A chemist prepares a solution of sodium nitrate by measuring out of sodium nitrate into a volumetric flask and filling the flask to the mark with water.
Calculate the concentration in mol/L of the chemist's sodium nitrate solution. Round your answer to 3 significant digits.

Answers

Answer 1

Answer:

5.74M or 5.74 mol/L (to 3 sign. fig.)

Explanation:

The molar mass of NaNO3 is 85g/mol, which means that:

1 mole of NaNO3 - 85g

? moles - 122.0g

= 122/85 = 1.44 moles

Concentration in mol/L = no. of moles (moles) ÷ volume (L)

[tex]\frac{1.44}{0.250}[/tex] = 5.74M or 5.74 mol/L (to 3 sign. fig.)

I hope the steps are clear and easy to follow.


Related Questions

A small amount of solid calcium hydroxide is shaken vigorously in a test tube almost full of water until no further change occurs and most of the solid settles out. The resulting solution is:______.

Answers

Answer:

Lime water, [tex]Ca(OH)_{2}_({aq} )[/tex] is formed.

Explanation:

Lime-water is a clear and colourless dilute solution of aqueous calcium hydroxide salt.

Small amounts of calcium hydroxide salt,  [tex]Ca(OH)_{2}_(s)[/tex]  is sparsely soluble at room temperature when dispersed vigorously. if in excess, a white suspension called 'milk of lime'is formed.

I hope this explanation is helpful.

A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
Br(g)
Cl2(g)
I2(g)
F2(g)
B. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2S(g)
H2O(g)
H2O2(g)
C. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous)
C(s, diamond)
C(s, graphite)

Answers

Answer:

A. Rank the following substances in order of decreasing standard molar entropy (S∘).

Rank the gases from largest to smallest standard molar entropy

I2(g)>Br2(g)>Cl2(g)>F2(g)

B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

H2O2(g)>H2S(g) >H2O(g)

C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

C(s, amorphous) >C(s, graphite)>C(s, diamond)

Explanation:

Hello,

In this case, we can apply the following principles to explain the order:

- The greater the molar mass, the larger the standard molar entropy.

- The greater the molar mass and the structural complexity, the larger the standard molar entropy.

- The greater the structural complexity, the larger the standard molar entropy.

A. Rank the following substances in order of decreasing standard molar entropy (S∘).

Rank the gases from largest to smallest standard molar entropy

I2(g)>Br2(g)>Cl2(g)>F2(g)

This is due to the fact that the greater the molar mass, the larger the standard molar entropy.

B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

H2O2(g)>H2S(g) >H2O(g)

This is due to the fact that the greater the molar mass and the structural complexity, the larger the standard molar entropy as the hydrogen peroxide has four bonds and weights 34 g/mol as well as hydrogen sulfide that has two bonds only.

C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

C(s, amorphous) >C(s, graphite)>C(s, diamond)

Since the molecular complexity is greater in the amorphous carbon (messy arrangement), mid in the graphite and lower in the diamond (well organized).

Regards.

In a reversible reaction, the endothermic reaction absorbs ____________ the exothermic reaction releases. A. less energy than B. None of these, endothermic reactions release energy C. the same amount of energy as D. more energy than

Answers

Answer: C. the same amount of energy as

Explanation:

A reversible reaction is a chemical reaction where the reactants form products that, in turn, react together to give the reactants back.

Reversible reactions will reach an equilibrium point where the concentrations of the reactants and products will no longer change.

[tex]A+B\rightleftharpoons C+D[/tex]

Thus if forward reaction is exothermic i.e. the heat is released , the backward reaction will be endothermic i.e. the heat is absorbed and in same amount.

The amount of energy released will be equal and opposite in sign to the energy absorbed in that reaction.

Answer:

C.) the same amount of energy as

Explanation:

I got it correct on founders edtell

The K sp for silver(I) phosphate is 1.8 × 10 –18. Determine the silver ion concentration in a saturated solution of silver(I) phosphate.

Answers

Answer:

[tex][Ag^+]=4.82x10^{-5}M[/tex]

Explanation:

Hello,

In this case, the dissociation reaction for silver phosphate is:

[tex]Ag_3PO_4(s)\rightleftharpoons 3Ag^+(aq)+PO_4^{3-}(aq)[/tex]

Therefore, the equilibrium expression is:

[tex]Ksp=[Ag^+]^3[PO_4^{3-}][/tex]

And in terms of the reaction extent [tex]x[/tex] is:

[tex]Ksp=1.8x10^{-18}=(3x)^3(x)[/tex]

Thus, [tex]x[/tex] turns out:

[tex]1.8x10^{-18}=27x^4\\\\x=\sqrt[4]{\frac{1.8x10^{-18}}{27} } \\\\x=1.61x10^{-5}M[/tex]

In such a way, the concentration of the silver ion is:

[tex][Ag^+]=3x=3*1.61x10^{-5}M=4.82x10^{-5}M[/tex]

Best regards.

g What is the molarity of hydrochloric acid if 40.95 mL of HCl is required to neutralize 0.550 g of sodium oxalate, Na2C2O4

Answers

Answer:

0.0002 M

Explanation:

The molarity of the HCl required would be 0.0002 M.

First, let us consider the balanced equation of the reaction:

[tex]Na_2C_2O_4 + 2HCl = 2NaCl + H_2 + 2CO_2[/tex]

Stoichiometrically, 1 mole of [tex]Na_2C_2O_4[/tex] reacts with 2 moles of [tex]HCl[/tex] for a complete neutralization reaction.

Recall that: mole = [tex]\frac{mass}{molar mass}[/tex]

Mole of 0.550 g sodium oxalate = 0.550/134 = 0.0041 mole

If 1 mole [tex]Na_2C_2O_4[/tex] requires 2 moles HCl, then 0.0041 mole will require:

    0.0041 x 2 = 0.0082 mole HCl

Volume of the HCl = 40.95 L

Molarity = mole/volume

Hence, molarity of the HCl = 0.0082/40.95 = 0.0002 M

The tosylate of (2R,3S)-3-phenylbutan-2-ol undergoes an E2 elimination on treatment with sodium ethoxide. Draw the structure of the alkene that is produced.

Answers

Answer:

(R)-but-3-en-2-ylbenzene

Explanation:

In this reaction, we have a very strong base (sodium ethoxide). This base, will remove a hydrogen producing a double bond. We know that the reaction occurs through an E2 mechanism, therefore, the hydrogen that is removed must have an angle of 180º with respect to the leaving group (the "OH"). This is known as the anti-periplanar configuration.

The hydrogen that has this configuration is the one that placed with the dashed bond (red hydrogen). In such a way, that the base will remove this hydrogen, the "OH" will leave the molecule and a double bond will be formed between the methyl and the carbon that was previously attached to the "OH", producing the molecule (R) -but-3- en-2-ylbenzene.

See figure 1

I hope it helps!

A 50.0 L cylinder of oxygen gas is stored at 150. atm. What volume would the oxygen gas occupy if the cylinder were opened into a hot air balloon (completely deflated) until the final pressure is 735 torr

Answers

Answer:

THE VOLUME OF THE OXYGEN GAS AFTER DEFLATION TILL A PRESSURE OF 735 TORR IS ATTAINED IS 7836.99 L

Explanation:

Using Boyle's law,

P1V1 = P2V2

P1 = 150 atm

V1 = 50 L

P2 = 735 Torr

V2 = unknown

We must first convert the pressures into the same SI unit for easy calculation

1torr = 1/760 atm

So converting 735 torr to atm; we have:

1 torr = 1/ 760 atm

735 torr = 735 * 1 / 760 atm

= 0.967 atm

In other words, P2 = 0.957 atm

So rearranging the formula by making V2 the subject of the equation, we have:

V2 = P1 V1 / P2

V2 = 150 * 50 / 0.957

V2 = 7836.99 L

The volume of the oxygen cylinder after deflation to a final pressure of 735 torr or 0.967 atm pressure is 7836.99 L.

Why can gasses change volume?
A. The forces holding the gas particles together are
stronger than gravity.
B. The gas particles have no mass, so they can change volume.
C. Gravity has no effect on gas particles, so they can float away.
O D. There are no forces holding the gas particles together.

Answers

Answer:

There are no forces holding the gas particles together.

Explanation:

An aqueous solution of potassium bromide, KBr, contains 4.34 grams of potassium bromide and 17.4 grams of water. The percentage by mass of potassium bromide in the solution is 20 %.

Answers

Answer:

True

Explanation:

The percentage by mass of a substance in a solution can be calculated by dividing the mass of the substance dissolved in the solution by the total mass of the solution. This can be expressed mathematically as:

Percentage by mass = mass of substance in solution/mass of solution x 100

In this case;

mass of KBr = 4.34 grams

mass of water = 17.4 grams

mass of solution = mass of KBr + mass of water = 4.34 + 17.4 = 21.74

Percentage by mass of KBr = 4.34/21.74 x 100

                                              = 19.96 %

19.96 is approximately 20%.

Hence, the statement is true.

A balloon has an initial volume of 2.954 L containing 5.50 moles of helium. More helium is added so that the balloon expands to 4.325 L. How much helium (moles) has been added if the temperature and pressure stay constant during this process.

Answers

Answer:

8.05 moles

Explanation:

5.50 / 2.954 = x / 4.325

x = 8.05

According to ideal gas equation, if the temperature and pressure stay constant during the process 0.520 moles have been added  so that the balloon expands to 4.325 L.

What is ideal gas equation?

The ideal gas equation is a equation which is applicable in a hypothetical state of an ideal gas.It is a combination of Boyle's law, Charle's law,Avogadro's law and Gay-Lussac's law . It is given as, PV=nRT where R= gas constant whose value is 8.314.The law has several limitations.The law was proposed by Benoit Paul Emile Clapeyron in 1834.

In the given example if pressure and temperature are constant then V=nR substituting V=4.325 l and R=8.314  so n=V/R=4.325/8.314=0.520 moles.

Thus, 0.520 moles of helium are added if the temperature and pressure stay constant during this process.

Learn more about ideal gas equation,here:

https://brainly.com/question/28837405

#SPJ2

Atoms are indivisible spheres. 1.plum pudding model 2.Dalton model 3.Bohr model

Answers

Answer: 2. Dalton Model

Explanation:

John Dalton proposed that atoms are indivisible spheres. Although his model of an atom was not entirely new to the scientific world since the ancient Greeks has made  a similar statement in the past ( all matter are made up of small indivisible particle called atom).

As of when Dalton proposed his model of an atom, electrons and nucleus where yet to be discovered.

Enter the balanced chemical equation for the reaction of each of the following carboxylic acids with KOH.Part Aacetic acidExpress your answer as a chemical equation. Assume that there is no dissociation (i.e., enter only whole compounds, not ions).Part B2-methylbutanoic acid (CH3CH2CH(CH3)COOH)Express your answer as a chemical equation. Assume that there is no dissociation (i.e., enter only whole compounds, not ions).Part C4-chlorobenzoic acid (ClC6H4COOH)Express your answer as a chemical equation. Assume that there is no dissociation (i.e., enter only whole compounds, not ions).

Answers

Answer:

Explanation:

Answer in attached file .

A student ran the following reaction in the laboratory at 242 K: 2NOBr(g) 2NO(g) Br2(g) When she introduced 0.143 moles of NOBr(g) into a 1.00 liter container, she found the equilibrium concentration of NOBr(g) to be 0.108 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc

Answers

Answer:

1.84 × 10⁻³

Explanation:

Step 1: Write the balanced equation

2 NOBr(g) ⇄ 2 NO(g) + Br₂(g)

Step 2: Calculate the initial concentration of NOBr

0.143 moles of NOBr(g) are introduced into a 1.00 liter container. The molarity is:

M = 0.143 mol / 1.00 L = 0.143 M

Step 3: Make an ICE chart

         2 NOBr(g) ⇄ 2 NO(g) + Br₂(g)

I             0.143               0           0

C              -2x               +2x        +x

E          0.143-2x            2x          x

Step 4: Find the value of x

The equilibrium concentration of NOBr(g) was 0.108 M. Then,

0.143-2x = 0.108

x = 0.0175

Step 5: Calculate the concentrations at equilibrium

[NOBr] = 0.108 M

[NO] = 2x = 0.0350 M

[Br₂] = x = 0.0175 M

Step 6: Calculate the equilibrium constant (Kc)

Kc = [0.0350]² × [0.0175] / [0.108]²

Kc = 1.84 × 10⁻³


How has the work of chemists affected the environment over the years?

Answers

Answer:

Chemistry is one of the causes for global warming, and in some cases it can even cause certain illnesses.

Answer:

Chemists have both hurt the environment and helped the environment by their actions.

Explanation:

<3

Write the equation for the reaction described: A solid metal oxide, , and hydrogen are the products of the reaction between metal and steam. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank.)

Answers

Answer:

Pb + 2H2O --> PbO2 + 2H2

Explanation:

Products:

Solid metal; PbO2

Hydrogen; H

Reactants:

Metal; Pb

Steam; H2O

Reactants --> Products

Pb + H2O --> PbO2 + H2

Upon balancing we have;

Pb + 2H2O --> PbO2 + 2H2

What is the energy of a photon of electromagnetic radiation with a wavelength of 963.5 nm?​ (c = 3.00 × 108 m/s, h = 6.63 × 10–34 J · s

Answers

Answer:

[tex]E=2.06\times 10^{-19}\ J[/tex]

Explanation:

Given that,

The wavelength of electromagnetic radiation is 963.5 nm.

We need to find the energy of a photon with this wavelength.

The formula used to find the energy of a photon is given by :

[tex]E=\dfrac{hc}{\lambda}\\\\E=\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{963.5\times 10^{-9}}\\\\E=2.06\times 10^{-19}\ J[/tex]

So, the energy of a photon is [tex]2.06\times 10^{-19}\ J[/tex].

what are the monomers of bakelite​

Answers

Answer:

Bakelite is a polymer made up of the monomers phenol and formaldehyde. This phenol-formaldehyde resin is a thermosetting polymer.

Answer: The monomers of bakelite are formaldehyde and phenol

Explanation:

Describe the similarities between H3O and NH3. Compare/contrast their shapes and polarities within the context of your answer. These molecules are called isoelectronic. Why

Answers

Answer:

Explanation:

[tex]H_3O^+[/tex] also known as hydronium ion is formed as a result of the reaction between an hydrogen proton and a water molecules.

i.e [tex]\mathtt{H^+ + H_2O \to H_3O^+}[/tex]

(molecular geometry for the hydronium ion shows that the lewis structure of hydronium ion possess a three hydrogen ion bonded to a central atom known as oxygen. The oxygen possess a lone pair with a positive ion. So we have three hydrogen atoms and a lone pair attached to the oxygen. We can now say that there are four groups as the steric number in which one of them is a lone pair. This give rise to the trigonal pyramidal shape of the [tex]H_3O^+[/tex] (hydronium ion) with a bond angle of about 109,5°

Similarly, [tex]NH_3[/tex] on the other hand also known as ammonia has a shape that can be also determined by the Lewis structure.

IN ammonia,  there are three hydrogen  and a lone pairs of electron spreading out as far away from each other  from the centre nitrogen. In essence, the valence shell electron pair around hydrogens tend to repel each other. Hence, giving it a trigonal pyramidal shape.

From above the similarities between H3O and NH3 is in their molecular geometry in which both  H3O and NH3 have the same shape.

These molecules are called isoelectronic. Why?

Isoelectronic molecules are molecules having the same number of electrons and same electronic configuration  structure. As a result H3O and NH3 possess the same  number of electrons in the same orbitals and they also posses the same structure.

When balancing redox reactions under basic conditions in aqueous solution, the first step is to:________.
a. balance oxygen
b. balance hydrogen
c. balance the reaction as though under acidic conditions
d. none of the above

Answers

Answer:

When balancing redox reactions under basic conditions in aqueous solution, the first step is to balance oxygen.

Explanation:

Oxidation-reduction reactions or redox reactions are those in which an electron transfer occurs between the reagents. An electron transfer implies that there is a change in the number of oxidation between the reagents and the products.

The gain of electrons is called reduction and the loss of electrons oxidation. That is to say, there is oxidation whenever an atom or group of atoms loses electrons (or increases its positive charges) and in the reduction an atom or group of atoms gains electrons, increasing its negative charges or decreasing the positive ones.

The oxidation and reduction half-reactions, in a basic medium, adjust the oxygens and hydrogens as follows:

In the member of the half-reaction that presents excess oxygen, you add as many water molecules as there are too many oxygen. Then, in the opposite member, the necessary hydroxyl ions are added to fully adjust the half-reaction. Normally, twice as many hydroxyl ions, OH-, are required as water molecules have previously been added.

In short, you first adjust the oxygens with OH-, then you adjust the H with H₂O, and finally you adjust the charge with e-

So, when balancing redox reactions under basic conditions in aqueous solution, the first step is to balance oxygen.

Answer:

c. balance the reaction as though under acidic conditions

Explanation:

When balancing redox reactions under basic conditions, a good technique is to first balance the reaction as though under acidic conditions. We then adjust the result to reflect the basic conditions.

A sample of ice absorbs 15.6kJ of heat as it undergoes a reversible phase transition to form liquid water at 0∘C. What is the entropy change for this process in units of JK? Report your answer to three significant figures. Use −273.15∘C for absolute zero.

Answers

Answer:

Entropy change of ice changing to water at 0°C is equal to 57.1 J/K

Explanation:

When a substance undergoes a phase change, it occurs at constant temperature.

The entropy change Δs, is given by the formula below;

Δs = q/T

where q is the quantity of heat absorbed or evolved in Joules and T is temperature in Kelvin at which the phase change occur

From the given data, T = 0°C = 273.15 K, q = 15.6 KJ = 15600 J

Δs = 15600 J / 273.15 K

Δs = 57.111 J/K

Therefore, entropy change of ice changing to water at 0°C is equal to 57.1 J/K

The entropy change of ice changing to water will be "57.1 J/K".

Entropy change

The shift in what seems like a thermodynamic system's condition of confusion is caused by the transformation of heat as well as enthalpy towards activity. Entropy seems to be greater mostly in a network with a high quantity or measure of chaos.

According to the question,

Temperature, T = 0°C or,

                          = 273.15 K

Heat, q = 15.6 KJ or,

            = 15600 J

We know the formula,

Entropy change, Δs = [tex]\frac{q}{T}[/tex]

By substituting the values, we get

                                 = [tex]\frac{15600}{273.15}[/tex]

                                 = 57.11 J/K

Thus the above answer is correct.    

Find out more information about Entropy change here:

https://brainly.com/question/6364271

A sample is found to contain 1.29×10-11 g of salt. Express this quantity in picograms

Answers

Answer:12.9e-12g or in short 12.9pg

Explanation:as p=1e-12

The heat of vaporization of water is 40.66 kJ/mol. How much heat is absorbed when 3.11 g of water boils at atmospheric pressure?

Answers

Answer:

The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.

Explanation:

A molar heat of vaporization of 40.66 kJ / mol means that 40.66 kJ of heat needs to be supplied to boil 1 mol of water at its normal boiling point.

To know the amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure, the number of moles represented by 3.11 g of water is necessary. Being:

H: 1 g/moleO: 16 g/mole

the molar mass of water is:

H₂O= 2* 1 g/mole + 16 g/mole= 18 g/mole

So: if 18 grams of water are contained in 1 mole, 3.11 grams of water in how many moles are present?

[tex]moles of water=\frac{3.11 grams*1 mole}{18 gramos}[/tex]

moles of water= 0.1728

Finally, the following rule of three can be applied: if to boil 1 mole of water at its boiling point it is necessary to supply 40.66 kJ of heat, to boil 0.1728 moles of water, how much heat is necessary to supply?

[tex]heat=\frac{0.1728 moles*40.66 kJ}{1 mole}[/tex]

heat= 7.026 kJ

The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.

When methane is burned with oxygen, the products are carbon dioxide and water. If you produce 9 grams of water and 11 grams of carbon dioxide from 16 grams of oxygen, how many

Answers

The given question is incomplete.

The complete question is:

When methane is burned with oxygen, the products are carbon dioxide and water. If you produce 9 grams of water and 11 grams of carbon dioxide from 16 grams of oxygen, how many grams of methane were needed for the reaction?

Answer: 4 grams of methane were needed for the reaction

Explanation:

According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

{tex]CH_4+2O_2\rightarrow CO_2+H_2O[/tex]

Given:  mass of oxygen = 16 g

Mass of carbon dioxide = 11 g

Mass of water = 9 g

Mass of products = Mass of carbon dioxide + mass of water = 11 g  +9 g = 20 g

Mass or reactant = mass of methane + mass of oxygen = mass of methane + 16 g

As mass of reactants = mass of products

mass of methane + 16 g= 20 g

mass of methane  = 4 g

Thus 4 grams of methane were needed for the reaction

Which of the following processes have a ΔS < 0? Which of the following processes have a ΔS < 0? carbon dioxide(g) → carbon dioxide(s) water freezes propanol (g, at 555 K) → propanol (g, at 400 K) methyl alcohol condenses All of the above processes have a ΔS < 0.

Answers

Answer:

All of the above processes have a ΔS < 0.

Explanation:

ΔS represents change in entropy of a system. Entropy refers to the degree of disorderliness of a system.

The question requests us to identify the process that has a negative change of entropy.

carbon dioxide(g) → carbon dioxide(s)

There is  a change in state from gas to solid. Solid particles are more ordered than gas particles so this is a negative change in entropy.

water freezes

There is  a change in state from liquid to solid. Solid particles are more ordered than liquid particles so this is a negative change in entropy.

propanol (g, at 555 K) → propanol (g, at 400 K)

Temperature is directly proportional to entropy, this means higher temperature leads t higher entropy.

This reaction highlights a drop in temperature which means a negative change in entropy.

methyl alcohol condenses

Condensation is the change in state from gas to liquid. Liquid particles are more ordered than gas particles so this is a negative change in entropy.

A 25.00 mL sample of unknown concentration of HNO3 solution requires 22.62 mL of 0.02000 M NaOH to reach the equivalence point. What is the concentration of the unknown HNO3 solution

Answers

Answer:The concentration of the unknown HNO3 solution = 0.01809 M

Explanation:

For the acid-base reaction,  HNO3 + NaOH-----> NaN03 + H20

we have that

C1 V1 = C2 V2

Where ,

C1 = concentration of HNO3=?

V1 = volume of HNO3 = 25.00 mL,

V2 = volume of NaOH = 22.62 mL,  

C2 = concentration of NaOH = 0.02000 M

Therefore ,

25.00 mL x C1 = 22.62 mL x 0.02000 M    

 = (22.62 mL / 25.00 mL) x 0.02000 M = 0.01809 M

The concentration of the unknown HNO3 solution = 0.01809 M

g Use the References to access important values if needed for this question. A researcher took 2.592 g of a certain compound containing only carbon and hydrogen and burned it completely in pure oxygen. All the carbon was changed to 7.851 g of CO2, and all the hydrogen was changed to 4.018 g of H2O . What is the empirical formula of the original compound

Answers

Answer:

Empirical formula is: C₂H₅

Explanation:

The chemical equation of burning of a compound that conatins only Carbon and Hydrogen is:

CₓHₙ + O₂ → XCO₂ + n/2H₂O

That means the moles of CO₂ produced are the moles of Carbon in the compound and moles of hydrogen are twice moles of water. Empirical formula is the simplest ratio between moles of each element in the compound. Thus, finding molse of C and moles of H we can find empirical formula:

Moles C and H:

Moles C = Moles CO₂:

7.851g CO₂ ₓ (1mol / 44g) = 0.1784 moles CO₂ = Moles C

Moles H = 2 Moles H₂O

4.018g H₂O ₓ (1mol / 18.01g) = 0.2231 * 2 = 0.4417 moles H

Ratio C:H

The ratio between moles of hydrogen and moles of Carbon are:

0.4417 moles H / 0.1784 moles C = 2.5

That means there are 2.5 moles of H per mole of Carbon. As empirical formula must be given only in whole numbers,

Empirical formula is: C₂H₅

Using the data: C2H4(g), = +51.9 kJ mol-1, S° = 219.8 J mol-1 K-1 CO2(g), = ‑394 kJ mol-1, S° = 213.6 J mol-1 K-1 H2O(l), = ‑286.0 kJ mol-1, S° = 69.96 J mol-1 K-1 O2(g), = 0.00 kJ mol-1, S° = 205 J mol-1 K-1 calculate the maximum amount of work that can be obtained, at 25.0 °C, from the process: C2H4(g) + 3 O2(g) → 2 CO2(g) + 2 H2O(l)

Answers

Answer:

The correct answer is 1332 KJ.

Explanation:

Based on the given information,  

ΔH°f of C2H4 is 51.9 KJ/mol, ΔH°O2 is 0.0 KJ/mol, ΔH°f of CO2 is -394 KJ/mol, and ΔH°f of H2O is -286 KJ/mol.  

Now the balanced equation is:  

C2H4 (g) + 3O2 (g) ⇔ 2CO2 (g) + 2H2O (l)

ΔH°rxn = 2 × ΔH°f CO2 + 2 × ΔH°fH2O - 1 × ΔH°fC2H4 - 3×ΔH°fO2

ΔH°rxn = 2 (-394) + 2(-286) - 1(51.9) - 3(0)

ΔH°rxn = -1411.9 KJ

Now, the given ΔS°f of C2H4 is 219.8 J/mol.K, ΔS°f of O2 is 205 J/mol.K, ΔS°f of CO2 is 213.6 J/mol.K, and ΔS°f of H2O is 69.96 J/mol.K.  

Now based on the balanced chemical reaction,  

ΔS°rxn = 2 × ΔS°fCO2 + 2 ΔS°fH2O - 1 × ΔS°f C2H4 - 3 ΔS°fO2

ΔS°rxn = 2 (213.6) + 2(69.96) - 1(219.8) -3(205)

ΔS°rxn = -267.68 J/K or -0.26768 KJ/K

T = 25 °C or 298 K

Now putting the values of ΔH, ΔS and T in the equation ΔG = ΔH-TΔS, we get

ΔG = -1411.9 - 298.0 × (-0.2677)

ΔG = -1332 KJ.  

Thus, the maximum work, which can obtained is 1332 kJ.  

1.) A sample of neon gas at a pressure of 0.646 atm and a temperature of 242 °C, occupies a volume of 515 mL. If the gas is cooled at constant pressure until its volume is 407 mL, the temperature of the gas sample will be ________°C.
2.) A sample of argon gas at a pressure of 0.633 atm and a temperature of 261 °C, occupies a volume of 694 mL. If the gas is heated at constant pressure until its volume is 796 mL, the temperature of the gas sample will be___________°C.
3.) 0.962 mol sample of carbon dioxide gas at a temperature of 20.0 °C is found to occupy a volume of 21.5 liters. The pressure of this gas sample ismm ____________ Hg.

Answers

Answer:1 )T2=134°C   2) T2=339.48°C. 3)

P=817.59 mmHg.

Explanation:

1.Given ;

pressure, P1 of neon gas = 0.646 atm

temperature, T1 =242oC + 273=515oC

Volume, V1 =515ml

Volume V2= 407ml

temperature , T 2= ?

Solution;

And at constant pressure, the volume cools at V2=407 mL at T2=?

From ideal gas equation, PV=nRT

V/T=constant

therefore

V1/V2=T1/T2 = T2=(V2 xT1)/V1

T2=(407 mL x 515 K)/515 mL= 407K.

T2= 407K -273= 134°C.   recall 0°C=273 K)

2..Given ;

pressure, P1 of neon gas = 0.633 atm

temperature, T1 =261oC + 273=534oC

Volume, V1 =694ml

Volume V2= 796ml

temperature , T 2= ?

Solution;

And at constant pressure, the volume expands  at V2=796mL at T2=?

From ideal gas equation, PV=nRT

V/T=constant

therefore

V1/V2=T1/T2 = T2=(V2 xT1)/V1

T2=(796 mL x 534 K)/694mL= 612.48K.

T2= 612.48K -273= 339.48°C. recall 0°C=273 K

3

Given;

moles of CO2= n=0.962 mol,

temperature T=20°C=20+273 K =293 K,

volume V=21.5 L,

gas constant R at L·mmHg/mol·K= 62.3637 L mmHg mol^-1 K^-1

Using  ideal gas equation PV=nRT

P=nRT/V

P=(0.962 mol)x(62.3637mmHg mol^-1 K^-1)x(293 K)/(21.5L)

P=817.59 mmHg.

Calculate the energy required to heat of 1.50 kg silver from -7.8 C to 15.0 C . Assume the specific heat capacity of silver under these conditions is .0235 J*g^-1*K^-1 . Be sure your answer has the correct number of significant digits.

Answers

Answer:

804 J

Explanation:

Step 1: Given data

Mass of silver (m): 1.50 kgInitial temperature: -7.8 °CFinal temperature: 15.0 °CSpecific heat capacity of silver (c): 0.0235J·g⁻¹K⁻¹

Step 2: Calculate the energy required (Q)

We will use the following expression.

Q = c × m × ΔT

Q = 0.0235J·g⁻¹K⁻¹ × (1.50 × 10³g) × [15.0°C-(-7.8°C)]

Q = 804 J

By heating a 93% pure kclo3 sample, what percentage of its mass is reduced?
2KCLO3---->2KCL+3O2​

Answers

Explanation:

free your mind drink water and go outside take fresh air you will get answers

Other Questions
Need help ASAP!!!! THX Which of the following is a formal definition of jolt?A A jolt is a sharp and sudden blow, like the feeling you get when you hear the words "pop quiz."B Loena's cat landed on the table with a slight bump, but that was enough of a jolt to send her phone crashing to the floor.Jolt is both a noun and a verb, so context is needed to determine whether the word is being used to describe a suddenshock or the act of causing a shock or blow.Hot coffee sloshed into the cup holder as they jolted and bumped down the potholed road. 7.The 'd contraction is also used for the auxiliary verb ____________. should couldwould A toy box in the shape of a rectangular prism has a volume of 6,912 cubic inches. The base area of the toy box is 288 square inches. What is the height of the toy box? Allowing a candidate's high score on an interview to make up for a low score on a personality test is an example of the In a given set of items, the mode is items which ? a. appears first b. appears fewest c. appears farthest d. appears most (x+1)(x1)(x5)=0 HELP If a 100-pound block of ice is placed on an inclined plane that makes an angle of 35 with the horizontal, how much friction force will be required to keep it from sliding down the plane? Choose the equation that could be used to solve the problem if x represents the force required to keep the block from sliding down the plane. Next, the students at the Pearson Cooking Academy are assigned a take-home written exam to assess their knowledge of all things culinary. Historically, students scores on this exam had a N(68, 36) distribution. However, these days, there is an company called Charred Egg that offers to help students on tasks whether or not the exercises are for homework or for exams. In a cohort of 19 students, what is the probability that their average score will be at least 70? Emma rents a car from a company that rents cars by the hour. She has to pay an initial fee of $75, and then they charge her $9 per hour. Write an equation for the total cost if Emma rents the car for hours. If Emma has budgeted $250 for the rental cars, how many hours can she rent the car? Assume the car cannot be rented for part of an hour. 12-(3-9) 3*3 help please Directions: Calculate the percent increase or decrease between the starting and endingquantities below. Round your answer to one decimal place.1. Start: 3End: 10 write 39/5 as a mixed numer An archer shoots an arrow in the air, horizontally. However, after moving somedistance, the arrow falls to the ground. Name and define the initial force that setsthe arrow in motion. Explain why the arrow ultimately falls down. If the region or country where a company is located is experiencing a labor shortage, what should the company's management do A 2-kg cart, traveling on a horizontal air track with a speed of 3m/s, collides with a stationary 4-kg cart. The carts stick together. The impulse exerted by one cart on the other has a magnitude of why it is necessary to water the plant for experiment why did the ming dynasty need to repair china canal systems Triangle ABC is translated to image ABC. In this translation, A(5, 1) maps to A(6, 2). The coordinates of B are (1, 0). What are the coordinates of B? B( , ) Triangle H N K is shown. Angle H N K is 90 degrees. The length of hypotenuse H K is n, the length of H N is 12, and the length of N K is 6. Law of cosines: a2 = b2 + c2 2bccos(A) What is the value of n to the nearest whole number? 10 13 18 21