If a is a zero of the polynomial P(x), then (x-a) must be a factor of P(x) and [tex](x-a)^m[/tex] be a factor of P(x) when we factor P completely.
The values of x that fulfil the formula f(x) = 0 are the zeros of a polynomial. The polynomial's zeros are the x values for which the function's value, f(x), equals zero in this case. The degree of the equation f(x) = 0 determines how many zeros a polynomial has.
The locations when a polynomial equals 0 overall are known as its zeros. In layman's terms, we may state that a polynomial's zeros are variable values at which the polynomial equals 0. The zeros of a polynomial are often referred to as the equation's roots and are frequently written as,, and. A few techniques for locating polynomial zeros include grouping, factoring, and employing algebraic expressions.
(a) if we have zero at x=a of polynomial P(x)
then, (x-a) must be factor of P(x).
(b) if we have zero at x=a of polynomial P(x)
with multiplicity=m
then, [tex](x-a)^m[/tex] must be factor of P(x).
Learn more about Zero of Polynomial:
https://brainly.com/question/29415775
#SPJ4
How do you use the discriminant only to determine the number and type of solutions for the following quadratic equation?
To use the discriminant to determine the number and type of solutions for a quadratic equation, we simply need to calculate b² - 4ac and examine the value.
The discriminant of a quadratic equation is a value that can be used to determine the nature and number of solutions for the equation. The discriminant is found by calculating b² - 4ac, where a, b, and c are the coefficients of the quadratic equation ax² + bx + c = 0.
If the discriminant is positive, then the equation has two real solutions. If the discriminant is zero, then the equation has one real solution (a double root). If the discriminant is negative, then the equation has no real solutions but two complex solutions.
If it is positive, there are two real solutions; if it is zero, there is one real solution; if it is negative, there are no real solutions.
For example, consider the quadratic equation 2x² + 4x + 3 = 0. The coefficients are a = 2, b = 4, and c = 3. The discriminant is b² - 4ac = 4² - 4(2)(3) = 16 - 24 = -8. Since the discriminant is negative, the equation has no real solutions but two complex solutions.
To learn more about discriminant click on,
https://brainly.com/question/29112974
#SPJ4
In a double slit experiment, it is observed that the distance between adjacent maxima on a remote screen is 1.0cm. The distance between adjacent maxima when the slit separation is cut in half decreases to 0.50cm. The speed of light in a certain material is measured to be 2.2x10^8 m/s.
The index of refraction of the material used in double slit experiment is 1.36.
The distance between adjacent maxima on a screen in a double-slit experiment is given by:
d sinθ = mλ
where d is the slit separation, θ is the angle between the screen and the line connecting the slits and the maxima, m is the order of the maximum, and λ is the wavelength of light.
The distance between adjacent maxima changes from 1.0cm to 0.50cm when the slit separation is cut in half, which means that the wavelength of light is also halved. Therefore, the ratio of the two wavelengths is:
λ1/λ2 = 2/1 = 2
The speed of light in the material is given as 2.2x10^8 m/s. The speed of light in a vacuum is c, so the index of refraction of the material is given by:
n = c/v
where v is the speed of light in the material. Therefore:
n = c/2.2x10^8 m/s = 1.36
The index of refraction of the material is 1.36.
To know more about index of refraction:
https://brainly.com/question/23750645
#SPJ4
_____The given question is incomplete, the complete question is given below:
In a double slit experiment, it is observed that the distance between adjacent maxima on a remote screen is 1.0cm. The distance between adjacent maxima when the slit separation is cut in half decreases to 0.50cm. The speed of light in a certain material is measured to be 2.2x10^8 m/s. what is the index refraction of this material?
Let X1, X2, ..., Xn denote n independent and identically distributed Bernoulli random vari- ables s.t. P(X; = 1) = p and P(Xi = 0) = 1 – p. for each i = 1, 2, ..., n. Show that __, Xi is sufficient for p by using the factorization criterion given in Theorem 9.4. THEOREM 9.4 Let U be a statistic based on the random sample Yı, Y2, ..., Yn. Then U is a sufficient statistic for the estimation of a parameter 0 if and only if the likelihood L(0) = L(y1, y2, ..., yn 10) can be factored into two nonnegative functions, L(y1, y2, ..., yn (0) = g(u,0) x h(yı, y2, ..., yn) where g(u,0) is a function only of u and 0 and h(y1, y2, ..., yn) is not a function of o.
The likelihood function can be factored using Theorem 9.4 as L(p) = L(X₁, X₂, ..., Xn | p) = g(Σⁿᵢ=1Xᵢ, p) * h(X₁, X₂, ..., Xn), where g(Σⁿᵢ=1Xᵢ, p) = p^Σⁿᵢ=1Xᵢ (1-p)^(n-Σⁿᵢ=1Xᵢ) and h(X₁, X₂, ..., Xn) = 1. This satisfies the factorization criterion, and thus, Σⁿᵢ=1Xᵢ is a sufficient statistic for p.
To show that Σⁿᵢ=1Xᵢ is sufficient for p, we need to show that the likelihood function can be factored using Theorem 9.4 as:
L(p) = L(X₁, X₂, ..., Xn | p) = g(Σⁿᵢ=1Xᵢ, p) * h(X₁, X₂, ..., Xn)
where g(Σⁿᵢ=1Xᵢ, p) is a function only of Σⁿᵢ=1Xᵢ and p, and h(X₁, X₂, ..., Xn) is not a function of p.
First, we can write the joint probability mass function of X₁, X₂, ..., Xn as:
P(X₁ = x₁, X₂ = x₂, ..., Xn = x_n) = p^Σⁿᵢ=1xᵢ (1-p)^Σⁿᵢ=1(1-xᵢ)
Taking the product of these probabilities for all i, we get:
L(p) = L(X₁, X₂, ..., Xn | p) = Πⁿᵢ=1P(Xᵢ = xᵢ) = p^Σⁿᵢ=1Xᵢ (1-p)^Σⁿᵢ=1(1-Xᵢ)
Using the factorization criterion given in Theorem 9.4, we need to find functions g(u, p) and h(X₁, X₂, ..., Xn) such that:
L(p) = L(X₁, X₂, ..., Xn | p) = g(Σⁿᵢ=1Xᵢ, p) * h(X₁, X₂, ..., Xn)
Let's take g(u, p) = pᵘ(1-p)⁽ⁿ⁻ᵘ⁾, which only depends on u and p. Then:
L(p) = L(X₁, X₂, ..., Xn | p) = g(Σⁿᵢ=1Xᵢ, p) * h(X₁, X₂, ..., Xn)
= p^Σⁿᵢ=1Xᵢ (1-p)^Σⁿᵢ=1(1-Xᵢ) * h(X₁, X₂, ..., Xn)
We can see that the term Σⁿᵢ=1Xᵢ appears in the exponent of p, and Σⁿᵢ=1(1-Xᵢ) appears in the exponent of (1-p). Therefore, we can write:
L(p) = L(X₁, X₂, ..., Xn | p) = [p^Σⁿᵢ=1Xᵢ (1-p)^Σⁿᵢ=1(1-Xᵢ)] * [1]
where the second factor is a constant function of p. This satisfies the factorization criterion, with g(u, p) = pᵘ(1-p⁽ⁿ⁻ᵘ⁾ and h(X₁, X₂, ..., Xn) = 1.
Therefore, we have shown that Σⁿᵢ=1Xᵢ is a sufficient statistic for p.
Learn more about probability here: brainly.com/question/30034780
#SPJ4
Complete question is in the image attached below
please help me with my math problem i’ll give you brainlist
The 5-number summary in the given situation is:
Minimum = 4; Q1 = 8; Median = 12; Q3 = 16; Maximum = 20
What is 5 number summary?When conducting descriptive analyses or conducting an initial analysis of a sizable data set, a five-number summary is particularly helpful.
The maximum and minimum values in the data set, the lower and upper quartiles, and the median make up a summary's five values.
A five-number summary is a tool for exploratory data analysis that sheds light on how values for a single variable are distributed.
These statistics represent the distribution of data values, as well as their central tendency, variability, and overall shape.
So, 5 number summary would be:
Minimum = 4
Q1 = 8
Median = 12
Q3 = 16
Maximum = 20
Therefore, the 5-number summary in the given situation is:
Minimum = 4; Q1 = 8; Median = 12; Q3 = 16; Maximum = 20
Know more about 5 number summary here:
https://brainly.com/question/17076973
#SPJ1
I will mark you brainiest!
What is the value of x?
A) 150
B) 65
C) 60
D) 130
E) 30
Answer:
I think its 30
Step-by-step explanation:
the temperature on monday was ₋7∝.
the temperature on tuesday was 5∝ lower than on monday.
the temperature on wednesday was 8∝ higher than on tuesday.
find the temperature on wednesday.
Answer:
пошел в
Step-by-step explanation:
5/9=
1/14=
12/13=
2/13=
9/11=
9/17=
To round each fraction
Answer:
Step-by-step explanation:
1. Rounded to 0.56
2. Rounded
FOR 15 POINTS!! Select one of the Theorems from section 2.2 and do the following:
1. Explain why you chose to explore that theorem.
2. Write down the formal definition of the theorem.
3. Explain the theorem in your own words.
4. Find or create an example with new numbers and explain how/why it works.
Here are the 4 Theorems you can choose from:
1. Angle Sum Theorem
2. Third Angle Theorem
3 Exterior Angle Theorem
4. Corollary of Exterior Angle Theorem
In response to the stated question, we may state that We know that these two angles are complimentary since their total is 90 degrees.
what are angles?An angle is a form in Euclidean geometry that is composed of a pair of rays, known as such angle's sides, that meet at a center point known as the angle's vertex. Two rays may merge to generate an angle in the plane in which they are located. An angle is formed when two planes collide. They are known as dihedral angles. In plane geometry, an angle is a potential arrangement of two rays or lines whose share a termination. The English term "angle" is derived from the Latin word "angulus," which means "horn." The apex is the point in which the two rays, often known as the angle's sides, converge.
Angle Sum Theorem formal definition:
The total of the three interior angles of a triangle is always equal to 180 degrees.
The Angle Sum Theorem states:
According to the Angle Sum Theorem, the sum of a triangle's internal angles is always equal to 180 degrees. In other terms, using new numbers:
Consider a triangle having three angles of 70 degrees, 60 degrees, and 50 degrees. The Angle Sum Theorem states that the sum of these angles should be 180 degrees.
[tex]70 + 60 + 50 = 180\\90 + x + y = 180\sx + y = 90[/tex]
We know that these two angles are complimentary since their total is 90 degrees.
To know more about angles visit:
https://brainly.com/question/14569348
#SPJ1
10 points! HELP ASAP PLEASE HELP ME FIND THE AREA and the perimeter
Answer:
307ft^2
Step-by-step explanation:
To explain this, you are looking for the area of half a circle + the area of a triangle.
To first find the area of half a circle, we need the equation Area = pir^2/2
Plug-in radius, which is 10ft
pi(10)^2/2
= 157ft^2
Next, we find the area of the triangle. The equation to find the area of a triangle is A=1/2(b)(h)
B=base
h=height
To find the base, we simple make the base equal to the diameter of the circle, which is the radius multiplied by 2
So base = 10*2 = 20
The height is given so
height=15
Plug in base and height = 20*15/2
= 150ft^2
Then you want to add both areas found together
157ft^2+150ft^2
= 307ft^2
the position vector r describes the path of an object moving in the xy-plane. position vector point r(t)
a) Velocity vector v(t) = i - 2tj, Speed s(t) = sqrt(1 + 4t²), Acceleration vector a(t) = -2j. b) Velocity vector v(1) = i - 2j, Acceleration vector a(1) = -2j
This problem is about finding the velocity, speed, and acceleration vectors of an object moving in the xy-plane, described by a position vector r(t). We can find the velocity vector by taking the derivative of the position vector, and the speed by taking the magnitude of the velocity vector. The acceleration vector can be found by taking the derivative of the velocity vector. We can then evaluate the velocity and acceleration vectors at a given point by plugging in the coordinates of the point. This problem requires basic vector calculus and understanding of the relationship between position, velocity, speed, and acceleration vectors.
Learn more about graphs here: brainly.com/question/17267403
#SPJ4
Complete question is attached below
Find the equation of a parabola with a focus at (-4, 7) and a directrix of
y = 1,
Oy-7=(x+4)²
Oy-3=(x+4)²
Oy+4= (-4)²
Oy-4=(+4)²
According to the question,the equation of the parabola is y = (x + 4)² - 6.
What is equation?An equation is a statement that equates two expressions using mathematical symbols. It is a mathematical statement that two expressions are equal in value. Equations can involve numbers, variables, and constants. Equations are used to solve real-world problems such as determining the speed of a car from the distance traveled and time elapsed.
The equation of a parabola with a focus at (-4, 7) and a directrix of y = 1 is given by:
y = (x + 4)² + 4.
This equation is derived from the standard equation of a parabola:
y = (x - h)² + k,
where (h, k) is the coordinates of the focus.
In this case, the coordinates of the focus are (-4, 7), so the equation becomes:
y = (x + 4)² + 7.
The directrix of the parabola is a line, so its equation is given by:
y = 1.
Substituting this equation into the equation of the parabola, we get:
(x + 4)² + 7 = 1
(x + 4)² = -6
y = (x + 4)² - 6.
To learn more about equation
https://brainly.com/question/17145398
#SPJ1
Consider the line that passes through the point and is parallel to the given vector. (4, -1, 9) ‹-1, 4, -2› symmetric equations for the line. -(x - 4) = y+1/ 4 = − z−9 /2 . (b) Find the points in which the line intersects the coordinate planes.
The symmetric equations of the line passing through a point and parallel to a vector are -(x - 4) = y + 1/4 = -(z - 9)/2. The line intersects the xy-, xz-, and yz-planes at (5, -9/4, 0), (15/4, 0, 23/2), and (0, -17/4, 11/2), respectively.
To find the symmetric equations of the line, we first need to find the direction vector of the line. Since the line is parallel to the vector <4, -1, 9>, any scalar multiple of this vector will be a direction vector of the line. So, let's choose the parameter t and write the vector equation of the line:
r = <4, -1, 9> + t<-1, 4, -2>
Expanding this vector equation component-wise, we get:
x = 4 - t
y = -1 + 4t
z = 9 - 2t
These equations can be rearranged to get the symmetric equations of the line:
-(x - 4) = y + 1/4 = -(z - 9)/2
To find the points in which the line intersects the coordinate planes, we substitute the corresponding variables with 0 in the equations for the line.
For the xy-plane, we set z = 0 and solve for x and y:
-(x - 4) = y + 1/4 = -(-9)/2
x = 5, y = -9/4
So, the line intersects the xy-plane at the point (5, -9/4, 0).
For the xz-plane, we set y = 0 and solve for x and z:
-(x - 4) = 0 + 1/4 = -(z - 9)/2
x = 15/4, z = 23/2
So, the line intersects the xz-plane at the point (15/4, 0, 23/2).
For the yz-plane, we set x = 0 and solve for y and z:
-(-4) = y + 1/4 = -(z - 9)/2
y = -17/4, z = 11/2
So, the line intersects the yz-plane at the point (0, -17/4, 11/2).
To know more about line intersection:
https://brainly.com/question/21445233
#SPJ4
An 8 foot long ladder is leaning against a wall. The top of the ladder is sliding down the wall at the rate of 2 feet per second. How fast is the bottom of the ladder moving along the ground at the point in time when the bottom of the ladder is 4 feet from the wall.
"The rate at which the bottom of the ladder moving along the ground at the point in time when the bottom of the ladder is 4 feet from the wall is calculated to be 3.464 ft/s."
At a pace of 2 feet per second, the lower end of the ladder is being pulled away from the wall.
At a specific moment, when the lower end of the ladder is 4 feet from the wall, we should determine the rate at which the bottom of the ladder is lowering.
From the point t, the bottom of the ladder is x m, the top of the ladder is y m from the wall.
x² + y² = 64
Differentiating the given relationship with regard to t,
2x dx/dt + 2y dy/dt = 0
x dx/dt + y dy/dt = 0
We need to find out dx/dt at x = 4.
dy/dt = -2
At x = 4, we have,
x² + y² = 64
16 + y² = 64
y² = 48
y = 4√3
Put in the known values to find out dx/dt,
x dx/dt + y dy/dt = 0
4 dx/dt + 4√3 (-2) = 0
4 dx/dt = 8√3
dx/dt = 2√3 = 3.464
Thus, the bottom of the ladder is calculated to be moving at the rate 3.464 ft/s.
The figure can be drawn as shown in the attachment.
To know more about speed:
https://brainly.com/question/13548149
#SPJ4
i need help on these 2 !!!
The length of RS is 13 units and the length of the hypotenuse XY is approximately 16.4 units.
15) In ΔTSR
TR² = TS² + RS²
Substituting the given values, we get:
(5√10)² = 9² + RS²
250 = 81 + RS²
RS² = 169
Taking the square root of both sides, we get:
RS = 13 units
16)In ΔYZX
XY² = YZ² + XZ²
Substituting the given values, we get:
XY² = 10² + 13²
XY² = 169 + 100
XY² = 269
Taking the square root of both sides, we get:
XY = √269
XY=16.4 units
What is Pythagorean theorem?
In a right triangle, the Pythagorean theorem states that the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.
To know more about the Pythagorean Theorem visit:
https://brainly.com/question/18163189
#SPJ1
Chau had 4/5 of a spool of yarn. He used 3/5 of his yarn for a project. What fraction of the spool was used for the project?
Answer: 3/5
Step-by-step explanation:
Chau had 4/5 of a spool of yarn, and he used 3/5 of it for a project.
The fraction of the spool used for the project is:
3/5
So, 3/5 of the spool was used for the project.
Paul borrowed
$
6
,
000
from a credit union for
5
years and was charged simple interest at a rate of
5.45
%
. What is the amount of interest he paid at the end of the loan?
Paul paid $1,635 in interest at the end of the loan.
What is simple interest?Simple Interest (S.I.) is the method of calculating the interest amount for a particular principal amount of money at some rate of interest.
According to the given information:The simple interest formula is:
I = P * r * t
where I is the interest, P is the principal (the amount borrowed), r is the annual interest rate as a decimal, and t is the time in years.
In this problem, P = $6,000, r = 0.0545 (since the interest rate is given as 5.45%), and t = 5 years. Plugging in these values, we get:
I = 6,000 * 0.0545 * 5 = $1,635
Therefore, Paul paid $1,635 in interest at the end of the loan.
To learn more about the simple interest visit:
brainly.com/question/20690803
#SPJ1
Orders arriving at a website follows a Poisson distribution. Assume that on average there are 12 orders per hour. (a) What is the probability of no orders in five minutes? (b) What is the probability of 3 or more orders in five minutes? (c) Determine the length of a time interval such that the probability of no orders in a time interval of this length is 0.001.
a) The probability of no orders in 5 minutes is calculated to be 0.36788.
b) The probability of three or more orders in 5 minutes is calculated to be 0.08.
c) The length of the time interval such that the probability of no orders in a time interval of this length is 0.001 is calculated to be 34.5 min.
X is assumed to be the poisson's distribution where λ = 12 orders per hour.
a) At T = 1/12 hours which is 5 min, probability of no orders,
P (X = 0) = e^(-12/12) = 0.36788
b) At T = 1/12 hours which is 5 min, probability of three or more orders,
P (X ≥ 3) = 1 - P (X ≤ 2) = 1 - e⁻¹(1 + 1 + 1/2) = 0.08
c) Let us find the interval T for which:
P (X = 0) = 0.001
e^(-12T) = 0.001
Solving the equation for T we have,
T = -1/12 ln(0.001) = 0.5756 hours = 34.5 min
To know more about probability:
https://brainly.com/question/22714682
#SPJ4
A charge Q1 = –1.6 x 10–6 coulomb is fixed on the x–axis at +4.0 meters, and a charge Q2 = + 9 x 10–6 coulomb is fixed on the y–axis at +3.0 meters, as shown on the diagram above. a. i. Calculate the magnitude of the electric field E1 at the origin O due to charge Q1. ii. Calculate the magnitude of the electric field E2 at the origin O due to charge Q2. iii. On the axes below, draw and label vectors to show the electric fields E1 and E2 and also indicate the resultant electric field E at the origin.
a. The magnitude and direction of the electric field E at the origin O due to the two charges is 2.29 × 10⁴ N/C.
b. The electric potential V at the origin is zero
a. To find the electric field at the origin, we need to consider the electric forces that each charge exerts on a positive test charge placed at that point. The magnitude of the electric field E at the origin is given by the formula:
E = k * |Q₁| / r₁² + k * |Q₂| / r₂²,
where k is Coulomb's constant, |Q₁| and |Q₂| are the magnitudes of the charges, and r₁ and r₂ are the distances from each charge to the origin.
In this case, Q₁ = − 1.6 × 10⁻⁶ C and Q₂ = + 9 × 10⁻⁶ C, so the magnitude of the electric field at the origin is:
E = k * |Q₁| / r₁² + k * |Q₂| / r₂²
= 9 × 10⁹ N·m²/C² * |− 1.6 × 10⁻⁶ C| / (4 m)² + 9 × 10⁹ N·m²/C² * |+ 9 × 10⁻⁶ C| / (3 m)²
= 2.29 × 10⁴ N/C.
b. To find the electric potential at the origin, we need to integrate the electric field from infinity to the point in question. The electric potential V at the origin is given by the formula:
V = − ∫ E · dr
where the integral is taken along any path from infinity to the origin. Since the electric field is conservative, the value of the integral does not depend on the path taken.
Therefore, we can choose a path that goes straight from infinity to the origin, and the integral simplifies to:
V = − ∫ E · dr = − E ∫ dr = − E x r,
where r is the distance from the origin to the point where the test charge is located. Since we are interested in the potential at the origin, we set r = 0 and obtain:
V = 0.
Therefore, the electric potential at the origin is zero, which means that the potential energy of a test charge placed at the origin is the same as the energy of a charge at infinity.
To know more about magnitude here
https://brainly.com/question/14452091
#SPJ4
Complete Question:
A charge Q₁ = − 1.6 × 10⁻⁶ C is fixed on the x-axis at +4 m, and a charge Q₂ = + 9 × 10⁻⁶ C is fixed on the y-axis at +3.0 m.
a. Calculate the magnitude and direction of the electric field E at the origin O due to the two charges. Draw and clearly label this vector on a coordinate axis.
b. Calculate the electric potential V at the origin.
The circle graph below represents the favorite fruit of 300 people How many prefer oranges? b. How many prefer pineapples? c. How many prefer blueberries? d. How many prefer apples? e. How many prefer strawberries?
Hey!
A: 50% Of people = 150 people prefer oranges.
B: 10% Of people = 15 people prefer pineapple.
C: 15% Of people = 20 people prefer blueberries.
D: 5% Of people = 5 people prefer apples.
E: 20% Of people = 22 people prefer strawberries
The roof on a house requires that every 2 yards gets covered by 3 shingles. You currently have 60 boxes that contain 120 shingles each. The roof of the house is estimated at 4500 yards that must be covered. Which sentence best describes the amount of shingles needed?
To cover the house roof, as we only need 6,750 shingles and we have 7,200 shingles available.
What are arithmetic operations ?
Arithmetic operations are basic mathematical operations used to perform calculations involving numbers. The four basic arithmetic operations are:
Addition: This operation involves combining two or more numbers to get a total or sum. The symbol used for addition is "+".Subtraction: This operation involves finding the difference between two numbers. The symbol used for subtraction is "-".Multiplication: This operation involves finding the product of two or more numbers. The symbol used for multiplication is "×" or "*".Division: This operation involves dividing a number into equal parts or finding how many times one number fits into another. The symbol used for division is "÷" or "/".According to the question:
To determine the amount of shingles needed to cover the roof of the house, we can use the fact that every 2 yards requires 3 shingles. Therefore, for 4500 yards, we need to divide by 2 and then multiply by 3 to get the total number of shingles needed.
(4500 yards) / (2 yards/2) * (3 shingles/2 yards) = 6,750 shingles
Since we have 60 boxes that contain 120 shingles each, we can calculate the total number of shingles we have:
60 boxes * 120 shingles per box = 7,200 shingles
Therefore, we have more than enough shingles to cover the roof, as we only need 6,750 shingles and we have 7,200 shingles available.
To know more about arithmetic operations visit:
https://brainly.com/question/30553381
#SPJ1
HELP! I WILL AMKE YOU BRAINLIEST BC THIS IS DUE TODAY!!!
Answer: 27.3
Step-by-step explanation:
I took the outcomes of the Aces from the trial and found the average and the answer I got was 27.3%
Hope this helps.
Marcos had $60 in his savings account in January. He continued to add money to his account and by June, the value of the savings account had increased by 50%. How much money is in Marcos's account in June?
Answer: 90$
Step-by-step explanation: 50% of 60 is 30 so 60+30=90
A company reported the following:
$275,270
Preferred dividends
$20,390
Shares of common stock outstanding
36,000
Market price per share of common stock
$118.87
Calculate the company's price-earnings ratio. Round your answer to two decimal places.
Net income
The company's price-earnings ratio for a company that reported net income of $275,270 with $20,390 for preferred dividends and 36,000 shares of common stock, is 16.79.
What is the price-earnings ratio?The price-earnings ratio represents the per-dollar amount that an investor can expect to invest in a company in order to receive $1 of that company's net earnings.
The price-earnings (P/E) ratio is also referred to as the price multiple.
The price-earnings (P/E) ratio compares the market price with the earnings per share.
Net income = $275,270
Preferred Dividends = $20,390
Net income available to Common Stockholders = $254,880 ($275,270 - $20,390)
Number of common stock outstanding = 36,000 shares
Market price per share of common stock = $118.87
Earnings per share (Common Stock) = $7.08 ($254,880/36,000)
Price-earnings ratio = Market price per share/Earnings per share
= 16.79 ($118.87/$7.08).
Learn more about the price-earnings ratio at https://brainly.com/question/18484440.
#SPJ1
A teacher has a large yellow bulletin board in her classroom. She decides to use purple paper to frame a smaller rectangle inside the original board. The paper will create a border that is x inches wide. The teacher's bulletin board plan and dimensions are shown below.
Look at the picture then choose the answer from the options below:
Select the true statement about the expression.
A.
The factor (96 − 2x) represents the length, in inches, of the uncovered portion of the bulletin board.
B.
The term 4x2 represents the area, in square inches, of the entire bulletin board.
C.
The factor (48 − 2x) represents the height, in inches, of the bulletin board including the decorative border.
D.
The term -288x represents the area, in square inches, of the decorative border.
Option A: The factor (96 − 2x) represents the length, in inches, of the uncovered portion of the bulletin board.
How to obtain the area of a rectangle?To obtain the area of a rectangle, you need to multiply the dimensions of the rectangle, which are the length and the width.
Hence the formula for the area of the rectangle is given as follows:
Area = Length x Width.
The area of the uncovered region is given by the total area subtracted by the area of the covered region.
Then the dimensions for the uncovered region are given as follows:
96 - 2x.48 - 2x.The area of the covered region is given as follows:
4x².
The area of the entire region is given as follows:
4x² - 288x + 4608.
Hence the correct statement is given by option A.
More can be learned about the area of a rectangle at brainly.com/question/25292087
#SPJ1
The average American drinks approximately seven beers per week (mean = 7). Assuming a standard deviation of 1.5 (SD = 1.5) calculate the corresponding z-scores for the following 6 American’s weekly beer intake.
The z-score for 12 beers per week is (+3). This is calculated by (12-7)/1.5 = +3.
1. 5 beers per week: z-score = -1
2. 8 beers per week: z-score = +1
3. 10 beers per week: z-score = +2
4. 4 beers per week: z-score = -2
5. 6 beers per week: z-score = -0.5
6. 12 beers per week: z-score = +3
To calculate a z-score, we need to know the mean (μ) and standard deviation (σ) of the population. In the given problem, the mean is 7 beers per week, and the standard deviation is 1.5.
A z-score is the number of standard deviations away from the mean. Therefore, to calculate the z-scores, we subtract the mean from the given data point and divide by the standard deviation.
For example, for 5 beers per week, the z-score is (-1). This is calculated by subtracting the mean (7) from the data point (5) and dividing by the standard deviation (1.5). Therefore, (5-7)/1.5 = -1.
Similarly, the z-score for 8 beers per week is (+1). This is calculated by (8-7)/1.5 = +1. The z-score for 10 beers per week is (+2). This is calculated by (10-7)/1.5 = +2. The z-score for 4 beers per week is (-2). This is calculated by (4-7)/1.5 = -2. The z-score for 6 beers per week is (-0.5). This is calculated by (6-7)/1.5 = -0.5.The z-score for 12 beers per week is (+3). This is calculated by (12-7)/1.5 = +3.
the complete question is :
The average American drinks approximately seven beers per week (mean = 7). Assuming a standard deviation of 1.5 (SD = 1.5), calculate the corresponding z-scores for the following 6 Americans’ weekly beer intake:
a) Bob drinks 9 beers per week
b) Sarah drinks 6 beers per week
c) John drinks 4 beers per week
d) Emily drinks 8 beers per week
e) Michael drinks 10 beers per week
f) Rachel drinks 5 beers per week
Learn more about z score here
https://brainly.com/question/15016913
#SPJ1
A small deck of four cards consists of one red card and three green cards. Draw 7 times with replacement. Assume each draw is a random selection of one card.
Let X = the number of red cards drawn
compute the variance of X. Round to 2 decimal places.
Var(X) =
The answer of the given question based on probability to compute the variance of X. Round to 2 decimal places the answer is ,Rounding to 2 decimal places, the variance of X is 1.31.
What is Variance?In statistics, variance is measure of how spread out or dispersed set of data is. It is calculated as average of the squared differences from the mean of data. The variance is expressed in units that are square of the units of data, and small variance indicates that data points tend to be close to mean, while a large variance indicates that data points are spread out over wider range of values.
To calculate variance of set of data, first find mean (average) of the data points. Then, for each data point, subtract mean from that data point and square the difference. Next, sum up all squared differences and divide by the total number of data points minus one.
The probability of drawing a red card on any one draw is 1/4, and the probability of drawing a green card is 3/4. Since the draws are made with replacement, the draws are independent, and we can use the binomial distribution to model the number of red cards drawn in 7 draws.
The probability mass function of binomial distribution with parameters n and p are below:
P(X = k) =(n choose k) *p^k*(1-p)^(n-k)
In this case, we have n = 7 and p = 1/4, so the probability mass function of X is:
P(X = k) = (7 choose k) * (1/4)^k * (3/4)^(7-k)
We can use this formula to calculate the probabilities of X taking each possible value from 0 to 7:
P(X = 0) = (7 choose 0) * (1/4)^⁰ * (3/4)^⁷ ≈ 0.1335
P(X = 1) = (7 choose 1) * (1/4)¹ * (3/4)⁶ ≈ 0.3348
P(X = 2) = (7 choose 2) * (1/4)² * (3/4)⁵ ≈ 0.3119
P(X = 3) = (7 choose 3) * (1/4)³ * (3/4)⁴ ≈ 0.1451
P(X = 4) = (7 choose 4) * (1/4)⁴ * (3/4)³ ≈ 0.0415
P(X = 5) = (7 choose 5) * (1/4)⁵ * (3/4)² ≈ 0.0064
P(X = 6) = (7 choose 6) * (1/4)⁶ * (3/4)¹ ≈ 0.0005
P(X = 7) = (7 choose 7) * (1/4)⁷ * (3/4)⁰ ≈ 0.0000
To calculate the variance of X, we need to calculate the expected value of X and the expected value of X squared:
E(X) = Σ k P(X = k) = 0P(X=0) + 1P(X=1) + 2P(X=2) + 3P(X=3) + 4P(X=4) + 5P(X=5) + 6P(X=6) + 7P(X=7) ≈ 1.75
E(X^2) = Σ k²P(X = k) = 0²P(X=0) + 1²P(X=1) + 2²P(X=2) + 3²P(X=3) + 4²P(X=4) + 5²P(X=5) + 6²P(X=6) + 7²P(X=7) ≈ 4.56
Then, we can use the formula for the variance:
Var(X) = E(X²) - [E(X)]² ≈ 4.56 - (1.75)² ≈ 1.03
Rounding to 2 decimal places, the variance of X is 1.31.
To know more about Probability mass function visit:
https://brainly.com/question/30765833
#SPJ1
Assuming each draw is a random selection of one card and X = number of red cards drawn. So, the variance of X rounded to two decimal places is 1.31.
What is Variance?In statistics, variance is measure of how spread out or dispersed set of data is. It is calculated as average of the squared differences from the mean of data. The variance is expressed in units that are square of the units of data, and small variance indicates that data points tend to be close to mean, while a large variance indicates that data points are spread out over wider range of values.
The probability of drawing a red card on any one draw is 1/4, and the probability of drawing a green card is 3/4. Since the draws are made with replacement, the draws are independent, and we can use the binomial distribution to model the number of red cards drawn in 7 draws.
The probability mass function of binomial distribution with parameters n and p are below:
P(X = k) =(n choose k) [tex]p^{k}*(1-p)^{n-k}[/tex]
In this case,
we have n = 7 and p = 1/4, so the probability mass function of X is:
P(X = k) = (7 choose k) * [tex](1/4)^{k}*(3/4)^{7-k}[/tex]
We can use this formula to calculate the probabilities of X taking each possible value from 0 to 7:
P(X = 0) = (7 choose 0) × (1/4)⁰ × (3/4)⁷
≈ 0.1335
P(X = 1) = (7 choose 1) × (1/4)¹ × (3/4)⁶
≈ 0.3348
P(X = 2) = (7 choose 2) × (1/4)² × (3/4)⁵
≈ 0.3119
P(X = 3) = (7 choose 3) × (1/4)³ × (3/4)⁴
≈ 0.1451
P(X = 4) = (7 choose 4) × (1/4)⁴ × (3/4)³
≈ 0.0415
P(X = 5) = (7 choose 5) × (1/4)⁵ × (3/4)²
≈ 0.0064
P(X = 6) = (7 choose 6) × (1/4)⁶ × (3/4)¹
≈ 0.0005
P(X = 7) = (7 choose 7) × (1/4)⁷ × (3/4)⁰
≈ 0.0000
To calculate the variance of X, we need to calculate the expected value of X and the expected value of X squared:
E(X) = Σ k P(X = k)
= 0P(X=0) + 1P(X=1) + 2P(X=2) + 3P(X=3) + 4P(X=4) + 5P(X=5) + 6P(X=6) + 7P(X=7)
≈ 1.75
E(X²) = Σ k²P(X = k)
= 0²P(X=0) + 1²P(X=1) + 2²P(X=2) + 3²P(X=3) + 4²P(X=4) + 5²P(X=5) + 6²P(X=6) + 7²P(X=7)
≈ 4.56
Then, we can use the formula for the variance:
Var(X) = E(X²) - [E(X)]²
≈ 4.56 - (1.75)²
≈ 1.03
Rounding to 2 decimal places, the variance of X is 1.31.
To know more about Probability mass function visit:
https://brainly.com/question/30765833
#SPJ1
The complete question is as follows:
A small deck of four cards consists of one red card and three green cards. Draw 7 times with replacement. Assume each draw is a random selection of one card. Let X = the number of red cards drawn, compute the variance of X. Round to 2 decimal places.
Var(X) =
for each polynomial in factored form show the leading term, the zeros on the x-axis, and the general shape of the polynomial
For the given polynomials in factored form;
(a) the leading term is x³, the zeroes are -2,3 and 5 , the graph will be a cubic function passing through x-axis at -2, 3 and 5.
(b) the leading term is 2x², the zeros are -1, 4 the graph will be a quadratic function passing through x-axis at -1 and 4.
Part(a) : The polynomial in factored form is : f(x) = (x + 2)(x - 3)(x - 5)
The Leading Term is : x³; The Zeros are : -2, 3, 5.
The General Shape: The graph of the polynomial will be a cubic function that passes through the x-axis at -2, 3, and 5.
The function will approach negative infinity as x approaches negative infinity and positive infinity as x approaches positive infinity.
Part(b) : The Polynomial in factored form is : f(x) = 2(x + 1)(x - 4)
The Leading Term is : 2x²; The Zeros are : -1, 4.
The General Shape: The graph of the polynomial will be a quadratic function that passes through the x-axis at -1 and 4. The function will open upwards since the leading coefficient is positive.
The function will approach negative infinity as x approaches negative infinity and positive infinity as x approaches positive infinity.
Learn more about Polynomial here
https://brainly.com/question/30322199
#SPJ4
The given question is incomplete, the complete question is
For each polynomial in factored form show the leading term, the zeros on the x-axis, and the general shape of the polynomial.
(a) f(x) = (x + 2)(x - 3)(x - 5)
(b) f(x) = 2(x + 1)(x - 4).
h(r) = 11r² - 6
g(r) = r² + 8r+ 9
Find h(-2) + g(-2)
According to the solving the function the value of h(-2) + g(-2) is 45.
What exactly is function?function is a mathematical phrase, rule, or law that establishes the relationship between an independent variable and a dependent variable (the dependent variable). Functions are used frequently in mathematics and are crucial for constructing physical links in the sciences.
According to the given information:To find h(-2) + g(-2), we need to evaluate h(r) and g(r) when r = -2, and then add the results:
h(-2) = 11(-2)² - 6 = 44
g(-2) = (-2)² + 8(-2) + 9 = 1
So, h(-2) + g(-2) = 44 + 1 = 45.
Therefore, h(-2) + g(-2) = 45.
To know more about function visit:
https://brainly.com/question/12431044
#SPJ1
In the diagram below, MN is parallel to JK. If MN=10,LK=7.2, JL=13.2, and LN=6.find the length of JK. Figures are not necessarily drawn to scale.
The length of JK is 18.333.
Since MN is parallel to JK, the angles formed by JLN and MLK are equal. Therefore, we can use the Triangle Proportionality Theorem, which states that if a line parallel to one side of a triangle divides the other two sides proportionally, then the triangles are similar.
Using the Triangle Proportionality Theorem, we can set up the following proportion:
[tex]$\frac{LK}{JL} = \frac{MN}{LN}$[/tex]
Therefore,
[tex]$\frac{7.2}{13.2} = \frac{10}{6}$[/tex]
We can cross-multiply to solve for JK:
[tex]$7.2 \cdot 6 = 13.2 \cdot 10$\\$43.2 = 132$\\$JK = \frac{132}{7.2} = 18.333$[/tex]
Therefore, the length of JK is 18.333.
Learn more about Triangle Proportionality Theorem here:
https://brainly.com/question/11807262
#SPJ1
Dish A had cells with a radius of 5.1 x10-10 cm. Dish B had cells that had a radius of 4.1 x 10-8 cm. What is the sum of the radii of the two types of cells, using scientific notation?
Answer:
Step-by-step explanation:
To find the sum of the radii of the two types of cells in scientific notation, we need to add the two radii together. However, the radii are given in different orders of magnitude (exponents), so we need to convert one of the radii to match the order of magnitude of the other radius.
The radius of dish A cells is 5.1 x 10^-10 cm.
The radius of dish B cells is 4.1 x 10^-8 cm.
We can convert the radius of dish A cells to match the order of magnitude of dish B cells by multiplying it by 100 (10^2), which gives us:
5.1 x 10^-10 cm x 10^2 = 5.1 x 10^-8 cm
Now that both radii have the same order of magnitude (10^-8), we can add them together to get the total sum of the radii:
5.1 x 10^-8 cm + 4.1 x 10^-8 cm = 9.2 x 10^-8 cm
Therefore, the sum of the radii of the two types of cells, in scientific notation, is 9.2 x 10^-8 cm.
Answer:9.2 x 10^-8 cm.
Step-by-step explanation: