Answer:
[tex]x = 77[/tex]
Step-by-step explanation:
Given
[tex]First \to Second[/tex]
[tex]35 \to x[/tex]
[tex]20 \to 44[/tex]
[tex]20 \to 44[/tex]
Required
Find x by SSS
Represent the triangle sides as a ratio
[tex]35 : x = 20 : 44[/tex]
Express as fraction
[tex]\frac{x}{35} = \frac{44}{20}[/tex]
Multiply by 35
[tex]x = \frac{44}{20} * 35[/tex]
[tex]x = \frac{44 * 35}{20}[/tex]
[tex]x = \frac{1540}{20}[/tex]
[tex]x = 77[/tex]
Answer:
ccccccccccccccccccccccccccc
Step-by-step explanation:
Assume that x and y are both differentiable functions of t. Find dx/dt when x=11 and dy/dt=-4 for the equation xy=99 .
Differentiating both sides of
xy = 99
with respect to t yields
x dy/dt + y dx/dt = 0
When x = 11, we have
11y = 99 ==> y = 9
and we're given that dy/dt = -4 at this point, which means
11 (-4) + 9 dx/dt = 0 ==> dx/dt = 44/9
We are again studying the times required to solve two elementary math problems. Suppose we ask four students to attempt both Problem A and Problem B. Assume the students are independent and all results are normally distributed, but note that a particular student's times on the two questions are likely to be positively correlated. The results are presented below (in seconds).
student Problem A Problem B
1 20 35 2 30 40 2 3 15 20 4 40 50
Again find a two-sided 95% CI for the difference in the means of A and B.
Answer:
(-16.494 ; -3.506)
Step-by-step explanation:
student Prob A Prob B difference, d (A-B)
1 20 35____ - 15
2 30 40 ___ - 10
3 15 20 ___ - 5
4 40 50 __ - 10
Difference, d = -15, -10, -5, -10
Xd = Σd/ n = - 40 / 4 = - 10
Standard deviation of d ; Sd = 4.082
The confidence interval for the difference is given as :
Xd ± Tcritical*(Sd/√n)
Tcritical at 95%; df = n - 1 ; 4 - 1 = 3
Tcritical(0.05, 3)). = 3.182
C.I = -10 ± 3.182(4.082/√4)
C.I = -10 ± 6.494462
C. I = (-16.494 ; -3.506)
Please answer I’m struggling
Step-by-step explanation:
Question 7.[tex] \frac{{(3 + u)}^{2} }{8} [/tex]
[When u = 5]
[tex] = \frac{{(3 + 5)}^{2} }{8} [/tex]
[tex] = \frac{ {(8)}^{2} }{8} [/tex]
[tex] = \frac{8 \times 8}{8} [/tex]
= 8 (Ans)
Question 8.-2(a - 7)
(Using Distributive property)
= - 2 × a -2 × (-7)
= -2a + 14 (Ans)
Answer:
7. 8
8. -2a+14
Step-by-step explanation:
(Excuse this form of the expression)
7.
u = 5
(3 + u)²
---------
8
Plug in
(3 + 5)²
---------
8
(8)²
---------
8
64
---- = 8
8
8.
-2(a - 7)
Multiply -2 with each number in the parenthesis
-2a + 14
3. What is the length of a rectangle with a width of 1.2 m and an area of 2.4 m2 m ?
Step-by-step explanation:
area=length×width
2.4=x×1.2
1.2x=2.4
x=2.4÷1.2
x=2
therefore width = 2cm
The length of the rectangle is 2 meters.
We have,
Width of rectangle= 1.2m
Area of rectangle = 2.4 m²
To find the length of a rectangle when given its width and area, you can use the formula:
Length = Area / Width
So, the length rectangle
Length = 2.4 m² / 1.2 m
Length = 2 meters
Therefore, the length of the rectangle is 2 meters.
Learn more about Area of rectangle here:
https://brainly.com/question/8663941
#SPJ2
The volume of the cylinder is V=1/3r^2h, where r is the radius and h is the height. if the radius of a cylinder is 3 inches and the height is 8 inches, which answer below best estimates it’s volume?
Answer:
75 inches
Step-by-step explanation:
with this we use change of subject
V=1/3
Pie=3.14
radius =3
height =8
so therefore
V=1/3 ×3.14×3×3×8
V=75.36
Please help explanation if possible
Answer:
17.3
Step-by-step explanation:
14.4 x 1.2
= 17.28
= 17.3 ( approximately )
Find x on this special right triangle
Answer:
the ans is 45⁰ BC it is a right angle
Step-by-step explanation:
Is this a trigonometry ratio
A rectangluar swimming pool 25 feet long, 15 feet wide, and 7 feet deep is filled with water to a depth of 6 feet. The weight density of water is 62.4 lb ft 3 lb/ft^3. Calculate the work required to pump all of the water out over the top.
___________ ft-lb
9514 1404 393
Answer:
491,400 ft·lb
Step-by-step explanation:
The mass of the water is ...
M = Vρ = LWHρ = (25 ft)(15 ft)(7 ft)(62.4 lb/ft³) = 163,800 lb
The average depth is 3 ft, so the work required is equivalent to that required to raise this mass 3 ft.
W = (3 ft)(163,800 lb) = 491,400 ft·lb
Bianca is planting trees along her driveway, and she has 55 sycamores and 55 palm trees to plant in one row. What is the probability that she randomly plants the trees so that all 55 sycamores are next to each other and all 55 palm trees are next to each other
Answer:
0.0079 = 0.79% probability that she randomly plants the trees so that all 5 sycamores are next to each other and all 5 palm trees are next to each other.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
The trees are arranged, so, to find the number of outcomes, the arrangements formula is used.
Arrangements formula:
The number of possible arrangements of n elements is given by:
[tex]A_n = n![/tex]
Desired outcomes:
5 sycamores(5! possible ways) and then the 5 palm trees(5! possible ways)
5 palm trees(5! possible ways) then the 5 sycamores(5! possible ways).
[tex]D = 2*5!*5![/tex]
Total outcomes:
Arrangements of 10 plants, so:
[tex]T = 10![/tex]
What is the probability that she randomly plants the trees so that all 5 sycamores are next to each other and all 5 palm trees are next to each other?
[tex]p = \frac{D}{T} = \frac{2*5!*5!}{10!} = 0.0079[/tex]
0.0079 = 0.79% probability that she randomly plants the trees so that all 5 sycamores are next to each other and all 5 palm trees are next to each other.
I do not understand this and could use help it needs the work shown
Answer:
a = 9
Step-by-step explanation:
The given trinomial is :
[tex]x^2-6x+\_\_\__[/tex]
let the blank is a.
So, we need to find the value of a so that it results in a perfect square trinomial.
We know that, [tex](m-n)^2=m^2-2mn+n^2[/tex]
So,
[tex]x^2-6x+a=x^2-2(1)(3)+3^2\\=(x-3)^2[/tex]
So, the value of a is 9. If a is 9, then only it would be a perfect square trinomial.
A movie theater has a seating capacity of 187. The theater charges $5.00 for children, $7.00 for students, and $12.00 of adults. There are half as many adults as there are children. If the total ticket sales was $ 1338, How many children, students, and adults attended?
___ children attended.
___ students attended.
___ adults attended.
Answer:
A) children attended=98 b) students attended=60 c)adults attended=49
Step-by-step explanation:
system%28a%2Bc%2Bx=207%2Cc%2Fa=2%2C5c%2B7x%2B12a=1498%29
Simplify and solve the system.
-
a%2B2a%2Bx=207
3a%2Bx=207
x=207-3aandc=2a
-
The revenue equation can be written in terms of just one variable, a.
10a%2B7%28207-3a%29%2B12a=1498
Solve for a;
use it to find x and c.
FURTHER STEPS
-
10a%2B1449-21a%2B12a=1498
a%2B1449=1498
a=98-49
highlight%28a=49 -------adults
-
c=2a
c=2%2A49
highlight%28c=98 -------children
-
x=207-a-c
x=207-49-98
highlight%28x=60 ---------students
write your answer in simplest radical form
Answer:
c = 4√2
Step-by-step explanation:
From the question given above, the following data were obtained:
Angle θ = 30
Opposite = 2√2
Hypothenus = c =?
We can obtain the value of c by using the sine ratio as illustrated below:
Sine θ = Opposite / Hypothenus
Sine 30 = 2√2 / c
½ = 2√2 / c
Cross multiply
c = 2 × 2√2
c = 4√2
Therefore, the value of c is 4√2.
5/root 7 - root 3 +1/root 7+ root 3
[tex]\\ \sf\longmapsto \frac{5}{ \sqrt{7} - \sqrt{3} } + \frac{1}{ \sqrt{7} + \sqrt{3} } \\ \\ \sf\longmapsto \frac{5( \sqrt{7} + \sqrt{3} ) + 1 (\sqrt{7} - \sqrt{3} )}{( \sqrt{7} - \sqrt{3} )( \sqrt{7} + \sqrt{3} )} \\ \\ \sf\longmapsto \frac{5 \sqrt{7} + 5 \sqrt{3} + \sqrt{7} - \sqrt{3} }{( { \sqrt{7} )}^{2} - ( \sqrt{3}) {}^{2} } \\ \\ \sf\longmapsto \frac{5 \sqrt{7} + \sqrt{7} + 5 \sqrt{3} - \sqrt{3} }{7 - 3} \\ \\ \sf\longmapsto \frac{6 \sqrt{7} + 4 \sqrt{3} }{4} [/tex]
Find the value of x.
Answer:
[tex]here \: the \: two \: sides \: are \: equal \: so \: \\ the \: triangle \: is \: issosceles \\ then \: x = 40 \\ thank \: you[/tex]
I want to know how to solve this equation
Answer:
B
Step-by-step explanation:
5³.5^×
simply means
5³×5^×
using indices rule,
multiplication is addition
5 is common
so 5(³+×)
hence 5^3+×
Which of the following will result in a rational answer? multiplying pi by a fraction. adding the square root of a non perfect square to a whole number. adding the square root of a perfect square to pi. multiplying a fraction by a repeating decimal.
Correct option is "multiplying a fraction by a repeating decimal."
Explanation:
Since multiplying a fraction is a rational and repeating decimal is also rational, therefore, it's result is also rational.
Hope it helps you... pls mark brainliest if it helped you
A rational expression is _______ for those values of the variable(s) that make the denominator zero.
9514 1404 393
Answer:
undefined
Step-by-step explanation:
A rational expression is undefined when its denominator is zero.
Translate and solve: five less than z is 4
z -5 =4
neutralize the left -5 by adding 5 on both sides
z -5 (+5) = 4 (+5)
z = 9
tìm tích phân tổng quát
xy'lny/x=x+ylny/x
Answer:
rhe
ehd
end
Step-by-step explanation:
jsu
uss
su
dj
dje
ej
e
find the area of the triangle and round to the nearest tenth
Answer: 73.5mi²
Step-by-step explanation:
Area of triangle = 1/2×b×h
= 1/2×14×10.5
= 7×10.5
=73.5mi²
please click thanks and mark brainliest if you like :)
Try this 33-33+33×33÷0
Answer:
the answer is
Step-by-step explanation:
1089 first divide then multiply both numbers after that substract the numbers
Answer:
the answer is error
hope it helps
Researchers studied the mean egg length (in millimeters) for a bird population. After taking a random sample of eggs, they obtained a 95% confidence interval of (45,60). What is the value of the sample mean?
Choose the correct answer below.
A. 15.0 mm
B. 52.5 mm
C. 7.5 mm
D. Somewhere between 45mm and 60mm, but the exact value cannot be determined without more information.
Answer:
I cannot understand this question
Step-by-step explanation:
I don't know what is in the question
What is the sine ratio for
Answer:
the since ratio is 5/4
Step-by-step explanation:
hope this is helpful ask manyIf we add one unit to the length (l) of a rectangle that has width (w), what is its new area (NA) in terms of its old area (A)?
NA = A x w
NA = A + w
NA = A + l
NA = A
NA = A + W
By adding one unit to length, we increase the overall area by the width of the rectangle. This is because the formula for the area of a rectangle is A = l x w. So, NA = (l + 1) x w = (l x w) + w = A + w.
How do you multiply 123 x 62?
Answer:
(123)(62)=x
Step 1: Simplify both sides of the equation.
7626=x
Step-by-step explanation:
Have a good day.
Answer:7,626
Step-by-step explanation:The easiest way I do it is by taking the numbers and putting them under each other like this
123
62
then take the number 2 for example and multiply it by 3 then 20 then 100 and do the same with the 6=60 and heres how I solve it
2 x 3=6 2 x 20=40 2 x 100=200 60 x 3=180 60 x 20=1,200 60 x 100=6,000 now take all the numbers and add them
6+40+200=246
180+1,200+6,000=7,380
7,380+246=7,626
(if this helps in anyway feel free to put brainiest but thats your choice) :) happy to help.
find the HCF of 72,108 and 180
Answer:
36 is the answer
Step-by-step explanation:
Answer:
36
Step-by-step explanation:
72: 2×2×2×3×3
108: 2×2×3×3×3
180: 2×2×3×3×5
here, common factors are 2,2,3 and 3 ..
so.. HCF: 2×2×3×3
•°•HCF=36 ..
Use the following conversions to answer the question.
60 seconds = 1 minute
60 minutes = 1 hour
24 hours = 1 day
How many minutes are there in a week?
A. 420
B. 1,400
C. 10,080
D. 604,800
Answer:
C. 10,080
Step-by-step explanation:
We can multiply to find how many minutes there are in 1 day.
24 * 60 = 1,440
Now, we can multiply that value by 7 to find out how many minutes there are in 1 week.
1,440 * 7 = 10,080
Best of Luck!
Determine the remaining sides and angles of the triangle ABC.
c=6 mi, B = 38.71°, C = 32.51°
Find the measure of angle A.
A=°
(Type an integer or a decimal.)
Find the length of side a.
а:
mi
(Round to the nearest mile as needed.)
Find the length of side b.
b=mi
(Round to the nearest mile as needed.)
9514 1404 393
Answer:
A = 108.78°
a = 11 mi
b = 7 mi
Step-by-step explanation:
The sum of angles in a triangle is 180°, so the third angle is ...
A = 180° -38.71° -32.51°
A = 108.78°
__
The remaining sides can be found from the law of sines.
a/sin(A) = c/sin(C)
a = sin(A)·c/sin(C) ≈ 0.946762 × 11.163896
a ≈ 11 mi
b = sin(B)·11.163896 ≈ 0.625379 × 11.163896
b ≈ 7 mi
A quality control expert at Glotech computers wants to test their new monitors. The production manager claims they have a mean life of 83 months with a variance of 81. If the claim is true, what is the probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors? Round your answer to four decimal places.
Answer:
0.9922 = 99.22% probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The production manager claims they have a mean life of 83 months with a variance of 81.
This means that [tex]\mu = 83, \sigma = \sqrt{81} = 9[/tex]
Sample of 146:
This means that [tex]n = 146, s = \frac{9}{\sqrt{146}}[/tex]
What is the probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors?
This is 1 subtracted by the p-value of Z when X = 81.2. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{81.2 - 83}{\frac{9}{\sqrt{146}}}[/tex]
[tex]Z = -2.42[/tex]
[tex]Z = -2.42[/tex] has a p-value of 0.0078.
1 - 0.0078 = 0.9922.
0.9922 = 99.22% probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors.
Factor the following
9t^2-42t+49
Answer:
(3t -7)²
Step-by-step explanation:
We know that the square of a binomial is ...
(a -b)² = a² -2ab +b²
So, when we see the first and last terms are both perfect squares, we suspect that the trinomial is a perfect square trinomial.
9t² = (3t)²
49 = 7²
-42t = -2(3t)(7) . . . . confirming we have a perfect square
The factorization is ...
(3t -7)²