a family spent $93 at a carnival.
*they spent $18 on tickets and $30 on food. they spent the rest of the money on games.

which equation can be used to to find "g", the amount of money used on games.

Answers

Answer 1

Answer: 93-(18+30)=g

93-48=g

45=g

Step-by-step explanation: yup

Answer 2

The answer is 93-18-30-g=0 or 18+30+g=93


Related Questions

Reduce the following fraction to lowest terms: 8/14

Answers

Answer:

4/7

Step-by-step explanation:

divide both by two for its simplest form

Answer:4/7

Step-by-step explanation

Divide both the numerator and denominator by 2

The result for the numerator is 8/2=4

that of the denominator is 14/2=7

Therefore the resultant answer is 4/7

What is 5 feet and 11 inches in inches

Answers

Answer:

60

Step-by-step explanation:

5 is 60 inch

A maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use. In a random sample of 50 microwaves that are 5 years old, 12% needed repairs at a=.04 can you reject the makers claim that no more than 10% of its microwaves need repair during the first five years of use?

Answers

Answer:

We conclude that no more than 10% of its microwaves need repair during the first five years of use.

Step-by-step explanation:

We are given that a maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use.

In a random sample of 50 microwaves that are 5 years old, 12% needed repairs.

Let p = population proportion of microwaves who need repair during the first five years of use.

So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 10%      {means that no more than 10% of its microwaves need repair during the first five years of use}

Alternate Hypothesis, [tex]H_A[/tex] : p > 10%     {means that more than 10% of its microwaves need repair during the first five years of use}

The test statistics that will be used here is One-sample z-test for proportions;

                        T.S.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of microwaves who need repair during the first 5 years of use = 12%

           n = sample of microwaves = 50

So, the test statistics =  [tex]\frac{0.12-0.10}{\sqrt{\frac{0.10(1-0.10)}{50} } }[/tex]

                                    =  0.471

The value of z-test statistics is 0.471.

Now, at a 0.04 level of significance, the z table gives a critical value of 1.751 for the right-tailed test.

Since the value of our test statistics is less than the critical value of z as 0.471 < 1.751, so we have insufficient evidence to reject our null hypothesis as the test statistics will not fall in the rejection region.

Therefore, we conclude that no more than 10% of its microwaves need repair during the first five years of use.

A rectangle has an area of 81 square centimeters. Which of the following would be the rectangle's length and width? (Area = equals length×times width)

Answers

Answer:

length: 9cm

width: 9cm

Step-by-step explanation:

9×9=81

the length is 9cm and the width is also 9cm

Transform the polar equation to a Cartesian (rectangular) equation: r= 4sinθ

options include:

x^2+y^2 = 4y

x^2+y^2 = -4

x^2+y^2 = 4

x^2+y^2 = -4y

Answers

Answer:

  x^2 +y^2 = 4y

Step-by-step explanation:

Using the usual translation relations, we have ...

  r^2 = x^2+y^2

  x = r·cos(θ)

  y = r·sin(θ)

Substituting for sin(θ) the equation becomes ...

  r = 4sin(θ)

  r = 4(y/r)

  r^2 = 4y

Then, substituting for r^2 we get ...

  x^2 +y^2 = 4y . . . . . matches the first choice

if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=

Answers

Answer:

3

Step-by-step explanation:

f(x)=3x-3

g(x)=-x^2+4,

f(2) = 3(2) -3 = 6-3 =3

g(-2) = -(-2)^2+4 = -4+4 = 0

f(2)-g(-2)= = 3-0 = 3

Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle? ​

Answers

Answer:

7.5 cm²

Step-by-step explanation:

Dimensions of the large ∆:

[tex] base (b) = 3cm, height (h) = 9cm [/tex]

[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]

Dimensions of the small ∆:

[tex] base (b) = 2cm, height (h) = 6cm [/tex]

[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]

Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²

The formula for the area of a square is s2, where s is the side length of the square. What is the area of a square with a side length of 6 centimeters? Do not include units in your answer.

Answers

Answer:

36

Step-by-step explanation:

formula of area for square:

A=s^2

s=6

A=6^2

A=36

Answer:

36

Step-by-step explanation:

I got it right

What does "C" represent and how do you evaluate this?

Answers

It represents 'combinations'.

It means that you have 9 items, and you want to count the combinations of 7 items.

The answer is:
9! / ((9-7)! * (7!))
= 9! / (2! * 7!)
= 9*8/2
= 36

[tex]_9C_7=\dfrac{9!}{7!2!}=\dfrac{8\cdot9}{2}=36[/tex]

If f(x)=ax+b/x and f(1)=1 and f(2)=5, what is the value of A and B?

Answers

Answer:

[tex]\huge\boxed{a=9 ; b = -8}[/tex]

Step-by-step explanation:

[tex]f(x) = \frac{ax+b}{x}[/tex]

Putting x = 1

=> [tex]f(1) = \frac{a(1)+b}{1}[/tex]

Given that f(1) = 1

=> [tex]1 = a + b[/tex]

=> [tex]a+b = 1[/tex]  -------------------(1)

Now,

Putting x = 2

=> [tex]f(2) = \frac{a(2)+b}{2}[/tex]

Given that f(2) = 5

=> [tex]5 = \frac{2a+b}{2}[/tex]

=> [tex]2a+b = 5*2[/tex]

=> [tex]2a+b = 10[/tex]  ----------------(2)

Subtracting (2) from (1)

[tex]a+b-(2a+b) = 1-10\\a+b-2a-b = -9\\a-2a = -9\\-a = -9\\a = 9[/tex]

For b , Put a = 9 in equation (1)

[tex]9+b = 1\\Subtracting \ both \ sides \ by \ 9\\b = 1-9\\b = -8[/tex]


What is the volume of a cube with a side length of
of a unit?

Answers

It’s d times it three times length width height

A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was and the standard deviation was . The test scores of four students selected at random are ​, ​, ​, and . Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) Which​ values, if​ any, are​ unusual? Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A. The unusual​ value(s) is/are nothing. ​(Use a comma to separate answers as​ needed.) B. None of the values are unusual.

Answers

Answer:

The​ z-score for 1880 is 1.34.

The​ z-score for 1190 is -0.88.

The​ z-score for 2130 is 2.15.

The​ z-score for 1350 is -0.37.

And the z-score of 2130 is considered to be unusual.

Step-by-step explanation:

The complete question is: A standardized​ exam's scores are normally distributed. In recent​ years, the mean test score was 1464 and the standard deviation was 310. The test scores of four students selected at random are ​1880, 1190​, 2130​, and 1350. Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The​ z-score for 1880 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 1190 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 2130 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 1350 is nothing. ​(Round to two decimal places as​ needed.) Which​ values, if​ any, are​ unusual? Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A. The unusual​ value(s) is/are nothing. ​(Use a comma to separate answers as​ needed.) B. None of the values are unusual.

We are given that the mean test score was 1464 and the standard deviation was 310.

Let X = standardized​ exam's scores

The z-score probability distribution for the normal distribution is given by;

                          Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean test score = 1464

           [tex]\sigma[/tex] = standard deviation = 310

S, X ~ Normal([tex]\mu=1464, \sigma^{2} = 310^{2}[/tex])

Now, the test scores of four students selected at random are ​1880, 1190​, 2130​, and 1350.

So, the z-score of 1880 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                      =  [tex]\frac{1880-1464}{310}[/tex]  = 1.34

The z-score of 1190 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                =  [tex]\frac{1190-1464}{310}[/tex]  = -0.88

The z-score of 2130 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                =  [tex]\frac{2130-1464}{310}[/tex]  = 2.15

The z-score of 1350 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                =  [tex]\frac{1350-1464}{310}[/tex]  = -0.37

Now, the values whose z-score is less than -1.96 or higher than 1.96 are considered to be unusual.

According to our z-scores, only the z-score of 2130 is considered to be unusual as all other z-scores lie within the range of -1.96 and 1.96.

Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.

Answers

Answer:

Low             Q1                Median              Q3                 High

6                  9                     11                      12.5                14

The interquartile range = 3.5

Step-by-step explanation:

Given that:

Consider the following ordered data. 6 9 9 10 11 11 12 13 14

From the above dataset, the highest value = 14  and the lowest value = 6

The median is the middle number = 11

For Q1, i.e the median  of the lower half

we have the ordered data = 6, 9, 9, 10

here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.

i.e

median = [tex]\dfrac{9+9}{2}[/tex]

median = [tex]\dfrac{18}{2}[/tex]

median = 9

Q3, i.e median of the upper half

we have the ordered data = 11 12 13 14

The same use case is applicable here.

Median = [tex]\dfrac{12+13}{2}[/tex]

Median = [tex]\dfrac{25}{2}[/tex]

Median = 12.5

Low             Q1                Median              Q3                 High

6                  9                     11                      12.5                14

The interquartile range = Q3 - Q1

The interquartile range =  12.5 - 9

The interquartile range = 3.5

PLEASE HELP!!!
Evaluate the expression when b=4 and y= -3
-b+2y

Answers

Answer: -10

Step-by-step explanation: All you have to do is plug the values into the equation. -4+2(-3). Then you solve the equation using PEDMAS.

1. -4+2(-3)

2. -4+(-6)

3.-4-6

4.-10

Answer:

8

Step-by-step explanation:

-b + 2y

if

b = 4

and

y = 3

then:

-b + 2y = -4 + 2*6 = -4 + 12

= 8

Find the area of the shaded regions:

Answers

area of Arc subtending [tex]360^{\circ}[/tex] (i.e. the whole circle) is $\pi r^2$

so area of Arc subtending $\theta^{\circ}$ is, $\frac{ \pi r^2}{360^{\circ}}\times \theta^{\circ}$

$\theta =72^{\circ}$ so the area enclosed by one such arc is $\frac{\pi (10)^272}{360}$

abd there are 2 such arcs, so double the area.

[tex] \LARGE{ \underline{ \boxed{ \rm{ \purple{Solution}}}}}[/tex]

Given:-Radius of the circle = 10 inchesAngle of each sector = 72°Number of sectors = 2

To FinD:-Find the area of the shaded regions....?

How to solve?

For solving this question, Let's know how to find the area of a sector in a circle?

[tex] \large{ \boxed{ \rm{area \: of \: sector = \frac{\theta}{360} \times \pi {r}^{2} }}}[/tex]

Here, Θ is the angle of sector and r is the radius of the circle. So, let's solve this question.

Solution:-

We have,

No. of sectors = 2Angle of sector = 72°

By using formula,

⇛ Area of shaded region = 2 × Area of each sector

⇛ Area of shaded region = 2 × Θ/360° × πr²

⇛ Area of shaded region = 2 × 72°/360° × 22/7 × 10²

⇛ Area of shaded region = 2/5 × 100 × 22/7

⇛ Area of shaded region = 40 × 22/7

⇛ Area of shaded region = 880/7 inch. sq.

⇛ Area of shaded region = 125.71 inch. sq.

☄ Your Required answer is 125.71 inch. sq(approx.)

━━━━━━━━━━━━━━━━━━━━

write a thirdthird-degree polynomial expression that has only two terms with a leading term that has a coefficient of five and a constant of negative two ​

Answers

Answer:

5x^3-2

[tex]ax^{3} +bx^{2} +cx+d\\5x^{3}-given\\ d=-2-given\\5x^{3} -2[/tex]

Answer: [tex]5x^3 - 2[/tex]

Explanation:

The two terms are [tex]5x^3[/tex] and [tex]2[/tex]. Terms are separated by either a plus or minus.

We can write it as [tex]5x^3+(-2)[/tex] which is an equivalent form. Here the two terms are [tex]5x^3[/tex] and [tex]-2[/tex]. This is because adding a negative is the same as subtracting.

The coefficient is the number to the left of the variable.

The degree is the largest exponent, which helps form the leading term.

The third degree polynomial written above is considered a cubic binomial. "Cubic"  refers to the third degree, while "binomial" means there are 2 terms.

We can write something like [tex]5x^3[/tex] as 5x^3 when it comes to computer settings.

A cabinet door has a perimeter of 76 inches. Its area is 357 square inches. What are the dimensions of the door?

Answers

Answer:

  17 by 21 inches

Step-by-step explanation:

The perimeter is twice the sum of the dimensions, and the area is their product, so you have ...

  L + W = 38

  LW = 357

__

Solution:

  W(38 -W) = 357 . . . . . substitute for L

  -(W^2 -76W) = 357 . . expand on the left

  -(W^2 -38 +19^2) = 357 -19^2 . . . . complete the square

  (W -19)^2 = 4 . . . . . . . write as a square

  W -19 = ±√4 = ±2 . . . take the square root; next, add 19

  W = 19 ±2 = {17, 21} . . . . if width is one of these, length is the other

The dimensions are 17 by 21 inches.

The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0

Answers

Answer:

Step-by-step explanation:

A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).

X = 100pth percentile of W

Y = 100(1-p)th percentile of W

Expressing Y as a function of X;

Y = 100(1-p)th = 100th - 100pth

Recall that 100pth is same as X, so substitute;

Y = 100th - X

where 100th = hundredth percentile of W and X = 100pth percentile of W  

Find the rectangular coordinates of the point with the given polar coordinates.

Answers

Answer:

[tex]( - \sqrt{3} \: an d \: 1)[/tex]

Find the number of pieces of floor tiles each measuring 26cm long and 10cm wide needed to lay a floor measuring 260m long and 15m wide

Answers

Answer:

150,000

Step-by-step explanation:

1 m = 100 cm

260 m = 260 * 100 cm = 26000 cm

15 m = 15 * 100 cm = 1500 cm

area of floor = LW = 26000 cm * 1500 cm = 39,000,000 cm^2

area of 1 tile = 26 cm + 10 cm = 260 cm^2

number of tiles needed = 39,000,000/260 = 150,000

Answer: 150,000 tiles

Correct answer is 150000 tiles. Hope this helps ya

Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...

Answers

Answer:

C. -8, -6, -4, -2, ...

Step-by-step explanation:

An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.

A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.

B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.

C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.

Hope this helps!

The table shows the height, in meters, of an object that is dropped as time passes until the object hits the ground. A 2-row table with 10 columns. The first row is labeled time (seconds), x with entries 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.6. The second row is labeled height (meters), h with entries 100, 98.8, 95.1, 89.0, 80.4, 69.4, 55.9, 40.0, 21.6, 0. A line of best fit for the data is represented by h = –21.962x + 114.655. Which statement compares the line of best fit with the actual data given by the table? According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground. According to the line of best fit, the object was dropped from a lower height. The line of best fit correctly predicts that the object reaches a height of 40 meters after 3.5 seconds. The line of best fit predicts a height of 4 meters greater than the actual height for any time given in the table.

Answers

Answer: A. According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground.

The statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

What is the line of best fit?

A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.

We have a line of best fit:

h = –21.962x + 114.655

As per the data given and line of best fit, we can say the object would have impacted the ground 0.6 seconds later than it did according to the line of best fit.

Thus, the statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

Learn more about the line of best fit here:

brainly.com/question/14279419

#SPJ2

Which is a perfect square? 6 Superscript 1 6 squared 6 cubed 6 Superscript 5 What is the length of the hypotenuse, x, if (20, 21, x) is a Pythagorean triple

Answers

Answer:

Step-by-step explanation:

Hello, by definition a perfect square can be written as [tex]a^2[/tex] where a in a positive integer.

So, to answer the first question, [tex]6^2[/tex] is a perfect square.

(a,b,c) is a Pythagorean triple means the following

[tex]a^2+b^2=c^2[/tex]

Here, it means that

[tex]x^2=20^2+21^2=841=29^2 \ \ \ so\\\\x=29[/tex]

Thank you.

Answer:

Its B

Step-by-step explanation:

On a coordinate plane, 2 lines are shown. Line A B has points (negative 4, negative 2) and (4, 4). Line C D has points (0, negative 3) and (4, 0). Which statement best explains the relationship between lines AB and CD? They are parallel because their slopes are equal. They are parallel because their slopes are negative reciprocals. They are not parallel because their slopes are not equal. They are not parallel because their slopes are negative reciprocals.

Answers

Answer:

A. they are parallel because their slopes are equal.

Step-by-step explanation:

edge 2020

Answer:

its A in egde

Step-by-step explanation:

Give the domain and range of each relation using set notation​

Answers

Answer:

See below.

Step-by-step explanation:

First, recall the meanings of the domain and range.

The domain is the span of x-values covered by the graph.

And the range is the span of y-values covered by the graph.

1)

So, we have here an absolute value function.

As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:

[tex]\{x|x\in\textbb{R}\}[/tex]

(You are correct!)

For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:

[tex]\{y|y\leq 7\}[/tex]

2)

We have here an ellipse.

First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:

[tex]-4\leq x\leq 6[/tex]

So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:

[tex]\{x|-4\leq x\leq 6\}[/tex]

For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:

[tex]-5\leq y\leq 1[/tex]

This represents all the y-values between -5 and 1, including -5 and 1.

In set notation, thi is:

[tex]\{y|-5\leq y\leq 1\}[/tex]

What is the solution to the following system of equations? 3x-2y=12 6x - 4y = 24

Answers

Answer:

D question,somewhat confusing, itsit's like simultaneous equation,but values are different

Answer:

x = 4 + 2y/3

Step-by-step explanation:

How should a musician effectively convey emotions or ideas in a performance?

Answers

Answer:

Within the factors hindering expression in music, tempo is the most important number of factors such as your mood.

Step-by-step explanation:

If one wants to convey a message, they should try these:

a) Use real life

b) introduce symbolism

c) convey sensory disruption, e.t.c.

Hope these helps.

In the following equation, when x=3, what is the value of y? -4x + 3y = 12 A. 9 B. 3 C. 0 D. 8 PLZ HURRY IM TIMED WILL MARK BRAINLIEST

Answers

Answer:

[tex]\huge\boxed{y = 8}[/tex]

Step-by-step explanation:

-4x + 3y = 12

Given that x = 3

-4 (3) + 3y = 12

-12 + 3y = 12

Adding 12 to both sides

3y = 12+12

3y = 24

Dividing both sides by 3

y = 8

Answer:

y =8

Step-by-step explanation:

-4x + 3y = 12

Let x = 3

-4(3) +3y = 12

-12+3y = 12

Add 12 to each side

-12+12+3y =12+12

3y =24

Divide each side by 3

3y/3 = 24/3

y =8

Find the fourth roots of 16(cos 200° + i sin 200°).

Answers

Answer:

See below.

Step-by-step explanation:

To find roots of an equation, we use this formula:

[tex]z^{\frac{1}{n}}=r^{\frac{1}{n}}(cos(\frac{\theta}{n}+\frac{2k\pi}{n} )+\mathfrak{i}(sin(\frac{\theta}{n}+\frac{2k\pi}{n})),[/tex] where k = 0, 1, 2, 3... (n = root; equal to n - 1; dependent on the amount of roots needed - 0 is included).

In this case, n = 4.

Therefore, we adjust the polar equation we are given and modify it to be solved for the roots.

Part 2: Solving for root #1

To solve for root #1, make k = 0 and substitute all values into the equation. On the second step, convert the measure in degrees to the measure in radians by multiplying the degrees measurement by [tex]\frac{\pi}{180}[/tex] and simplify.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(0)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(0)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}} = 2(sin(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

Root #1:

[tex]\large\boxed{z^\frac{1}{4}=2(cos(\frac{19\pi}{36}))+\mathfrack{i}(sin(\frac{19\pi}{38}))}[/tex]

Part 3: Solving for root #2

To solve for root #2, follow the same simplifying steps above but change k  to k = 1.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(1)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(1)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{2\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{2\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{2}))\\[/tex]

Root #2:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{7\pi}{9}))+\mathfrak{i}(sin(\frac{7\pi}{9}))}[/tex]

Part 4: Solving for root #3

To solve for root #3, follow the same simplifying steps above but change k to k = 2.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(2)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(2)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{4\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{4\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\pi))+\mathfrak{i}(sin(\frac{5\pi}{18}+\pi))\\[/tex]

Root #3:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{23\pi}{18}))+\mathfrak{i}(sin(\frac{23\pi}{18}))}[/tex]

Part 4: Solving for root #4

To solve for root #4, follow the same simplifying steps above but change k to k = 3.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(3)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(3)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{6\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{6\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{3\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{3\pi}{2}))\\[/tex]

Root #4:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{16\pi}{9}))+\mathfrak{i}(sin(\frac{16\pi}{19}))}[/tex]

The fourth roots of 16(cos 200° + i(sin 200°) are listed above.

. A discount brokerage selected a random sample of 64 customers and reviewed the value of their accounts. The mean was $32,000 with a population standard deviation of $8,200. What is a 90% confidence interval for the mean account value of the population of customers

Answers

Answer:

The  90% confidence interval is  [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]

Step-by-step explanation:

From the question we are told that

   The  sample size is  n =  64

     The sample  mean is  [tex]\= x = \$ 32, 000[/tex]

     The  standard deviation is  [tex]\sigma= \$ 8, 200[/tex]

     

Given that the confidence interval is  90% then the level of significance is mathematically evaluated as

             [tex]\alpha = 100 - 90[/tex]

             [tex]\alpha = 10 \%[/tex]

            [tex]\alpha = 0.10[/tex]

Next we obtain the critical value of  [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table , the value is  

       [tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]

  Generally the margin of error is mathematically represented as

        [tex]E = Z_{\frac{\alpha }{2} } * \frac{ \sigma }{ \sqrt{n} }[/tex]

  =>   [tex]E = 1.645 * \frac{ 8200 }{ \sqrt{64} }[/tex]

  =>   [tex]E = 1686.13[/tex]

The 90% confidence interval is mathematically represented as

      [tex]\= x - E < \mu < \= x + E[/tex]

 =>    [tex]32000 - 1689.13 < \mu < 32000 + 1689.13[/tex]

=>    [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]

Other Questions
Find the rectangular coordinates of the point with the given polar coordinates. Frank McCourt, Whose Irish Childhood Illuminated His Prose, Is Dead at 78: What is the meaning of whose Irish childhood illuminated his prose as it is used in the title? Question 45 options: a) McCourt became a despised novelist because he fictionalized his upbringing. b) The colorful descriptions of the Irish landscape are irrelevant to his writings. c) McCourts writing was at its most powerful when channelling his Irish roots. d) McCourt used his Irish heritage as a crutch to cover up lackluster writing skills. Which of the following statements is true about leadership skills? a. Interpersonal skills refer to a leaders ability to interact with others. b. Cognitive skills refer to a leaders knowledge about an organization. c. Cognitive skills are developed through experience. d. Technical and interpersonal skills are innate. I have question with it can you help me please?? mplement the function fileSum. fileSum is passed in a name of a file. This function should open the file, sum all of the integers within this file, close the file, and then return the sum.If the file does not exist, this function should output an error message and then call the exit function to exit the program with an error value of 1.Please Use This Code Template To Answer the Question#include #include #include //needed for exit functionusing namespace std;// Place fileSum prototype (declaration) hereint main() {string filename;cout > filename;cout If cancer runs in your family, what will your doctor likely do? In any kind of formal writing, the writer should be sure to use a formalor attitude, toward the subject.Mark this and retumSave and ExitNextSubmit The income statements for Federer Sports Apparel for 2022 and 2021 are presented below. FEDERER SPORTS APPAR Income Statement For the Years Ended December 31 Year Increase Decrease 2019 2018 Amount % Net sales 18,800,000 15,500,000 Cost of goods 13,200,000 7,000,000 Gross prof 5,600,000 8,500,000 Operating expenses 1,600,000 1,200,000 Depreciation expense 1,000,000 1,000,000Inventory write-down 200,000 0Loss (litigation) 1,500,000 300,000Required: Prepare a horizontal analysis for 2022 using 2021 as the base year. Felix launched both a Google Search Ad campaign and a Google Display Ad campaign to drive sales of tools on his home improvement website. He reviewed his sales data after two weeks and noticed his Search Ad campaign is the most successful. Which optimization type should Felix use if he wants to use bidding or targeting to acquire more customers? A certain mixture of paint contains 5 parts white paint for every 4 parts blue paint. If a can of paint contains 75 ounces of white paint, how many ounces of blue paint are in the can? Digby's turnover rate for this year is 6.33%. This rate is projected to remain the same next year and no further downsizing will occur from automating. What would the total recruiting cost be for Digby, assuming it spends the same amount extra above the $1,000 recruiting base as they did this year? 5.4(m-2)= -2(3m+3) please help asap A rectangle has an area of 81 square centimeters. Which of the following would be the rectangle's length and width? (Area = equals lengthtimes width) an example of biogeochemical cycle would be the A. carbon cycle B. fire cycle C. trophic cycle how many oxygen atoms are in 7.25g of calcium nitrate Each day that a library book is kept past its due date a 30 dollar fee is charged at midnight which ordered pair is a viable solution if x represents the number of days that a library book is late and y represents the total fee Write the equation for the reaction described: A solid metal oxide, , and hydrogen are the products of the reaction between metal and steam. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank.) A triangle has one side that lies along the line y=1/4x and another that lies along the line y=-1/4x. Which of the following points could be a vertex of the triangle? Reduce the following fraction to lowest terms: 8/14 Plz help me this is probably easy but im just not seeing it plz help me ASAP