A metal sample of mass M requires a power input P to just remain molten. When the heater is turned off, the metal solidifies in a time T. The heat of fusion of this metal is

Answers

Answer 1

Answer:

L = Pt/M

Explanation:

Power, P= Q/t = mL/t

we know that, (Q=m×l)

Now ⇒l= Pt/M

Thus l= Pt/M


Related Questions

Sammy is 5 feet and 5.3 inches tall. What is Sammy's height in inches? ​

Answers

Answer:

[tex]\boxed{\sf 65.3 \ inches}[/tex]

Explanation:

1 foot = 12 inches

Sammy is 5 feet tall.

5 feet = ? inches

Multiply the feet value by 12 to find in inches.

5 × 12

= 60

Add 5.3 inches to 60 inches.

60 + 5.3

= 65.3

65.3 Inches.
12 (1 Foot) X 5= 60 + 5.3 = 65.3

Suppose you exert a force of 185 N tangential to the outer edge of a 1.73-m radius 76-kg grindstone (which is a solid disk).

Required:
a. What torque is exerted?
b. What is the angular acceleration assuming negligible opposing friction?
c. What is the angular acceleration if there is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

Answers

Answer:

a. 320.06 Nm b. 2.814 rad/s² c. 2.811 rad/s².

Explanation:

a. The torque exerted τ = Frsinθ where F = tangential force exerted = 185 N, r = radius of grindstone = 1.73 m and θ = 90° since the force is tangential to the grindstone.

τ = Frsinθ

= 185 N × 1.73 m × sin90°

= 320.05 Nm

So, the torque τ = 320.05 Nm

b. Since torque τ = Iα where I = moment of inertia of grindstone = 1/2MR² where M = mass of grindstone = 76 kg and R = radius of grindstone = 1.73 m

α = angular acceleration of grindstone

τ = Iα

α = τ/I = τ/(MR²/2) = 2τ/MR²

substituting the values of the variables, we have

α = 2τ/MR²

= 2 × 320.05 Nm/[76 kg × (1.73 m)²]

= 640.1 Nm/227.4604 kgm²

= 2.814 rad/s²

So, the angular acceleration α = 2.814 rad/s²

c. The opposing frictional force produces a torque τ' = F'r' where F' = frictional force = 20.0 N and r' = distance of frictional force from axis = 1.50 cm = 0.015 m.

So  τ' = F'r' = 20.0 N × 0.015 m = 0.3 Nm

The net torque on the grindstone is thus τ'' = τ - τ' = 320.05 Nm - 0.3 Nm = 319.75 Nm

Since τ'' = Iα

α' = τ''/I where α' = its new angular acceleration

α' = 2τ/MR²

= 2 × 319.75 Nm/[76 kg × (1.73 m)²]

= 639.5 Nm/227.4604 kgm²

= 2.811 rad/s²

So, the angular acceleration α' = 2.811 rad/s²

A viewing screen is separated from a double slit by 5.20 m. The distance between the two slits is 0.0300 mm. Monochromatic light is directed toward the double slit and forms an interference pattern on the screen. The first dark fringe is 3.70 cm from the center line on the screen.

Required:
a. Determine the wavelength of light.
b. Calculate the distance between the adjacent bright fringes.

Answers

Answer:

The wavelength of this light is approximately [tex]427\; \rm nm[/tex] ([tex]4.27\times 10^{-7}\; \rm m[/tex].)The distance between the first and central maxima is approximately [tex]7.40\; \rm cm[/tex] (about twice the distance between the first dark fringe and the central maximum.)  

Explanation:

Wavelength

Convert all lengths to meters:

Separation of the two slits: [tex]0.0300\; \rm mm = 3.00\times 10^{-5}\; \rm m[/tex].Distance between the first dark fringe and the center of the screen: [tex]3.70\; \rm cm = 3.70\times 10^{-2}\; \rm m[/tex].

Refer to the diagram attached (not to scale.) Assuming that the screen is parallel to the line joining the two slits. The following two angles are alternate interior angles and should be equal to each other:

The angle between the filter and the beam of light from the lower slit, andThe angle between the screen and that same beam of light.

These two angles are marked with two grey sectors on the attached diagram. Let the value of these two angles be [tex]\theta[/tex].

The path difference between the two beams is approximately equal to the length of the segment highlighted in green. In order to produce the first dark fringe from the center of the screen (the first minimum,) the length of that segment should be [tex]\lambda / 2[/tex] (one-half the wavelength of the light.)

Therefore:

[tex]\displaystyle \cos \theta \approx \frac{\text{Path difference}}{\text{Slit separation}} = \frac{\lambda / 2}{3.00\times 10^{-5}\; \rm m}[/tex].

On the other hand:

[tex]\begin{aligned} \cot \theta &\approx \frac{\text{Distance between central peak and first minimum}}{\text{Distance between the screen and the slits}} \\ &= \frac{3.70\times 10^{-2}\; \rm m}{5.20\; \rm m} \approx 0.00711538\end{aligned}[/tex].

Because the cotangent of [tex]\theta[/tex] is very close to zero,

[tex]\cos \theta \approx \cot \theta \approx 0.00711538[/tex].

[tex]\displaystyle \frac{\lambda /2}{3.00\times 10^{-5}\; \rm m} \approx \cos\theta\approx 0.00711538[/tex].

[tex]\begin{aligned}\lambda &\approx 2\times 0.00711538 \times \left(3.00\times 10^{-5}\; \rm m\right) \\ &\approx 4.26 \times 10^{-7}\; \rm m = 426\; \rm nm\end{aligned}[/tex].

Distance between two adjacent maxima

If the path difference is increased by one wavelength, then the intersection of the two beams would move from one bright fringe to the next one.

The path difference required for the central maximum is [tex]0[/tex].The path difference required for the first maximum is [tex]\lambda[/tex].The path difference required for the second maximum is [tex]2\,\lambda[/tex].

On the other hand, if the distance between the maximum and the center of the screen is much smaller than the distance between the screen and the filter, then:

[tex]\begin{aligned}&\frac{\text{Distance between image and center of screen}}{\text{Distance between the screen and the slits}} \\ &\approx \cot \theta \\ &\approx \cos \theta \\ &\approx \frac{\text{Path difference}}{\text{Slit separation}}\end{aligned}[/tex].

Under that assumption, the distance between the maximum and the center of the screen is approximately proportional to the path difference. The distance between the image (the first minimum) and the center of the screen is [tex]3.70\; \rm cm[/tex] when the path difference is [tex]\lambda / 2[/tex]. The path difference required for the first maximum is twice as much as that. Therefore, the distance between the first maximum and the center of the screen would be twice the difference between the first minimum and the center of the screen: [tex]2 \times 3.70\; \rm cm = 7.40\; \rm cm[/tex].

A father and his son want to play on a seesaw. Where on the seesaw should each of them sit to balance the torque?

Answers

Answer:

A The father should sit closer to the pivot.

C The longer wrench makes the job easier because less force is needed when there is more distance from the pivot.

A As far from the head of the hammer as possible because this will maximize torque.

D at the opposite side of the seesaw towards the middle

:) gl

Explanation:

If a father and his son want to play on a seesaw then to balance the torque of the seesaw the father should sit near the pivot as he had more weight as compared to his son, while the son should sit a little farther from the pivot point as compared to his father.

What is the mechanical advantage?

Mechanical advantage is defined as a measure of the ratio of output force to input force in a system, It is used to analyze the forces in simple machines like levers and pulleys.

Mechanical advantage = output force(load) /input force (effort)

As given in the problem statement If a father and his son wish to play on a seesaw,

The father should sit close to the pivot because he weighs more than his son, and the son should sit a little farther away from the pivot point than his father. This will help balance the torque of the seesaw.

Thus, the father should sit near the pivot on the one side and the son should sit a little farther from the pivot of a seesaw on the other side.

Learn more about Mechanical advantages, here

brainly.com/question/16617083

#SPJ2

g Two point sources emit sound waves of 1.0-m wavelength. The source 1 is at x = 0 and source 2 is at x = 2.0 m along x-axis. The sources, 2.0 m apart, emit waves which are in phase with each other at the instant of emission. Where, along the line between the sources, are the waves out of phase with each other by π radians?

Answers

Answer:

constructive interferencia  0, 1 , 2 m

destructive inteferencia   1/4, 3/4. 5/4, 7/4 m

Explanation:

This exercise is equivalent to the double slit experiment, the two sources are in phase and separated by a distance, therefore the waves observed in the line between them have an optical path difference and a phase difference, given by the expression

            Δr / λ = Φ / 2π

            Δr = Φ/2π   λ

let's apply this expression to our case

λ = 1 m

            Δr = Φ 1 / 2π

We have constructive interference for angle of  Φ = 0, 2π, ...

let's find the values ​​where they occur

  Φ         Δr

   0          0

  2π         1

  4π        2

Destructive interference occurs by    Φ = π /2, 3π / 2, ...

 Φ          Δr

 π/2       ¼ m

 3π /2    ¾ m

5π /2     5/4 m

7π /2      7/4 m

A circular coil of wire 8.40 cm in diameter has 17.0 turns and carries a current of 3.20 A . The coil is in a region where the magnetic field is 0.610 T.Required:a. What orientation of the coil gives the maximum torque on the coil ?b. What is this maximum torque in part (A) ?c. For what orientation of the coil is the magnitude of the torque 71.0 % of the maximum found in part (B)?

Answers

Answer:

a) for the torque to be maximum, sin should be maximum

i.e (sinФ)maximum = 1

b) therefore the Maximum torque is

Tmax = 0.1838 × 1 = 0.1838  N.m

c) Given the torque is 71.0% of its maximum value; Ф  = 45.24⁰ ≈ 45⁰

Explanation:

Given that; Diameter is 8.40 cm,

Radius (R) = D/2 = 8.40/2 = 4.20 cm = 0.042 m

Number of turns (N) = 17

Current in the loop (I) = 3.20 A

Magnetic field (B) = 0.610 T

Let the angle between the loop's area vector A and the magnetic field B be

Now. the area of the loop is;

A = πR²

A = 3.14 ( 0.042 )²

A =  0.005539 m²

Torque on the loop (t) = NIABsinФ

t = 17 × 3.20 ×0.005539 × 0.610 × sinФ

t = 0.1838sinФ N.m

for the torque to be maximum, sin should be maximum

i.e (sinФ)maximum = 1

therefore the Maximum torque is

Tmax = 0.1838 × 1 = 0.1838  N.m

Given the torque is 71.0% of its maximum value

t = 0.71 × tmax

t = 0.71 × 0.1838

t = 0.1305

Now

0.1305 N.m =  0.1838 sinФ N.m

sinФ = 0.1305 / 0.1838

sinФ = 0.71001

Ф = sin⁻¹ 0.71001

Ф  = 45.24⁰ ≈ 45⁰

n ultraviolet light beam having a wavelength of 130 nm is incident on a molybdenum surface with a work function of 4.2 eV. How fast does the electron move away from the metal

Answers

Answer:

The speed of the electron is 1.371 x 10 m/s.

Explanation:

Given;

wavelength of the ultraviolet light beam, λ = 130 nm = 130 x 10⁻⁹ m

the work function of the molybdenum surface, W₀ = 4.2 eV = 6.728 x 10⁻¹⁹ J

The energy of the incident light is given by;

E = hf

where;

h is Planck's constant = 6.626 x 10⁻³⁴ J/s

f = c / λ

[tex]E = \frac{hc}{\lambda} \\\\E = \frac{6.626*10^{-34} *3*10^{8}}{130*10^{-9}} \\\\E = 15.291*10^{-19} \ J[/tex]

Photo electric effect equation is given by;

E = W₀ + K.E

Where;

K.E is the kinetic energy of the emitted electron

K.E = E - W₀

K.E = 15.291 x 10⁻¹⁹ J - 6.728 x 10⁻¹⁹ J

K.E = 8.563 x 10⁻¹⁹ J

Kinetic energy of the emitted electron is given by;

K.E = ¹/₂mv²

where;

m is mass of the electron = 9.11 x 10⁻³¹ kg

v is the speed of the electron

[tex]v = \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2*8.563*10^{-19}}{9.11*10^{-31}}}\\\\v = 1.371 *10^{6} \ m/s[/tex]

Therefore, the speed of the electron is 1.371 x 10 m/s.

g A solenoid 63.5 cm long has 960 turns and a radius of 2.77 cm. If it carries a current of 2.28 A, find the magnetic field along the axis at its center.Find the magnetic field on the solenoidal axis at the end of the solenoid.

Answers

Answer:

The  value is  [tex]B = 0.0043 \ T[/tex]

Explanation:

From the question we are told that

   The  length of the solenoid is  [tex]l = 63.5 = 0.635 \ m[/tex]

    The number of turns is  [tex]N = 960 \ turns[/tex]

    The  current is  [tex]I = 2.28 \ A[/tex]

Generally the magnetic field is mathematically represented as

      [tex]B = \mu _o * n * I[/tex]

Where  n is the number of turn per unit length which is mathematically evaluated as

      [tex]n = \frac{N}{l}[/tex]

     [tex]n = \frac{960}{0.635}[/tex]

     [tex]n = 1512 \ turns /m[/tex]

and  [tex]\mu_o[/tex] is the permeability of free space with value  [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

So  

    [tex]B = 4\pi * 10^{-7} * 1512 * 2.28[/tex]

    [tex]B = 0.0043 \ T[/tex]

     

A 120-V rms voltage at 60.0 Hz is applied across an inductor, a capacitor, and a resistor in series. If the peak current in this circuit is 0.8484 A, what is the impedance of this circuit?
A) 200 Ω
B) 141 Ω
C) 20.4 Ω
D) 120 Ω
E) 100 Ω

Answers

Answer:A  200

Explanation:

Vp=1.41*Vrms

Vp=169.7 v

Z=Vp/Ip

Z=169.7/.8484

Z=200.03 ohm

A particle moves along line segments from the origin to the points (1, 0, 0), (1, 5, 1), (0, 5, 1), and back to the origin under the influence of the force field. F(x, y, z)= z^2i + 4xyj + 5y^2kFind the work done.

Answers

Answer:

0 J

Explanation:

Since work done W = ∫F.dr and F(x, y, z)= z²i + 4xyj + 5y²k and dr = dxi + dyj + dzk

F.dr = (z²i + 4xyj + 5y²k).(dxi + dyj + dzk) = z²dx + 4xydy + 5y²dz

W = ∫F.dr = ∫z²dx + 4xydy + 5y²dz = z²x + 2xy² + 5y²z

We now evaluate the work done for the different regions

W₁ = work done from (0,0,0) to (1,0,0)

W₁ = {z²x + 2xy² + 5y²z}₀₀₀¹⁰⁰ = 0²(1) + 2(1)(0)² + 5(0)²(0) - [(0)²(0) + 2(0)(0)² + 5(0)²(0)] = 0 - 0 = 0 J

W₂ = work done from (1,0,0) to (1,5,1)

W₂ = {z²x + 2xy² + 5y²z}₁₀₀¹⁵¹ =   (1)²(1) + 2(1)(5)² + 5(5)²(1) - [0²(1) + 2(1)(0)² + 5(0)²(0)] =  1 + 50 + 125 - 0 = 176 J

W₃ = work done from (1,5,1) to (0,5,1)

W₃ = {z²x + 2xy² + 5y²z}₁₅₁⁰⁵¹ =   1²(0) + 2(0)(5)² + 5(5)²(1) - [(1)²(1) + 2(1)(5)² + 5(5)²(1)]  = 125 - (1 + 50 + 125) = 125 - 176 = -51 J

W₄ = work done from (0,5,1) to (0,0,0)

W₄ = {z²x + 2xy² + 5y²z}₁₅₁⁰⁰⁰ =   (0)²(0) + 2(0)(0)² + 5(0)²(0) - [1²(0) + 2(0)(5)² + 5(5)²(1)] = 0 - 125 = -125 J

The total work done W is thus

W = W₁ + W₂ + W₃ + W₄

W = 0 J + 176 J - 51 J - 125 J

W = 176 J - 176 J

W = 0 J

The total work done equals 0 J

In Young's experiment a mixture of orange light (611 nm) and blue light (471 nm) shines on the double slit. The centers of the first-order bright blue fringes lie at the outer edges of a screen that is located 0.497 m away from the slits. However, the first-order bright orange fringes fall off the screen. By how much and in what direction (toward or away from the slits) should the screen be moved, so that the centers of the first-order bright orange fringes just appear on the screen

Answers

Answer:

0.5639m

Explanation:

For a young double slit experiment the expression below gives the angular separation for m dark fringe having slit width d and wavelength λ

=sin⁻¹(mλ/d)

mλ /d =y/L

for the first order,

y= mλL/d

For ratio separation y₀/yD=1 and d= 1

y₀/yD= [mλ ₀L₀/d]/[mλD.LD./d]

1=λ ₀L₀/λD.LD.

λD.LD= λ ₀L₀

L₀= λD.LD/ λ ₀..............(1)

Then substitute the given values into (1) we have

L₀=471 *0.497/611

= 0.3831m

Distance by which the screen has to be moved towards the slit is

LD- Lo

0.947-0.3831= 0.5639m

What happens to the magnetic field when you reverse the direction of current by sliding the battery voltage bar past 0 volts

Answers

Answer:

The polarity of the magnetic field changes

Explanation:

This because The magnetic field generated is always perpendicular to the direction of the current and parallel to the solonoid. Hence if we reverse the current the direction of magnetism also reverses. In other words the magnetic poles gets reversed (North pole becomes south pole and the south pole becomes the north pole)


Somebody please help it’s urgent!!!!

In the tug of war game, none of the teams won. What can you conclude about the forces of the two teams ? Write all the evidence to support your answer.

Answers

Answer:

Explanation:

We can conclude that the forces of the two teams are equal and opposite and hence they cancel each other. Therefore none of the teams won as the rope did not move.

hope this helps

plz mark as brainliest!!!!!!!

A competitive diver leaves the diving board and falls toward the water with her body straight and rotating slowly. She pulls her arms and legs into a tight tuck position. What happens to her rotational kinetic energy

Answers

Answer: her rotational kinetic energy increases

In an experiment to measure the wavelength of light using a double slit, it is found that the fringes are too close together to easily count them. To spread out the fringe pattern, one could

Answers

Answer:

halve the slit separation

Explanation:

As we know that

In YDS experiment, the equation of fringe width is as follows

[tex]\beta = \frac{\lambda D}{d}[/tex]

where,

D denotes the separation in the middle of screen and slits

d denotes the distance in the middle of two slits

And to increase the Δx we have to decrease the d i.e, the distance between the two slits

Hence, the first option is correct

What happens to the deflection of the galvanometer needle (due to moving the magnet) when you increase the number of loops

Answers

Answer:

If the magnet is moved, the galvanometer needle will deflect, showing that current is flowing through the coil which will increase total induced electromotive force

Explanation:

galvanometer is an instrument that can detect and measure small current in an electrical circuit.

If the magnet is moved, the galvanometer needle will deflect, showing that current is flowing through the coil. If it is move in a way into the coil,the needle deflect in that way and if it move in another way, it will deflect in the other way.

The total induced emf is equal to the emf induced in each loop by the changing magnetic flux, then multiplied by the number of loops and an increase in the number of loops will cause increase in the total induced emf.

If one could transport a simple pendulum of constant length from the Earth's surface to the Moon's, where acceleration due to gravity is one-sixth (1/6) that on the Earth, by what factor would be the pendulum frequency be changed

Answers

Answer:

The frequency will change by a factor of 0.4

Explanation:

T = 2(pi)*sqrt(L/g)

Since g(moon) = (1/6)g(earth), the period would change by sqrt[1/(1/6)] = sqrt(6) ~ 2.5 times longer on the moon. Since the period & frequency are inverses, the frequency would be 1/2.5 or 0.4 times shorter on the moon.

A string is stretched and fixed at both ends, 200 cm apart. If the density of the string is 0.015 g/cm, and its tension is 600 N, what is the wavelength (in cm) of the first harmonic?

Answers

Answer:

200cm

Explanation:

Answer:

100cm

Explanation:

Using

F= ( N/2L)(√T/u)

F1 will now be (0.5*2)( √600/0.015)

=> L( wavelength)= 200/2cm = 100cm

You plan to take your hair blower to Europe, where the electrical outlets put out 240 V instead of the 120 V seen in the United States. The blower puts out 1700 W at 120 V.Required:a. What could you do to operate your blower via the 240V line in Europe? which one is it?b. What current will your blower draw from a European outlet?c. What resistance will your blower appear to have when operated at 240 ?

Answers

Answer:

a) Connect a series resistance of 8,47 ohms

b)14,16 [A]

c) r = 10,96 ohms

Explanation:

My blower requires 120 (v) then, I have to connect a series resistor to make the nominal 240 (v) of the European voltage outlet drop to 120 (V) but at the same time keep the level of current to operate my blower

In America

P = V*I

1700 (w) = 120*I

I = 1700/120 [A]

I = 14,16 [A]        current needed for the blower

In Europe

120 (v)  (the drop of voltage I need) when a current of 14,16 passes through to series  resistor is

V = I*R          120 = 14,16* R         R = 8,47 ohms

c) P = I*r²

1700 (w) = 14,16 (A) * r²

r² = 120,06

r = 10,96 ohms

A 5.0 kg block hangs from a spring with spring constant 2000 N/m. The block is pulled down 5.0 cm from the equilibrium position and given an initial velocity of 1.0 m/s back towards equilibrium. a) What is the total mechanical energy of the motion

Answers

Answer:

Explanation:i think this would help u

You're conducting an experiment on another planet. You drop a rock from a height of 1 m and it hits the ground 0.4 seconds later. What is acceleration due to gravity on the planet ?

Answers

Answer:

Here,

v (final velocity) = 0

u (initial velocity) = u

a = ?

s = 1m

t = 0.4s

using the first equation of motion,

0 = u + 0.4a

= -0.4a = u

using the second equation of motion:

1 = 0.4u + 0.08a

from the bold equation

1 = 0.4(-0.4a) + 0.08a

1 = -0.16a + 0.08a

1 = -0.08a

a = -1/0.08

a = -100/8

a = -12.5 m/s/s

please make me brainly, i am 1 brainly away from the next rank

A string of holiday lights has 15 bulbs with equal resistances. If one of the bulbs
is removed, the other bulbs still glow. But when the entire string of bulbs is
connected to a 120-V outlet, the current through the bulbs is 5.0 A. What is the
resistance of each bulb?

Answers

Answer:

Resistance of each bulb = 360 ohms

Explanation:

Let each bulb have a resistance r .

Since, even after removing one of the bulbs, the circuit is closed and the other bulbs glow. Therfore, the bulbs are connected in Parallel connection.

[tex] \frac{1}{r(equivalent)} = \frac{1}{r1} + \frac{1}{r2} + + + + \frac{1}{r15} [/tex]

[tex] \frac{1}{r(equivalent)} = \frac{15}{r} [/tex]

R(equivalent) = r/15

Now, As per Ohms Law :

V = I * R(equivalent)

120 V = 5 A * r/15

r = 360 ohms

UVC light used in sterilizers, has wavelengths between 100 to 280 nm. If a certain UVC wave has a wavelength of 142.9 nm, what is the energy of one of its photons in J

Answers

Answer:

The energy of one of its photons is 1.391 x 10⁻¹⁸ J

Explanation:

Given;

wavelength of the UVC light, λ = 142.9 nm = 142.9 x 10⁻⁹ m

The energy of one photon of the UVC light is given by;

E = hf

where;

h is Planck's constant = 6.626 x 10⁻³⁴ J/s

f is frequency of the light

f = c / λ

where;

c is speed of light = 3 x 10⁸ m/s

λ  is wavelength

substitute in the value of f into the main equation;

E = hf

[tex]E = \frac{hc}{\lambda} \\\\E = \frac{6.626*10^{-34} *3*10^{8}}{142.9*10^{-9}} \\\\E = 1.391*10^{-18} \ J[/tex]

Therefore, the energy of one of its photons is 1.391 x 10⁻¹⁸ J

A small omnidirectional stereo speaker produces waves in all directions that have an intensity of 8.00 at a distance of 4.00 from the speaker.

At what rate does this speaker produce energy?

What is the intensity of this sound 9.50 from the speaker?

What is the total amount of energy received each second by the walls (including windows and doors) of the room in which this speaker is located?

Answers

Answer:

A. We have that radius r = 4.00m intensity I = 8.00 W/m^

total power = power/ Area ( 4πr2)= 8.00 w/m^2( 4π ( 4.00 m)2=1607.68 W

b) I = total power/ 4πr2= 8.00 W/m2 ( 4.00 m/ 9.5 m)2= 1.418 W/m2

c) E = total power x time= 1607 . 68 W x 1s= 1607.68 J

(4) Use the preliminary observations to answer these questions; Compared to no polarizer or analyzer in the optical path, by what percent does the light intensity decrease when (a) The polarizer is introduced into the optical path? (b) The both polarizer and analyzer are introduced into the optical path?

Answers

Answer:

a)   I = I₀/2, b)  I = I₀/2 cos² θ

Explanation:

To answer these questions, let's analyze a little the way of working of a polarized

* When a non-polarized light hits a polarizer, the electric field that is not in the direction of the polarizer is absorbed, so the transmitted light is

          i = I₀ / 2

and is polarized in the direction of the polarizer

* when a polarized light reaches the analyzer it must comply with Malus's law

          I = I₁ cos² θ

where the angle is between the polarized light and the analyzer.

With this, let's answer the questions

a) When a polarizer is placed in the non-polarized light path, half of it is absorbed and only the light that has polarization in the direction of the polarizer is transmitted with an intensity of

                  I = I₀/2

b) when a polarizer and an analyzer are fitted, the intensity of the light transmitted by the analyzer is

                I = I₀/2 cos² θ

where the final value depends on the angle between the polarizer and the analyzer.

Let's look at two extreme cases

θ = 0          I = Io / 2

θ = 90º      I = 0

An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm^2, separated by a distance of 1.70 mm. A 25.0-V potential difference is applied to these plates. Calculate: a. the electric field between the plates b. the surface charge density c. the capacitance d. the charge on each plate.

Answers

Answer:

(a) 1.47 x 10⁴ V/m

(b) 1.28 x 10⁻⁷C/m²

(c) 3.9 x 10⁻¹²F

(d) 9.75 x 10⁻¹¹C

Explanation:

(a) For a parallel plate capacitor, the electric field E between the plates is given by;

E = V / d               -----------(i)

Where;

V = potential difference applied to the plates

d = distance between these plates

From the question;

V = 25.0V

d = 1.70mm = 0.0017m

Substitute these values into equation (i) as follows;

E = 25.0 / 0.0017

E = 1.47 x 10⁴ V/m

(c) The capacitance of the capacitor is given by

C = Aε₀ / d

Where

C = capacitance

A = Area of the plates = 7.60cm² = 0.00076m²

ε₀ = permittivity of free space =  8.85 x 10⁻¹²F/m

d = 1.70mm = 0.0017m

C = 0.00076 x  8.85 x 10⁻¹² / 0.0017

C = 3.9 x 10⁻¹²F

(d) The charge, Q, on each plate can be found as follows;

Q = C V

Q =  3.9 x 10⁻¹² x 25.0

Q = 9.75 x 10⁻¹¹C

Now since we have found other quantities, it is way easier to find the surface charge density.

(b) The surface charge density, σ, is the ratio of the charge Q on each plate to the area A of the plates. i.e

σ = Q / A

σ = 9.75 x 10⁻¹¹ /  0.00076

σ = 1.28 x 10⁻⁷C/m²

A vertical spring stretches 3.8 cm when a 13-g object is hung from it. The object is replaced with a block of mass 20 g that oscillates in simple harmonic motion. Calculate the period of motion.

Answers

Answer:

The period of motion is 0.5 second.

Explanation:

Given;

extension of the spring, x = 3.8 cm = 0.038 m

mass of the object, m = 13 g = 0.013 kg

Determine the force constant of the spring, k;

F = kx

k = F / x

k = mg / x

k = (0.013 x 9.8) / 0.038

k = 3.353 N/m

When the object is replaced with a block of mass 20 g, the period of motion is calculated as;

[tex]T = 2\pi\sqrt{\frac{m}{k} } \\\\T = 2\pi\sqrt{\frac{0.02}{3.353} } \\\\T = 0.5 \ second[/tex]

Therefore, the period of motion is 0.5 second.

A race-car drives around a circular track of radius RRR. The race-car speeds around its first lap at linear speed v_iv i ​ v, start subscript, i, end subscript. Later, its speed increases to 4v_i4v i ​ 4, v, start subscript, i, end subscript. How does the magnitude of the car's centripetal acceleration change after the linear speed increases

Answers

Answer:

The magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.

Explanation:

The initial centripetal acceleration, a of the race-car around the circular track of radius , R with a linear speed v is a = v²/R.

When the linear speed of the race-car increases to v' = 4v, the centripetal acceleration a' becomes a' = v'²/R = (4v)²/R = 16v²/R.

So the centripetal acceleration, a' = 16v²/R.

To know how much the magnitude of the car's centripetal acceleration changes, we take the ratio a'/a = 16v²/R ÷ v²/R = 16

a'/a = 16

a' = 16a.

So the magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.

A person can see clearly up close but cannot focus on objects beyond 75.0 cm. She opts for contact lenses to correct her vision.
(a) Is she nearsighted or farsighted?
(b) What type of lens (converging or diverging) is needed to correct her vision?
(c) What focal length contact lens is needed, and what is its power in diopters?

Answers

Answer:

(a) nearsighted

(b) diverging

(c) the lens strength in diopters is 1.33 D, and considering the convention for divergent lenses normally prescribed as: -1 33 D

Explanation:

(a) The person is nearsighted because he/she cannot see objects at distances larger than 75 cm.

(b) the type of correcting lens has to be such that it counteracts the excessive converging power of the eye of the person, so the lens has to be diverging (which by the way carries by convention a negative focal length)

(c) the absolute value of the focal length (f) is given by the formula:

[tex]f=\frac{1}{d} =\frac{1}{0.75} = 1.33\,D[/tex]

So it would normally be written with a negative signs in front indicating a divergent lens.

What is the thinnest soap film (excluding the case of zero thickness) that appears black when illuminated with light with a wavelength of 580 nm

Answers

Answer:

Explanation:

In case of soap film , light gets reflected from denser medium , hence interference takes place between two waves , one reflected from upper and second from lower surface . For destructive interference the condition is

2μt = nλ where μ is refractive index of water , t is thickness , λ is wavelength of light and n is an integer .

2 x 1.34 x t = 1  x 580

t = 216.42 nm .

Thickness must be 216.42 nm .

Other Questions
_______ students go to college in their teens every year. A. A plenty of B. A good many C. A great deal of D. A lots of This drawing of President Roosevelt implies that he Group of answer choices does not understand the great task that is ahead of him. is capable of leading the U.S. through the Great Depression. is unsure of the best plan of action to end the Great Depression. Winnie is 10 years younger than her boss Greg. In 8 years, Winnie will be half as old as Greg will be then. How old is Greg now? Identify the character, problem, and solution in Kareem's Problem.Drag each statement to the correct location on the chart. Not all statements will be used.Kareem doesnt likedelivering packagesto Mrs. McMudgebecause she yells,and he thinks sheis mean.Jenny informs Kareemthat Mrs. McMudgedoesnt yell to bemean but becauseshe cannot hear well.KareemMrs. McMudge is avery kind personwho speaks sosoftly that no onecan hear her.Jenny HELP I WILL NAME YOU BRAINLIEST!! Given: Circumscribed polygon ACEG B, H, F, D -points of tangency AB=5, CD=4, DE=3, FG=2 Find: Perimeter of ACEG At the beginning of the school year, Priscilla Wescott decided to prepare a cash budget for the months of September, October, November, and December. The budget must plan for enough cash on December 31 to pay the spring semester tuition, which is the same as the fall tuition. The following information relates to the budget:Cash balance, September 1 (from a summer job) $8,220Purchase season football tickets in September 110Additional entertainment for each month 290Pay fall semester tuition in September 4,400Pay rent at the beginning of each month 400Pay for food each month 220Pay apartment deposit on September 2 (to be returned December 15) 600Part-time job earnings each month (net of taxes) 1,020a. Prepare a cash budget for September, October, November, and December. Enter all amounts as positive values except an overall cash decrease which should be indicated with a minus sign.b. Are the four monthly budgets that are presented prepared as static budgets or flexible budgets?c. Priscilla can see that her present plan will not provide sufficient cash. If Priscilla did not budget but went ahead with the original plan, she would be $ short at the end of December, with no time left to adjust. Please give me the correct answer please help :) Which of the following would a physical geographer study? a. primary sources c. urban areas b. secondary sources d. landforms The readline method reads text until an end of line symbol is encountered, how is an end of line character represented #2: Directions: Read the paragraph and answer the question. (1) What is a gentleman? (2) A gentleman is just what the word impliesa gentle man. (3) A gentleman does not indulge his temper or run roughshod over others. (4) He is considerate of those around him and tries to keep relationships running smoothly. (5) Even though a gentleman was often the butt of jokes in the Old West, his sensibilities made him admirable. Select the correct answer. Which numbered sentence is the topic sentence? A. 1 B. 2 C. 3 D. 4 E. 5 Entries for Investments in Bonds, Interest, and Sale of Bonds Kalyagin Investments acquired $220,000 of Jerris Corp., 7% bonds at their face amount on October 1, 20Y2. The bonds pay interest on October 1 and April 1. On April 1, 20Y3, Kalyagin sold $80,000 of Jerris bonds at 103. Journalize the entries to record the following: a. The initial acquisition of the Jerris Corp. bonds on October 1, 20Y2.b. The adjusting entry for three months of accrued interest earned on the Jems Corp. bonds- or December 11, 20Y2. c. The receipt of semiannual interest on April 1. 20Y3. d. The sale of 580,000 of Jerris Corp. bonds on April, 20Y3, at 103. Laura is bowling 5 games. Her first 4 scores were 135, 144, 116, and 132.To end up with an average score of at least 136.8, what is the lowest score Laura will need in the fifth game? Stickleback fish are collected from a lake in Alaska. 600 from the sample are spineless, which is a recessive trait in the fish. 80 of the fish collected have spines. Calculate: A. The frequency of recessive alleles in the population (p): B. The frequency of dominant alleles in the population (q): C. The percentage of individuals in the population that are heterozygous: D. Provide an explanation for why so many fish in the lack display the recessive trait: In what ways did cross-cultural interactions drive change in the pre-1200 world What is the difference between {2,3} and {{2,3}} Gerald graphs the function f(x) = (x 3)2 1. Which statements are true about the graph? Select three options. Desmond is 2 inches taller than Niki. If we let w represent Nikis height in inches, write an algebraic expression for Desmonds height. Enter your answer as an expression. Example: 3x^2+1 A court's order that a defendant appear to stand trial in a civil case is calleda(n)A. verdictB. summonsC. complaintD. answer Grasshopper Lawn Service provides general lawn maintenance to customers. The companys fiscal year-end is December 31. Information necessary to prepare the year-end adjusting entries appears below. On October 1, 2021, Grasshopper lent $110,000 to another company. A note was signed with principal and 8% interest to be paid on September 30, 2022. On November 1, 2021, the company paid its landlord $22,500 representing rent for the months of November through January. Prepaid Rent was debited for the entire amount. On August 1, 2021, Grasshopper collected $27,000 in advance rent from another company that is renting a portion of Grasshoppers building. The $27,000 represents one years rent, and the entire amount was credited to Deferred Revenue. Depreciation for the year is $23,000. Vacation pay for the year that had been earned by employees but not paid to them or recorded is $13,000. The company records vacation pay as Salaries Expense. Grasshopper began the year with $27,000 in its Supplies account. During the year $67,000 in supplies were purchased and debited to the Supplies account. At year-end,supplies costing $27,000 remain on hand. Required: Prepare the necessary adjusting entries on December 31, 2021. What demand did North Vietnam have for the peace treaty that they eventually gave up on? A. Removal of South Vietnamese president from office B. Recognition of Vietnam as an independent nation C. Removal of US troops from Vietnam D. Turnover of Saigon to North Vietnamese rule