = -7.37 + 80 - 80
-22.11 = -7.37x Divide both sides by -7.37
3 = x
3 pound of coffee
Helping in the name of Jesus.
Answer:
rita received a $80 gift card for a coffee store. she used it in buying some coffee that cost $7.37 per pound. after buying the coffee, she had $57.89 left on her card. How many pounds of coffee did she buy?
Step-by-step explanation:
Let's first find out how much money Rita spent on coffee:
$80 (initial balance) - $57.89 (remaining balance) = $22.11 spent on coffee
Now, let x be the number of pounds of coffee that Rita bought. Since the coffee costs $7.37 per pound, we can set up the equation:
$7.37x = $22.11
Solving for x, we can divide both sides by $7.37:
x = 3
Therefore, Rita bought 3 pounds of coffee.
Suppose f is a continuous function defined on a rectangle R=[a,b]X[c,d]. What is the geometric interpretation of the double integral over R of f(X,y) if f(X,y)>0
If f(x,y) > 0 and is a continuous function defined over a rectangle R=[a,b]x[c,d], then the double integral over R of f(x,y) can be interpreted as the volume of a solid that lies in the first octant and under the graph of the function f(x,y) over the region R.
The geometric interpretation of the double integral over R of f(x,y) if f(x,y) > 0, where f is a continuous function defined on a rectangle R = [a,b] × [c,d] is given as follows:
The double integral of f(x,y) over R, if f(x,y) > 0, gives the volume under the graph of the function f(x,y) over the region R in the first octant.
Consider a point P (x, y, z) on the graph of f(x, y) that is over the region R, and let us say that z = f(x,y). If f(x,y) > 0, then P is in the first octant (i.e. all its coordinates are positive).
As a result, the volume of the solid that lies under the graph of f(x,y) over the region R in the first octant can be found by integrating the function f(x,y) over the rectangle R in the xy-plane, which yields the double integral.
The following formula represents the double integral over R of f(x,y) if f(x,y) > 0:
∬Rf(x,y)dydx
The geometric interpretation of the double integral over R of f(x,y) if f(x,y) > 0 is given by the volume of the solid that lies under the graph of the function f(x,y) over the region R in the first octant.
To know more about the "continuous function": https://brainly.com/question/30089593
#SPJ11
Which of the following is equivalent to the inequality 2x + 13 < 5x - 20?
F. x >-11
G. x<?
H. x>;
J. x < 11
K. x > 11
Answer:
k
Step-by-step explanation:
2x+13<5x−20
Subtract 5x from both sides.
Combine 2x and −5x to get −3x.
Subtract 13 from both sides.
Subtract 13 from −20 to get −33.
Divide both sides by −3. Since −3 is negative, the inequality direction is changed.
x>11
About 24% of flights departing from New York's John F. Kennedy International Airport were delayed in 2009. Assuming that the chance of a flight being delayed has stayed constant at 24%, we are interested in finding the probability of 10 out of the next 100 departing flights being delayed. Noting that if one flight is delayed, the next flight is more likely to be delayed, which of the following statements is correct? . (A) We can use the geometric distribution with n = 100, k = 10, and p = 0.24 to calculate this probability. (B) We can use the binomial distribution with n = 10, k = 100, and p = 0.24 to calculate this probability. (C) We cannot calculate this probability using the binomial distribution since whether or not one flight is delayed is not independent of another. (D) We can use the binomial distribution with n = 100, k = 10, and p = 0.24 to calculate this probability
The statement that is correct is (D) We can use the binomial distribution with n = 100, k = 10, and p = 0.24 to calculate this probability.
The binomial distribution can be used to calculate the probability of a certain number of successes in a given number of trials, where each trial has a fixed probability of success.
The probability of a flight being delayed is 0.24, and the probability of a flight not being delayed is 0.76. Therefore, the probability of exactly 10 flights out of 100 being delayed can be calculated using the binomial distribution with n = 100, k = 10, and p = 0.24.
Learn more about binomial distribution here: https://brainly.com/question/30049535
#SPJ11
The net of a triangular prism is shown. a) Work out the length x. b) Work out the area of the shaded face. 3 cm 7 cm 5 cm 8 9 cm Not drawn accurately
The length of the side on the prism is 5cm. The area of the shaded region is 72 cm².
What is area?Area is the total amount of area occupied by a flat (2-D) surface or an object's shape. The area of a plane figure is the region that its boundary encloses. The quantity of unit squares that span a closed figure's surface is its area. Square units like cm² and m² are used to quantify area. A shape's area is a two-dimensional measurement.
The region inside the perimeter or boundary of a closed shape is referred to as the "area". Such a shape has at least three sides that can be joined together to create a boundary. The "area" formula is used in mathematics to describe this type of space symbolically.
In this figure,
The 5cm flap will be adjacent to the side x. Therefore,
Length of the side x= 5cm
Area of the shaded region= l×b
because the shaded region is a rectangle.
area= 9*x
=9*5= 45 cm²
To know more about area, visit
https://brainly.com/question/27683633
#SPJ1
What is the surface area?
5 yd
6 yd
5 yd
5 yd
4 yd
square yards
The surface area of the rectangular prism is 170 square yards.
What is the surface area formula?Surface area is the total area of a three-dimensional shape's surface. Add the areas of all six faces to find the surface area of a cuboid with six rectangular faces. Alternatively, label the cuboid's length (l), width (w), and height (h) and use the formula: surface area (SA)=2lw+2lh+2hw.
To calculate the surface area of the rectangular prism, add the areas of each of its faces.
The front and back faces are 5 yards by 6 yards in size, so each has an area of:
5 yards x 6 yards equals 30 square yards
The top and bottom faces are 5 yards by 5 yards, so each has an area of:
5 yards x 5 yards equals 25 square yards
The two side faces have dimensions of 6 yards by 5 yards, for a total area of:
30 square yards = 6 yards x 5 yards
As a result, the surface area of the rectangular prism is as follows:
Front face area plus back face area plus top face area plus bottom face area plus left side face area plus right side face area
= 30+30+25+25+30+30
= 170 square yards
As a result, the rectangular prism has a surface area of 170 square yards.
To know more about surface area visit:
hhttps://brainly.com/question/29298005
#SPJ1
By rounding to 1 significant figure , estimate the answer to the questions
216×876
The rounding of the number to 1 significant figure is-
216 × 876 = 180000
What is defined as the significant figure?The term significant figures describes the number of significant single digits (0 to several 9 inclusive) in a scientific notation coefficient.The number of significant figures inside an expression indicates the degree of certainty or precision with where an engineer or scientist states a number.All zeros to the right of the decimals but to the left of a non-zero number in a decimal number between 0 and 1 are not significant.0.00247, for example, only has three significant figures.216 × 876
This number can be written in form of rounding to 1 significant figure as;
200 × 900 = 180000
To know more about the significant figure, here
https://brainly.com/question/293578
a general principle in the field of tests and measurements is that longer tests tend to be more reliable than shorter ones. in your opinion, is that principle illustrated by the reliability coefficients shown in the table?
This principle is validated by the data shown in the table.
Tests and measurements is an essential aspect of the education process as it enables educators to gauge the level of knowledge and skills their students have acquired. The principle that longer tests tend to be more reliable than shorter ones has some merit because it allows educators to assess a broader range of skills and knowledge, which increases the validity of their assessments.In my opinion, the principle that longer tests tend to be more reliable than shorter ones is illustrated in the reliability coefficients shown in the table. This is because the data shows that the reliability coefficients for longer tests are consistently higher than those for shorter tests. Additionally, the results for the 10-item test indicate a higher reliability coefficient compared to the 5-item test, which supports the notion that longer tests are more reliable than shorter ones.The table displays that the longer tests have higher reliability coefficients compared to the shorter tests. For example, in the 5-item test, the reliability coefficient is .45, while the 10-item test's reliability coefficient is .73. This shows that the 10-item test is more reliable than the 5-item test, as the higher reliability coefficient indicates that the assessment is consistent in measuring the skill or knowledge it is intended to measure. As a result, this principle is validated by the data shown in the table.
Learn more about principle
brainly.com/question/30388578
#SPJ11
1) Adam wants to buy a home priced at $215,000. The bank requires him to make a 5% down payment and
he will finance the rest for 30 years at 4.5% interest. He has to also pay the closing costs below. Find the
a) the down payment b) the amount of the mortgage c) the closing costs d) the amount financed with
closing costs e) the monthly payment f) the total amount repaid g) the amount paid to interest.
Application Fee
Borrower's Credit check
Points
Appraisal Fee
Title Search
Title Insurance
Attorney Fee
Documentation stamp
Processing fee
$ 25
65
1.5% of Mortgage
350
215
450
400
0.30% of Mortgage
1.25% of Mortgage
Jason and Scott plan on biking to the center of town to get ice cream at the convenience store. Since Scott
had to put air in his tires, Jason was able to get 1 mile ahead of Scott before Scott left the house. Both
bikers rode at a speed of 15 miles per hour.
Write an equation in y = mx + b form that represents Jason's trip. Jason =
a.
Write an equation in y = mx + b form that represents Scott's trip.
Will Jason and Scott meet before they both reach the store? Explain.
If you were to graph both lines on the same coordinate plane, predict what your graph would look
like.
Answer:
a. Jason's equation in y = mx + b form is y = 15x + 1.
b. Scott's equation in y = mx + b form is y = 15x.
Since both are moving at the same speed, they will meet at the point where their distances from the starting point are the same. Let d be the distance from Scott's starting point to the store. Then, the distance from Jason's starting point to the store is d + 1. Using the formula distance = rate × time, we can set up an equation:
15t = d
15t - 1 = d + 1
Solving for t in both equations, we get t = d/15 and t = (d+2)/15, respectively. Equating these expressions for t, we get d/15 = (d+2)/15, which simplifies to d = -2. This means that they will not meet before reaching the store, as Jason is already 1 mile ahead of Scott and will stay ahead throughout the trip.
If we were to graph both lines on the same coordinate plane, we would have two parallel lines with a slope of 15, where Jason's line would intersect the y-axis at 1.
Write 2/7 + 1/4 as a sum of two equivalent fractions with the same denominator
2/7 + 1/4 = 15/28 ≅ 0.5357143
Add: 2/7 + 1/4 = 2 · 4/7 · 4 + 1 · 7/4 · 7 = 8/28 + 7/28 = 8 + 7/28 = 15/28
It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(7, 4) = 28. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 7 × 4 = 28. In the following intermediate step, it cannot further simplify the fraction result by canceling.In other words - two sevenths plus one quarter is fifteen twenty-eighths.
National Collegiate Athletic Association (NCAA) statistics show
that for every 75,000 high school seniors playing basketball, about 2250 play
college basketball as first-year students. Write the ratio of the number of first-
year students playing college basketball to the number of high school seniors
playing basketball.
Answer: 100:3
Step-by-step explanation:
Answer:
the ratio of first-year college basketball players to high school seniors playing basketball is 3:100.
Step-by-step explanation:
The problem states that for every 75,000 high school seniors playing basketball, about 2,250 play college basketball as first-year students. To write the ratio of first-year college basketball players to high school seniors playing basketball, we need to compare the two quantities.
The ratio is a way of expressing the relationship between two numbers as a fraction or a pair of numbers separated by a colon (:). In this case, we want to express the ratio of the number of first-year college basketball players to the number of high school seniors playing basketball.
To write the ratio, we start by putting the number of first-year college basketball players (2,250) in the numerator of a fraction. We put the number of high school seniors playing basketball (75,000) in the denominator of the same fraction.
So the ratio can be expressed as:
2,250/75,000
To simplify this fraction, we can divide both the numerator and denominator by a common factor. In this case, both 2,250 and 75,000 are divisible by 750. Dividing both numbers by 750 gives:
2,250/75,000 = 3/100
thanks if you answer
Answer:
[tex]{ \sf{ = 41 \times 100 + 41 \times { \boxed{2}}}} \\ \\ = { \sf{ \boxed{4100} + { \boxed{82}}}} \\ \\ = { \sf{ \boxed{4182}}}[/tex]
Answer:
A- 2
B- 4,100
C- 82
D- 4,182
Line A has a y-intercept of 3 and is perpendicular to the line given by
y = 5x + 2.
What is the equation of line A?
Give your answer in the form y = mx + c, where m and c are integers or
fractions in their simplest forms.
Answer:
Step-by-step explanation:
The given line is y = 5x + 2. We know that any line perpendicular to this line will have a slope that is negative reciprocal of 5. The negative reciprocal of 5 is -1/5.
Line A is perpendicular to y = 5x + 2, so it has a slope of -1/5. We also know that the y-intercept of line A is 3. Therefore, the equation of line A can be written as:
y = (-1/5)x + 3
or in the form y = mx + c, where m = -1/5 and c = 3.
Laura has done a two-factor factorial completely randomized design. From her experiment, Laura has constructed the following incomplete ANOVA display: Source SS DF MS F A 350.00 2 B 300.00 150 AB 200.00 50 Error 150.00 Total 1000.00 18 a. How many levels of factor B did she use in the experiment? b. How many degrees of freedom are associated with interaction? c. The error mean square is d. The mean square for factor A is e. How many replicates of the experiment were conducted? f. What are your conclusions about interaction and the two main effects? g. An estimate of the standard deviation of the response variable is h. If this experiment had been run in blocks (CRBD) there would have been degrees of freedom for blocks.
a. Two levels of factor B were used in the experiment.
b. The degrees of freedom associated with interaction are 50.
c. The error mean square is 6.00. d. The mean square for factor A is 175.00.e. The experiment was conducted with three replicates.f. The interaction is significant. Factor A is significant. Factor B is not significant.g. An estimate of the standard deviation of the response variable is 2.449. h. If the experiment had been run in blocks (CRBD) there would have been 12 degrees of freedom for blocks.Solution:Factorial design: A factorial design is an experimental design that consists of two or more factors, each with two or more levels, and each subject is assigned to one and only one level of each factor. The objective of a factorial experiment is to analyze the effect of each factor on the response variable and to examine if there is any interaction between factors.a. Two levels of factor B were used in the experiment.b. Interaction degrees of freedom = AB = 50.c.
Mean square for error: MSE = 150/10 = 15.d. Mean square for factor A: MS(A) =[tex]SSA/dfA = 350/2 = 175.e.\\[/tex] Three replicates were conducted (from the error df = 10).f. Interaction is significant. Factor A is significant. Factor B is not significant.g. Estimate of the standard deviation of the response variable: sqrt(15/2) = 2.449.h. If the experiment had been conducted in a CRBD, there would have been 12 degrees of freedom for the block.
for such more questions on standard deviation
https://brainly.com/question/475676
#SPJ11
a box contains 75 red marbles, 37 white marbles, and 19 blue marbles if a marble is randomly selected from the box, what's the probability that it is not blue
The probability that it the marble taken out of the box is not blue is [tex]\frac{112}{131}[/tex].
What is the probability?Probability is a branch of math that studies the chance or likelihood of an event occurring.
There are [tex]75[/tex] red marbles, [tx]37[/tex] white marbles, and [tex]19[/tex] blue marbles.
If a marble is randomly selected from the box, we have to find the probability that it is not blue.
Then the total number of marbles = [tex]75 + 37 + 19 = 131.[/tex]
The probability that a marble is not blue:-
[tex]P[/tex](Not blue) = [tex]P[/tex](Red or White)
[tex]P[/tex](Red or White) = [tex]\frac{(75 + 37)}{131}[/tex]
[tex]P[/tex](Red or White) = [tex]\frac{112}{ 131}[/tex]
[tex]P[/tex](Not blue) = [tex]1 - P[/tex](Blue)
[tex]P[/tex](Not blue) = [tex]1 - \frac{19}{131}[/tex]
[tex]P[/tex](Not blue) = [tex]\frac{112}{ 131}[/tex]
Therefore, the probability that a marble selected from the box is not blue is [tex]\frac{112}{131}[/tex].
Learn more about Probability here:
https://brainly.com/question/30034780
#SPJ11
The perimeter of a rectangular map of the world is 270 cm. It is 90 cm in height. How wide is it?
Answer:
The perimeter of a rectangle is given by:
P = 2(L + W)
where P is the perimeter, L is the length, and W is the width.
In this case, we know that P = 270 cm and L = 90 cm, so we can solve for W as follows:
270 = 2(90 + w)
Divide both sides by 2:
135 = 90 + w
Subtract 90 from both sides:
w = 45
Therefore, the width of the map is 45 cm.
Step-by-step explanation:
In a distribution of 387 values with a mean of 72, at least 344 fall within the interval 64-80. Approximately what percentage of values should fall in the interval 56-88? Use Chebyshev’s theorem. Round your k and s values to one decimal place and final answer to two decimal places.
The required percentage of values that should fall in the interval 56-88 is approximately 74.37%.
Chebyshev’s Theorem:Chebyshev's Theorem states that, for any given data set, the proportion (or percentage) of data points that lie within k standard deviations of the mean must be at least (1 - 1/k2), where k is a positive constant greater than 1.Calculation:Given,Mean (μ) = 72N (Total number of values) = 387Interval (x) = 64-80 and 56-88Minimum values (n) = 344Minimum percentage (p) = (344 / 387) x 100 = 88.85%From the given data we have,1. Calculate the variance of the distribution,Variance = σ2 = [(n × s2 ) / (n-1)]σ2 = [(344 × 42) / 386]σ2 = 18.732. Calculate the standard deviation of the distribution,σ = √(18.73)σ = 4.33. Calculate k = (|x - μ|) / σ for the given interval 56-88,Here, x1 = 56, x2 = 88, k1 = |56-72| / 4.33 = 3.7, k2 = |88-72| / 4.33 = 3.7Thus, k = 3.74. Calculate the minimum percentage of values within the interval 56-88 using Chebyshev's Theorem,p = [1 - (1/k2)] x 100p = [1 - (1/3.7)2] x 100p = 74.37% (approximately)Therefore, the required percentage of values that should fall in the interval 56-88 is approximately 74.37%.
Learn more about Percentage
brainly.com/question/2155156
#SPJ11
Determine what number to multiply the first equation by to form opposite terms for the x-variable.
2
5
x + 6y = -10
–2x – 2y = 40
Multiplying the first equation by
will create opposite x terms
To create opposite x terms, we need to multiply the first equation by -5.
How to choose what term to multiply the first equation?
To choose what term to multiply the first equation, we need to consider the coefficients of the variable that we want to eliminate (in this case, the x variable) in both equations. Our goal is to create opposite terms for that variable in the two equations, so that when we add or subtract the equations, that variable will be eliminated.
Determining the number to multiply the first equation by to form opposite terms for the x-variable :
In this case, the coefficient of x in the first equation is 2/5, and the coefficient of x in the second equation is -2.
To create opposite terms for x, we need to find a constant that, when multiplied by the first equation, will result in a coefficient of x that is the negative of the coefficient of x in the second equation (i.e., -2).
To do this, we can divide the coefficient of x in the second equation by the coefficient of x in the first equation, and then multiply the entire first equation by the resulting constant.
In this case, we have:
[tex](-2)/(2/5) = -5[/tex]
Multiplying the first equation by -5 gives:
[tex]-5(2/5)x + (-5)6y = -5(-10)[/tex]
which simplifies to:
[tex]-2x - 30y = 50[/tex]
Now we have two equations with opposite x terms:
[tex]-2x - 4y = 40[/tex]
[tex]-2x - 30y = 50[/tex]
To know more about equations visit :
brainly.com/question/17149704
#SPJ1
A triangle is equal in area to a rectangle which measures 10cm by 9cm. If the base of the triangle is 12cm long, find its altitude
Answer:
h = 15 cm
Step-by-step explanation:
Area of triangle equals the area of rectangle. As the dimensions of the rectangle is given, we can first find the area of the rectangle.
[tex]\boxed{\bf Area \ of \ the \ rectangle = length * width}[/tex]
= 10 * 9
= 90 cm²
Area of triangle = area of rectangle
= 90 cm²
base of the triangle = b = 12 cm
[tex]\boxed{\bf Area \ of \ triangle = \dfrac{1}{2}bh}[/tex] where h is the altitude and b is the base.
[tex]\bf \dfrac{1}{2} b* h = 90 \\\\\dfrac{1}{2}*12* h = 90[/tex]
[tex]\bf h = \dfrac{90*2}{12}\\\\\boxed{\bf h = 15 \ cm}[/tex]
find the smallest value of n that you can for which s n has an element of order greater than or equal to 100
The smallest value of `n` for which `S_n` has an element of order greater than or equal to 100 is 101.
To determine the smallest value of n for which S_n has an element of order greater than or equal to 100, we can use the formula
S_n = n!/r!(n - r)!,
where n is the number of elements in the set, and r is the number of elements being chosen at a time.
Given, S_n has an element of order greater than or equal to 100. The smallest value of n should be determined.
The formula for the number of permutations in a set with n elements is given by, `S_n = n!/r!(n - r)!`
where `n` is the number of elements in the set and `r` is the number of elements being chosen at a time.
The element of order `n` in `S_n` is an `n` cycle. For `n = 100`, we have an element of order 100.
This element can be expressed as `(1 2 3 ... 99 100)`. Thus, `r = 100`.
Substituting these values in the formula of S_n we get, S_n = n!/r!(n - r)! => n!/(100!(n - 100)!)
Now, we have to find the smallest value of n for which S_n has an element of order greater than or equal to 100. If we substitute `n = 100`, then we will have an element of order 100. But the question asks for the smallest value of n. So, if we substitute `n = 101`, we will have an element of order `101`. Hence, the smallest value of `n` for which `S_n` has an element of order greater than or equal to 100 is 101.
To know more about the smallest value: https://brainly.com/question/31133248
#SPJ11
What property of real numbers does each statement demonstrate? (3 + 4) + 1 = 3 + (4 + 1)
Answer: Associative property
Step-by-step explanation:
The definition of the associative property is the answer is the same no matter how the terms are grouped. Hope this helped!
Write the equation of a line perpendicular to `y=3` that goes through the point (-5, 3).
Answer:
The equation of a line perpendicular to y=3 that goes through the point (-5, 3) is: x = -5.
Step-by-step explanation:
To find the equation of a line perpendicular to y=3 that goes through the point (-5, 3), we need to remember that the slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line.
The equation y=3 is a horizontal line that goes through the point (0,3), and its slope is zero. The negative reciprocal of zero is undefined, which means that the line perpendicular to y=3 is a vertical line.
To find the equation of this vertical line that goes through the point (-5, 3), we can start with the point-slope form of a linear equation:
y - y1 = m(x - x1)
where m is the slope of the line and (x1, y1) is a point on the line. Since the line we want is vertical, its slope is undefined, so we can't use the point-slope form directly. However, we can still write the equation of the line using the point (x1, y1) that it passes through. In this case, (x1, y1) = (-5, 3).
The equation of the vertical line passing through the point (-5, 3) is:
x = -5
This equation tells us that the line is vertical (since it doesn't have any y term) and that it goes through the point (-5, 3) (since it has x=-5).
So, the equation of a line perpendicular to y=3 that goes through the point (-5, 3) is x = -5.
Answer:
x= -5
Step-by-step explanation:
The perpendicular line is anything with x= __.
x= -5 however, will go through the point (-5, 3) and that is our answer.
Can someone help me with this math problem pls! #Percents
Answer: $3.64
Step-by-step explanation:
At the store, you buy four toys for $1.5, which means you pay $1.5 * 4, or $6.
Then, you calculate the sales tax, which is 6%, which means you multiply $6 by (100% + 6%), or $6*(1.06) which is $6.36.
Finally, if you hand the cashier $10, and you spent $6.36, your change is $10 - $6.36, which is $3.64.
I NEED YOUR HELP ASAP!!
To create a modified box plot for a data set, determine the outliers of the data set and the smallest and largest numbers in the data set that are not outliers. Next, determine the median of the first half of the data set, the median of the entire data set, and the median of the second half of the data set.
What are the values that are needed to create a modified box plot for this data set?
19, 15, 22, 35, 16, 22, 4, 22, 24, 16, 17, 21
Enter your answers in the blanks in order from least to greatest.
Smallest number in the data set that is not an outlier is 15, Median of the first half is 17, Median of the entire data set is 20.5. Median of the second half is 22. Largest number in the data set that is not an outlier is 35.
Give a short note on Median?
In statistics, the median is a measure of central tendency that represents the middle value in a dataset. To find the median, the data must first be sorted in ascending or descending order. If the dataset contains an odd number of values, the median is the middle value. If the dataset contains an even number of values, the median is the average of the two middle values.
The median is a useful measure of central tendency in datasets that are skewed or have outliers, as it is less sensitive to extreme values than the mean. It is also useful in datasets with non-numeric values, such as rankings or survey responses.
To create a modified box plot, we need the following values:
The smallest number in the data set that is not an outlier: 15
The median of the first half of the data set: 17
The median of the entire data set: 20.5
The median of the second half of the data set: 22
The largest number in the data set that is not an outlier: 35
So the values needed to create a modified box plot for this data set are: 15, 17, 20.5, 22, 35.
Polynomial question
I don't understand this working
Why is b = d = 0 if the function is even?
Please explain the steps to solve a question like this.
To understand why b = d = 0 if the function is even, we need to consider the definition of an even function.Therefore If P(x) is an even function, then b = d = 0.
What is Polynomial?A polynomial is a mathematical expression that consists of variables and coefficients, combined using the operations of addition, subtraction, and multiplication. It can have one or more terms and can be of any degree.
An even function is a function that satisfies the condition f(x) = f(-x) for all x in the domain of the function.
If P(x) is an even function, then we have P(x) = P(-x) for all x. Substituting -x for x in the expression for P(x), we get:
P(-x) = a(-x)⁴ + b(-x)³ + c(-x)² + d(-x) + e
= a(x⁴) - b(x³) + c(x²) - d(x) + e
Since P(x) = P(-x), we can equate the two expressions for P(x) and P(-x) to get:
a(x⁴) + b(x⁴) + c(x²) + d(x) + e = a(x⁴) - b(x³) + c(x²) - d(x) + e
Simplifying this equation, we get:
2b(x³) + 2d(x) = 0
Since this equation holds for all values of x, we can set x = 0 to get:
2d(0) = 0
which implies that d = 0. Similarly, setting x = 1, we get:
2b(1³) + 2d(1) = 0
2b = 0
b = 0
To know more about function visit:
https://brainly.com/question/29124137
#SPJ1