Answer:
length: 9cm
width: 9cm
Step-by-step explanation:
9×9=81
please help
-3(-4x+4)=15+3x
Answer:
x=3
Step-by-step explanation:
● -3 (-4x+4) = 15 + 3x
Multiply -3 by (-4x+4) first
● (-3) × (-4x) + (-3)×(4) = 15 + 3x
● 12 x - 12 = 15 +3x
Add 12 to both sides
● 12x - 12 + 12 = 15 + 3x +12
● 12 x = 27 + 3x
Substract 3x from both sides
● 12x -3x = 27 + 3x - 3x
● 9x = 27
Dividr both sides by 9
● 9x/9 = 27/9
● x = 3
You sell tickets at school for fundraisers. You sold car wash tickets, silly string fight tickets and dance tickets – for a total of 380 tickets sold. The car wash tickets were $5 each, the silly sting fight tickets were $3 each and the dance tickets were $10 each. If you sold twice as many silly string tickets as car wash tickets, and you have $1460 total. Write the matrix in the box below. Write the solution set for this system and include any necessary work.
Answer:
Matrix :
[tex]\begin{bmatrix}1&1&1&|&380\\ 5&3&10&|&1460\\ -2&1&0&|&0\end{bmatrix}[/tex]
Solution Set : { x = 123, y = 246, z = 11 }
Step-by-step explanation:
Let's say that x represents the number of car wash tickets, y represents the number of silly sting fight tickets, and z represents the number of dance tickets. We know that the total tickets = 380, so therefore,
x + y + z = 380,
And the car wash tickets were $5 each, the silly sting fight tickets were $3 each and the dance tickets were $10 each, the total cost being $1460.
5x + 3y + 10z = 1460
The silly string tickets were sold for twice as much as the car wash tickets.
y = 2x
Therefore, if we allign the co - efficients of the following system of equations, we get it's respective matrix.
System of Equations :
[tex]\begin{bmatrix}x+y+z=380\\ 5x+3y+10z=1460\\ y=2x\end{bmatrix}[/tex]
Matrix :
[tex]\begin{bmatrix}1&1&1&|&380\\ 5&3&10&|&1460\\ -2&1&0&|&0\end{bmatrix}[/tex]
Let's reduce this matrix to row - echelon form, receiving the number of car wash tickets, silly sting fight tickets, and dance tickets,
[tex]\begin{bmatrix}5&3&10&1460\\ 1&1&1&380\\ -2&1&0&0\end{bmatrix}[/tex] - Swap Matrix Rows
[tex]\begin{bmatrix}5&3&10&1460\\ 0&\frac{2}{5}&-1&88\\ -2&1&0&0\end{bmatrix}[/tex] - Cancel leading Co - efficient in second row
[tex]\begin{bmatrix}5&3&10&1460\\ 0&\frac{2}{5}&-1&88\\ 0&\frac{11}{5}&4&584\end{bmatrix}[/tex] - Cancel leading Co - efficient in third row
[tex]\begin{bmatrix}5&3&10&1460\\ 0&\frac{11}{5}&4&584\\ 0&\frac{2}{5}&-1&88\end{bmatrix}[/tex] - Swap second and third rows
[tex]\begin{bmatrix}5&3&10&1460\\ 0&\frac{11}{5}&4&584\\ 0&0&-\frac{19}{11}&-\frac{200}{11}\end{bmatrix}[/tex] - Cancel leading co - efficient in row three
And we can continue, canceling the leading co - efficient in each row until this matrix remains,
[tex]\begin{bmatrix}1&0&0&|&\frac{2340}{19}\\ 0&1&0&|&\frac{4680}{19}\\ 0&0&1&|&\frac{200}{19}\end{bmatrix}[/tex]
x = 2340 / 19 = ( About ) 123 car wash tickets sold, y= 4680 / 19 =( About ) 246 silly string fight tickets sold, z = 200 / 19 = ( About ) 11 tickets sold
The force of gravity on an object varies directly with its mass. The constant of variation due to gravity is 32.2 feet per second squared. Which equation represents F, the force on an object due to gravity according to m, the object’s mass? F = 16.1m F = F equals StartFraction 16.1 Over m squared EndFraction. F = 32.2m F = F equals StartFraction 32.2 Over m squared EndFraction.
Answer:
F = 32.2mStep-by-step explanation:
According to newton second law, the force of gravity on an object varies directly with its mass and it is expressed mathematically as Fαm i.e
F = mg where;
F is the force of gravity
m is the mass of the body
g is the proportionality constant known as the acceleration due to gravity.
If the constant of variation due to gravity is 32.2ft/s², the equation that represents F, the force on an object due to gravity according to m, the object’s mass can be gotten by substituting g = 32.2 into the formula above according to the law as shown;
F = m*32.2
F =32.2m
Hence the required equation is F = 32.2m
The chief business officer of a construction equipment company arranges a loan of $9,300, at 12 1 /8 % interest for 37.5 months. Find the amount of interest. (Round to the nearest cent)
a. $2,761.21
b. $3,583.83
c. $3,523.83
d. $3,722.47
Answer:
C). $3523.83
Step-by-step explanation:
loan of principles p= $9,300,
at rate R= 12 1 /8 % interest
Rate R = 12.125%
for duration year T = 37.5 months
T= 37.5/12 = 3.125 years
Interest I=PRT/100
Interest I =( 9300*12.125*3.125)/100
Interest I = (352382.8125)/100
Interest I = 3523.83
Interest I= $3523.83
The radius of a sphere is measured as 7 centimeters, with a possible error of 0.025 centimeter.
Required:
a. Use differentials to approximate the possible propagated error, in cm3, in computing the volume of the sphere.
b. Use differentials to approximate the possible propagated error in computing the surface area of the sphere.
c. Approximate the percent errors in parts (a) and (b).
Answer:
a) dV(s) = 15,386 cm³
b) dS(s) = 4,396 cm²
c) dV(s)/V(s) = 1,07 % and dS(s)/ S(s) = 0,71 %
Step-by-step explanation:
a) The volume of the sphere is
V(s) = (4/3)*π*x³ where x is the radius
Taking derivatives on both sides of the equation we get:
dV(s)/ dr = 4*π*x² or
dV(s) = 4*π*x² *dr
the possible propagated error in cm³ in computing the volume of the sphere is:
dV(s) = 4*3,14*(7)²*(0,025)
dV(s) = 15,386 cm³
b) Surface area of the sphere is:
V(s) = (4/3)*π*x³
dV(s) /dx = S(s) = 4*π*x³
And
dS(s) /dx = 8*π*x
dS(s) = 8*π*x*dx
dS(s) = 8*3,14*7*(0,025)
dS(s) = 4,396 cm²
c) The approximates errors in a and b are:
V(s) = (4/3)*π*x³ then
V(s) = (4/3)*3,14*(7)³
V(s) = 1436,03 cm³
And the possible propagated error in volume is from a) is
dV(s) = 15,386 cm³
dV(s)/V(s) = [15,386 cm³/1436,03 cm³]* 100
dV(s)/V(s) = 1,07 %
And for case b)
dS(s) = 4,396 cm²
And the surface area of the sphere is:
S(s) = 4*π*x³ ⇒ S(s) = 4*3,14*(7)² ⇒ S(s) = 615,44 cm²
dS(s) = 4,396 cm²
dS(s)/ S(s) = [ 4,396 cm²/615,44 cm² ] * 100
dS(s)/ S(s) = 0,71
Determine the value(s) for which the rational expression 2x^2/6x is undefined. If there's more than one value, list them separated by a comma, e.g. x=2,3.
Answer:
0
Step-by-step explanation:
Hello, dividing by 0 is not defined. so
[tex]\dfrac{2x^2}{6x}[/tex]
is defined for x different from 0
This being said, we can simplify by 2x
[tex]\dfrac{2x^2}{6x}=\dfrac{2x*x}{3*2x}=\dfrac{1}{3}x[/tex]
and this last expression is defined for any real number x.
Thank you
Which choice is equivalent to the expression below? √-12
A. 12i
B. -12i
C. -2√3
D. 2i √3
E. -2√3i
PLEASE DON’T GUESS
Answer:
D. 2i√3
Step-by-step explanation:
You have the expression √-12. You can divide the number in the radical sign into the numbers that make up the expression. After you do this, you will be able to take numbers out of the radical sign
√(-12)
√(-1 × 4 × 3)
√-1 = i
√4 = 2
√3 = √3
2i√3
The answer is D.
paul worked 50 hours last week. if he earns $10 per hour plus time-and-a-half for any hours worked beyond 40 in a week, how much did he earn last week?
Answer: 4150
Step-by-step explanation:
You take the 50, becuse the amount earned increases once you surpass 40 you do 40 x 10 and that = 4000 then you take the remaining 10 and times that by 15 (becuse after 40 it is 1.5 of what you where earning before you hit 40 hours and half of ten is 5 so you do 10 plus 5 and times that by 10) then add both numbers together and you have 4150! Hope that helped!
write 32 1/2 in radical form
Answer:
Nothing further, the simplest answer is 32 1/2
Step-by-step explanation:
use the product of powers property to simplify the numeric expression.
4 1/3 • 4 1/5 = _____
Answer:
The value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
Step-by-step explanation:
We need to simplify the numeric expression using property. The expression is as follows :
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex]
The property to be used is : [tex]x^a{\cdot} x^b=x^{a+b}[/tex]
This property is valid if the base is same. Here, base is x.
In this given problem, x = 4, a = 1/3 and b = 1/5
So,
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}}=4^{\dfrac{1}{3}+\dfrac{1}{5}}\\\\=4^{\dfrac{5+3}{15}}\\\\=4^{\dfrac{8}{15}}[/tex]
So, the value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
Can somebody explain how trigonometric form polar equations are divided/multiplied?
Answer:
Attachment 1 : Option C
Attachment 2 : Option A
Step-by-step explanation:
( 1 ) Expressing the product of z1 and z2 would be as follows,
[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]
Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,
cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],
sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]
cos(3π / 2) = 0,
sin(3π / 2) = - 1
Let's substitute those values in our expression,
[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]
And now simplify the expression,
[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]
The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.
( 2 ) Here we will apply the following trivial identities,
cos(π / 3) = [tex]\frac{1}{2}[/tex],
sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],
cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],
sin(- π / 6) = [tex]-\frac{1}{2}[/tex]
Substitute into the following expression, representing the quotient of the given values of z1 and z2,
[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒
[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]
The simplified expression will be the following,
[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]
The solution will be option a, as you can see.
A spinner has 10 equally sized sections, 5 of which are gray and 5 of which are blue. The spinner is spun twice. What is the probability that the first spin lands on gray and the second spin lands on blue? Write your answer as a fraction in the simplest form.
Answer:
[tex]P(Gray\ and\ Blue) = \frac{1}{4}[/tex]
Step-by-step explanation:
Given
[tex]Sections = 10[/tex]
[tex]n(Gray) = 5[/tex]
[tex]n(Blue) = 5[/tex]
Required
Determine P(Gray and Blue)
Using probability formula;
[tex]P(Gray\ and\ Blue) = P(Gray) * P(Blue)[/tex]
Calculating P(Gray)
[tex]P(Gray) = \frac{n(Gray)}{Sections}[/tex]
[tex]P(Gray) = \frac{5}{10}[/tex]
[tex]P(Gray) = \frac{1}{2}[/tex]
Calculating P(Gray)
[tex]P(Blue) = \frac{n(Blue)}{Sections}[/tex]
[tex]P(Blue) = \frac{5}{10}[/tex]
[tex]P(Blue) = \frac{1}{2}[/tex]
Substitute these values on the given formula
[tex]P(Gray\ and\ Blue) = P(Gray) * P(Blue)[/tex]
[tex]P(Gray\ and\ Blue) = \frac{1}{2} * \frac{1}{2}[/tex]
[tex]P(Gray\ and\ Blue) = \frac{1}{4}[/tex]
Luke owns a trucking company. For every truck that goes out, Luke must pay the driver $17 per hour of driving and also has an expense of $1.75 per mile driven for gas and maintenance. On one particular day, the driver drove an average of 40 miles per hour and Luke's total expenses for the driver, gas and truck maintenance were $522. Write a system of equations that could be used to determine the number of hours the driver worked and the number of miles the truck drove. Define the variables that you use to write the system.
Answer:
17h+1.75m=522 m=40h
Step-by-step explanation:
Let h= {the number of hours the driver drove}
Let m= the number of miles driven
The driver makes $17 for each hour working, so if the driver worked for hh hours, Luke would have to pay him 17h17h dollars. The cost of gas and maintenance is $1.75 per mile, so for mm miles Luke's costs would be 1.75m1.75m dollars. The total cost of the route 17h+1.75m17h+1.75m equals \$522:$522:
17h+1.75m=522
17h+1.75m=522
Since the driver drove an avearge of 40 miles per hour, if the driver drove hour, he would have driven 40 miles, and if the driver drove hh hours, he would have driven 40h40h miles, therefore mm equals 40h:40h:
m=40h
m=40h
Write System of Equations:
17h+1.75m= 522
m=40h
The truck is going for a run for 6 hours and the system of the equation to solve a further problem related to this is [tex]\rm{Cost}=17x+1.75y[/tex]
The following are the different costs of the truck that Luke must be pay while running a truck:
Luke must pay the driver $17 per hour of driving.A truck has an expense of $1.75 per mile driven for gas and maintenance.Let ' x ' be the total time of driving a truck in hours.
and ' y ' be the total mile distance that is covered by the truck.
Therefore, the system of the equation for the overall running cost for a truck is given below.
[tex]\rm{Cost}=17x+1.75y[/tex]
Now, On one particular day, the driver drove an average of 40 miles per hour, and Luke's total expenses for the driver, gas and truck maintenance were $522.
Thus,
The total distance traveled by truck is 40x.
That is,
[tex]y=40x[/tex]
Substitute the values and solve them further.
[tex]522=17x+1.75y\\522=17x+1.75 \times 40x\\522=17x+70x\\522=87x\\x=6[/tex]
Thus, the truck is going for a run for 6 hours and the system of the equation to solve the further problems related to this is [tex]\rm{Cost}=17x+1.75y[/tex]
To know more about variables, please refer to the link:
https://brainly.com/question/14393109
a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path
Answer:
Garden: 36 square feet
Path: 64 square feet
Step-by-step explanation:
Let's first find the total area. The total area will be 100 square feet since the side length is 10. Since the path is 2 feet wide and on all sides, that means that the inside square will have a side length of 6. That means that the vegetable garden is 36 square feet. The path will be 100 - (the garden), and the garden is 36 square feet, which means the outer path will be 64.
f(x) = -3x + 7
What is f (0)?
Answer:
f(0) = 7
Step-by-step explanation:
f(x) = -3x + 7
Let x =0
f(0) = -3*0 + 7
f(0) = 7
On a coordinate plane, a line goes through (negative 3, 3) and (negative 2, 1). A point is at (4, 1). What is the equation, in point-slope form, of the line that is parallel to the given line and passes through the point (4, 1)? y − 1 = −2(x − 4) y – 1 = Negative one-half(x – 4) y – 1 = One-half(x – 4) y − 1 = 2(x − 4)
Answer:
y - 1 = -2(x - 4).
Step-by-step explanation:
First, we need to find the slope. Two sets of coordinates are (-3, 3), and (-2, 1).
(3 - 1) / (-3 - -2) = 2 / (-3 + 2) = 2 / (-1) = -2.
The line will be parallel to the given line, so the slope is the same.
Now that we have a point and the slope, we can construct an equation in point-slope form.
y1 = 1, x1 = 4, and m = -2.
y - 1 = -2(x - 4).
Hope this helps!
The slope of the line passing parallel to the given line and passes through the point (4, 1) is y = -2x + 9
The equation of a straight line is given by:
y = mx + b
where y, x are variables, m is the slope of the line and b is the y intercept.
The slope of the line passing through the points (-3,3) and (-2,1) is:
[tex]m=\frac{y_2-y_1}{x_2-x_1} \\\\m=\frac{1-3}{-2-(-3)} \\\\m=-2[/tex]
Since both lines are parallel, hence they have the same slope (-2). The line passes through (4,1). The equation is:
[tex]y-y_1=m(x-x_1)\\\\y-1=-2(x-4)\\\\y=-2x+9[/tex]
Find out more at: https://brainly.com/question/18880408
Find the first term in the sequence when u(subscript)31=197 and d= 10.
Answer:
197 = 10(31-1) + a
197 = 300 + a
-103 = a
In a genetics experiment on peas, one sample of offspring contained green peas and yellow peas. Based on those results, estimate the probability of getting an offspring pea that is green. Is the result reasonably close to the value of that was expected? 350 127 3 4 The probability of getting a green pea is approximately . (Type an integer or decimal rounded to three decimal places as needed.) Is this probability reasonably close to ? Choose the correct answer below. 3 4 A. No, it is not reasonably close. B. Yes, it is reasonably close.
Complete Question
In a genetic experiment on peas, one sample of offspring contained 436 green peas and 171 yellow peas. Based on those results, estimate the probability of getting an offspring pea that is green. Is the result reasonably close to the value of 3/4 that was expected? The probability of getting a green pea is approximately: Is the probability reasonably close to 3/4?
Answer:
The probability is [tex]P(g) =0.72[/tex]
Yes the result is reasonably close
Step-by-step explanation:
From the question we are told that
The number of of green peas is [tex]g = 436[/tex]
The number of yellow peas is [tex]y = 171[/tex]
The sample size is [tex]n = 171 + 436 = 607[/tex]
The probability of getting an offspring pea that is green is mathematically represented as
[tex]P(g) = \frac{g}{n}[/tex]
[tex]P(g) = \frac{436}{607}[/tex]
[tex]P(g) =0.72[/tex]
Comparing [tex]P(g) =0.72[/tex] to [tex]\frac{3}{4} = 0.75[/tex] we see that the result is reasonably close
The coffee cups can hold 7/9 of a pint of liquid. If Emily pours 2/3 of a pint of coffee into a cup,how much milk can a customer add? PLZ HELP!
Answer:
1/9
Step-by-step explanation:
easy 2/3 is equivalent to 6/9. So there is 1/9 of a pint left
the length of a mathematical text book the is approximately 18.34cm and its width is 11.75 calculate ?
the approximate perimeter of the front cover?
the approximate area of the front cover of the book?
Answer:
Perimeter=60.18cm
Area=215.495cm^2
Step-by-step explanation:
Given:
Length of book=18.34cm
Breadth=11.75cm
Solution:
Perimeter=2(l +b)
P=2(18.34+11.75)
P=2 x 30.09
P=60.18cm
Area=l x b
A=18.34 x 11.75
A=215.495 cm^2
Thank you!
musah stands at the center of a rectangular field . He first takes 50 steps north, then 25 step west and finally 50 steps on a bearing of 315°. How far west and how far north is Musah final point from the center?
Answer:
85.36 far north from the center
10.36 far east from the center
Step-by-step explanation:
The extra direction taken in the north side is x
X/sin(360-315)=50/sin 90
Sin 90= 1
X/sin 45= 50
X= sin45 *50
X= 0.7071*50
X= 35.355 steps
X= 35.36
Then the west direction traveled
West =√(50² - 35.355²)
West = √(2500-1249.6225)
West= √1250.3775
West= 35.36 steps
But this was taken in an opposite west direction
From the center
He is 35.36 +50
= 85.36 far north from the center
And
25-35.36=-10.36
10.36 far east from the center
can you please help ?
Answer:
69
Step-by-step explanation:
The order of operations is PEMDAS; parentheses, exponents, multiplication and division, and finally addition and subtraction.
We know that x is the first row, and if there are 30 spots in the first row, then x=30. Using this information, all we have to do now is plug in 30 for x and solve.
[tex]\frac{5(x)}{2} -6[/tex]
[tex]\frac{5(30)}{2}-6[/tex]
[tex]\frac{150}{2}-6[/tex]
[tex]75-6[/tex]
[tex]69[/tex]
A buoy floating in the sea is bobbing in simple harmonic motion with amplitude 13 in and period 0.25 seconds. Its displacement d from sea level at time t=0 seconds is 0in, and initially it moves downward. (Note that downward is the negative direction.)Required:Give the equation modeling the displacement d as a function of time t.
Answer:
The equation is [tex]x(t) = -13 cos (8 \pi t )[/tex]
Step-by-step explanation:
From the question we are told that
The amplitude is [tex]A = 13 \ in[/tex]
The period is [tex]T = 0.25[/tex]
Generally the displacement function for a simple harmonic motion is mathematically represented as
[tex]x(t) = A cos (wt )[/tex]
Here [tex]w[/tex] is the angular frequency which is mathematically represented as
[tex]w = \frac{2 \pi }{T}[/tex]
substituting values
[tex]w = \frac{2 \pi }{ 0.25}[/tex]
[tex]w = 8\pi[/tex]
Given that at t = 0 the displacement is equal to 0 it means that there is no phase shift and also we are told that it is initially moving downward which implies that its Amplitude is [tex]A = -13\ in[/tex]
So the equation modeling the displacement d as a function of time t is mathematically represented as
[tex]x(t) = -13 cos (8 \pi t )[/tex]
Select the correct answer from each drop-down menu.
Nirja has 24 marbles. The number of marbles Nirja has is 6 more than the number of marbles Tim has.
If Tim has x marbles, the equation that represents the situation is
The value of x that makes the equation true is
Reset
Next
Answer:
24 = x+6
x = 18
Step-by-step explanation:
N = 24
T = x
N = x+6
24 = x+6
Subtract 6 from each side
24-6 = x+6-6
18 = x
Time has 6 marbles
Nirja has 6 more than Tim,
So you can subtract 6 from 24 to find x:
24-6 = x
Or you can add 6 to x to equal 24:
x + 6 = 24
You don't list the choices but it should be one of these.
Solve:
24 - 6 = x
x = 18
) A random sample of size 36 is selected from a normally distributed population with a mean of 16 and a standard deviation of 3. What is the probability that the sample mean is somewhere between 15.8 and 16.2
Answer:
The probability is 0.31084
Step-by-step explanation:
We can calculate this probability using the z-score route.
Mathematically;
z = (x-mean)/SD/√n
Where the mean = 16, SD = 3 and n = 36
For 15.8, we have;
z = (15.8-16)/3/√36 = -0.2/3/6 = -0.2/0.5 = -0.4
For 16.2, we have
z = (16.2-16)/3/√36 = 0.2/3/6 = 0.2/0.5 = 0.4
So the probability we want to calculate is;
P(-0.4<z<0.4)
We can get this using the standard normal distribution table;
So we have;
P(-0.4 <z<0.4) = P(z<-0.4) - P(z<0.4)
= 0.31084
A package of 8-count AA batteries costs $6.40. A package of 20-count AA batteries costs $15.80. Which statement about the unit prices is true?
Answer:
The unit price of the 20 pack is $0.79 and the unit price for the 8 pack is $0.80.
Step-by-step explanation:
Simply Take the price of the pack of batteries divided by the number within the pack.
$6.40 / 8 == $0.80
$15.80 / 20 == $0.79
Cheers.
The question is incomplete. You can find the missing content below.
A package of 8-count AA batteries costs $6.40. A package of 20-count Of batteries costs $15.80. Which statement about the unit prices is true?
A) The 8-count pack of AA batteries has a lower unit price of $0.79 per battery.
B) The 20-count pack of AA batteries has a lower unit price of $0.80 per battery.
C) The 8-count pack of AA batteries has a lower unit prices of $0.80 per battery.
D) The 20-count pack of AA batteries has a lower unit price of $0.79 per battery.
The correct option is Option D: The 20-count pack of AA batteries has the lower price of $0.79 per battery.
What is inequality?Inequality is the relation between two numbers or variables or expressions showing relationships like greater than, greater than equals to, lesser than equals to, lesser than, etc.
For example 2<9
A package of 8-count AA batteries has cost = $6.40.
cost per unit count AA batteries will be= total cost of AA batteries/ number of AA batteries
= $6.40/8= $0.8
A package of 20-count AA batteries has cost = $15.80.
cost per unit count AA batteries will be= total cost of AA batteries/ number of AA batteries
= $15.80/20= $0.79
As 0.79<0.8
cost of 20-count AA batteries < cost of 8-count AA batteries
Therefore the correct option is Option D: The 20-count pack of AA batteries has the lower price of $0.79 per battery.
Learn more about inequality
here: https://brainly.com/question/11613554
#SPJ2
The cost of performance tickets and beverages for a family of four can be modeled using the equation 4x+12=48,where x represents the cost of a. Ticket.how much is one ticket
Answer:
x=9; one ticket is $9
Step-by-step explanation:
4x+12=48
4x=48-12
4x=36
x=36/4
x=9
6(x + 2) = 30Solve the following linear equation
Answer:
[tex]\huge \boxed{x=3}[/tex]
Step-by-step explanation:
[tex]6(x+2)=30[/tex]
[tex]\sf Divide \ both \ sides \ by \ 6.[/tex]
[tex]x+2=5[/tex]
[tex]\sf Subtract \ 2 \ from \ both \ sides.[/tex]
[tex]x=3[/tex]
Answer:
3
Step-by-step explanation:
30 = 6(x+2)
30/6 = 5
5 = x+2
5-2 = 3
3=x
This is a pretty simple question and I tried to make it as simple as possible when explaining it.
Question 36 of 40
The distance of a line bound by two points is defined as
L?
O A. a line segment
B. a ray
O
c. a plane
O D. a vertex
SUBMI
Answer:
A. a line segment
Step-by-step explanation:
a ray is directing in one dxn, and has no end pointa plane is a closed, so more than 2 points a vertex is a single point itselfA researcher wishes to examine the relationship between years of schooling completed and the number of pregnancies in young women. Her research discovers a linear relationship, and the least squares line is: ˆ y = 3 − 5 x y^=3-5x where x is the number of years of schooling completed and y is the number of pregnancies. The slope of the regression line can be interpreted in the following way:
1.) When amount of schooling increases by one year, the number of pregnancies decreases by 4.
2.) When amount of schooling increases by one year, the number of pregnancies increases by 4.
3.) When amount of schooling increases by one year, the number of pregnancies increases by 5.
4.) When amount of schooling increases by one year, the number of pregnancies decreases by 5.
Answer:
1. When amount of schooling increases by one year, the number of pregnancies will decrease by 4.
Step-by-step explanation:
Regression analysis is a statistical technique which is used for forecasting. It determines the relationship between two variables. It determines the relationship of two or more dependent and independent variables. It is widely used in stats to find trend in the data. It helps to predict the values of dependent and independent variables. In the given question, there is regression equation given. X and Y are considered as dependent variables. When number of schooling increases by 1 year then number of pregnancies will decrease by 4