Answer:
English please!!!!!!!!!!!!!!!!!!!!!!!
Pete is investigating the solubility of salt (NaCl) in water. He begins to add 50 grams of salt to 100 grams of
room temperature tap water in a beaker. After adding all of the salt and stirring for several minutes, Pete
notices a solid substance in the bottom of the beaker. Which statement best explains why there is a solid
substance in the bottom of the beaker?
A. The salt he is using is not soluble in water.
B. The salt is changing into a new substance that is not soluble in water,
C. The dissolving salt is causing impurities in the water to precipitate to the bottom
D. The water is saturated and the remaining salt precipitates to the bottom
Answer:
would the answer be c
Explanation: that what i think in my opian
Answer:
A
Explanation:
If you drive first at 40 km/h west and later at 60 km/h west, your average velocity is 50 km/h west.
and what else? is that all?
Consider a simple pendulum that consists of a massless 2.00-meter length of rope attached to a 5.00-kg mass at one end. What is the period of oscillation for this simple pendulum
Answer:
2.8 seconds
Explanation: Given that a simple pendulum that consists of a massless 2.00-meter length of rope attached to a 5.00-kg mass at one end. What is the period of oscillation for this simple pendulum
The parameters given are :
Length = 2 m
Mass = 5kg
Using the formula below
T = 2 pi × sqrt ( L / g )
Substitute all the parameters into the formula.
T = 2 × 3.143 × sqrt ( 2 / 9.8 )
T = 2 × 3.143 × 0.4517
T = 2.838 s
Therefore, the period of oscillation for this simple pendulum is 2.8 s approximately.
A cement block accidentally falls from rest from the ledge of a 53.4-m-high building. When the block is 19.4 m above the ground, a man, 2.00 m tall, looks up and notices that the block is directly above him. How much time, at most, does the man have to get out of the way
Answer:
The time required by the man to get out of the way is 0.6 s.
Explanation:
height of building, H = 53.4 m
height of block, h = 19.4 m
height of man, h' = 2 m
Let the velocity of the block at 19.4 m is v.
use third equation of motion
[tex]v^2 = u^2 + 2 gh\\\\v^2 = 0 + 2 \times 9.8 \times (53.4 - 19.4)\\\\v = 25.8 m/s[/tex]
Now let the time is t.
Use second equation of motion
[tex]h = u t + 0.5 gt^2\\\\19.4 - 2 = 25.8 t + 4.9 t^2\\\\4.9 t^2 + 25.8 t - 17.4= 0 \\\\t = \frac{-25.8\pm\sqrt{665.64 + 341.04}}{9.8}\\\\t = \frac{-25.8\pm31.7}{9.8}\\\\t = 0.6 s, - 5.9 s[/tex]
Time cannot be negative so time t = 0.6 s.
why material selection is important to design and manufacturing?
Answer:
. You want your product to be as strong and as long lasting as possible. There are also the safety implications to consider. You see, dangerous failures arising from poor material selection are still an all too common occurrence in many industries. yep that the answer have a Great day
Explanation:
(◕ᴗ◕✿)
If you are driving a car with a velocity of -25 m/s and you have an acceleration of -2 m/s^2, are you speeding up or slowing down? Why?
Answer:
Hmmm...
This is a bit tricky
Ok...
Negative Velocity means you're Moving in the Opposite direction....
Negative Acceleration (deceleration) means you're slowing down.
Deceleration would mean slowing down if you were Moving with a Positive velocity.
But In this case...
You're Moving with negative velocity and Negative acceleration...
This simply means that the acceleration and velocity vector are in the same direction....
Its means that...
"YOU'RE SPEEDING UP"
Just that you're doing it in the opposite direction.
Hope this helps.
Give the missing ammeter reading a and b. suggest why more current flow through some bulbs than through others Grade 10 question and Answer
Answer:
becaude of electricity
A 2120 kg car traveling at 13.4 m/s collides with a 2810 kg car that is initally at rest at a stoplight. The cars stick together and move 1.97 m before friction causes them to stop. Determine the coefficient of kinetic friction between the cars and the road, assuming that the negative acceleration is constant and all wheels on both cars lock at the time of impact.
Answer:
The coefficient of friction between the cars and the road is 0.859.
Explanation:
The two cars collide each other inelastically, then we can determine the resulting velocity by the Principle of Momentum Conservation:
[tex]m_{A}\cdot v_{A} + m_{B}\cdot v_{B} = (m_{A} + m_{B})\cdot v[/tex] (1)
Where:
[tex]m_{A}[/tex], [tex]m_{B}[/tex] - Masses of the cars, in kilograms.
[tex]v_{A}[/tex], [tex]v_{B}[/tex] - Initial velocities of the cars, in meters per second.
[tex]v[/tex] - Velocity of the resulting system, in meters per second.
If we know that [tex]m_{A} = 2120\,kg[/tex], [tex]v_{A} = 13.4\,\frac{m}{s }[/tex], [tex]m_{B} = 2810\,kg[/tex] and [tex]v_{B} = 0\,\frac{m}{s}[/tex], then the velocity of the resulting system:
[tex]v = \frac{m_{A}\cdot v_{A}+m_{B}\cdot v_{B}}{m_{A}+m_{B}}[/tex]
[tex]v = \frac{(2120\,kg)\cdot \left(13.4\,\frac{m}{s} \right)+(2810\,kg)\cdot \left(0\,\frac{m}{s} \right)}{2120\,kg + 2810\,kg}[/tex]
[tex]v = 5.762\,\frac{m}{s}[/tex]
By Principle of Energy Conservation and Work-Energy Theorem, we understand that the initial translational kinetic energy ([tex]K[/tex]), in joules, is dissipated due to work done by friction ([tex]W_{f}[/tex]), in joules, that is to say:
[tex]K = W_{f}[/tex] (2)
[tex]\frac{1}{2}\cdot (m_{A}+m_{B})\cdot v^{2} = \mu\cdot (m_{A}+m_{B})\cdot g \cdot s[/tex]
[tex]\frac{1}{2}\cdot v^{2} = \mu \cdot g\cdot s[/tex] (2b)
Where:
[tex]\mu[/tex] - Coefficient of friction, no unit.
[tex]g[/tex] - Gravitational acceleration, in meters per square second.
[tex]s[/tex]- Travelled distance, in meters.
If we know that [tex]v = 5.762\,\frac{m}{s}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]s = 1.97\,m[/tex], then the coefficient of friction is:
[tex]\mu = \frac{v^{2}}{2\cdot g\cdot s}[/tex]
[tex]\mu = \frac{\left(5.762\,\frac{m}{s} \right)^{2}}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (1.97\,m)}[/tex]
[tex]\mu = 0.859[/tex]
The coefficient of friction between the cars and the road is 0.859.
c) You wish to put a 1000-kg satellite into a circular orbit 300 km above the earth's surface. (a)
What speed, period, and radial acceleration will it have? (b) How much work must be done to the
satellite to put it in orbit? (c) How much additional work would have to be done to make the
Answer:
Scalar
Explanation:
No direction
One way families influence healthy technology use is when siblings explain the use of media to each other. Which of these outfits would you expect if this guideline was followed?
Answer:
The answer would be C.
Explanation:
This is what I would expect when you show someone else how to do something then is also known as teaching.
Please Mark as Brainliest
Hope this Helps
An investigator collects a sample of a radioactive isotope with an activity of 490,000 Bq.48 hours later, the activity is 110,000 Bq. Part A For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution What is the half-life of the sample?
Answer:
The correct answer is "22.27 hours".
Explanation:
Given that:
Radioactive isotope activity,
= 490,000 Bq
Activity,
= 110,000 Bq
Time,
= 48 hours
As we know,
⇒ [tex]A = A_0 e^{- \lambda t}[/tex]
or,
⇒ [tex]\frac{A}{A_0}=e^{-\lambda t}[/tex]
By taking "ln", we get
⇒ [tex]ln \frac{A}{A_0}=- \lambda t[/tex]
By substituting the values, we get
⇒ [tex]-ln \frac{110000}{490000} = -48 \lambda[/tex]
⇒ [tex]-1.4939=-48 \lambda[/tex]
[tex]\lambda = 0.031122[/tex]
As,
⇒ [tex]\lambda = \frac{ln_2}{\frac{T}{2} }[/tex]
then,
⇒ [tex]\frac{ln_2}{T_ \frac{1}{2} } =0.031122[/tex]
⇒ [tex]T_\frac{1}{2}=\frac{ln_2}{0.031122}[/tex]
[tex]=22.27 \ hours[/tex]
The wave functions for states of the hydrogen atom with orbital quantum number l=0 are much simpler than for most other states, because the angular part of the wave.
a. True
b. False
When two bodies at different temperatures are placed in thermal contact with each other, heat flows from the body at higher temperature to the body at lower temperature until them both acquire the same temperature. Assuming that there is no loss of heat to the surroundings, the heatSingle choice.
(1 Point)
(a) gained by the hotter body will be equal to the heat lost by the colder body
(b) the heat gained by the hotter body will be less than the heat lost by the colder body
(c) the heat gained by the hotter body will be greater than the heat lost by the colder body
(d) the heat lost by the hotter body will be equal to the heat gained by the colder body.
Answer:
Part d is correct.
plz answer the question
Answer:
Ray A = Incidence ray
Ray B = Reflected ray
Explanation:
From the law of reflection,
Normal: This is the line that makes an angle of 90° with the reflecting surface.
Ray A is the incidence ray: This is the ray that srikes the surface of a reflecting surface. The angle formed between the normal and the incidence ray is called the incidence angle
Ray B is the reflected ray: This is the ray leaves the surface of a reflecting surface. The angle formed between the reflected ray and the normal is called reflected angle
Which one will it be
Answer: D
The force decreases inversely proportional to 1/r(squared)
Explanation:
I looked it up im sure this is correct
Answer:
option d
Explanation:
Two objects are attracted to each other by a gravitational force F. ... As the distance r from the center of the planet increases, what happens to the force of gravity on the rocket? The force decreases inversely proportional to 1/r(squared) A spacecraft is orbiting Earth with an orbital radius r.
the force of gravity is represented as
F = GM1M2/r²
now the mass of warth and rocket is considered to be constant and G is a universal constant so it can be said
F is inverse to r²
therefore as the value of r increases that is distance between earth and rocket increases the force decreases
(Follows inverse square law)
Please help I need this done
help asap PLEASE I will give u max everything all that
steps if possible
Explanation:
2. [tex]R_T = R_1 + R_2 + R_3 = 625\:Ω + 330\:Ω + 1500\:Ω[/tex]
[tex]\:\:\:\:\:\:\:= 2455\:Ω = 2.455\:kΩ[/tex]
3. Resistors in series only need to be added together so
[tex]R_T = 8(140\:Ω) = 1120\:Ω = 1.12\:kΩ[/tex]
Copy the diagram. add a voltmeter to show how you would measure the voltage of the cell
Answer: the answer is 23voltage
Explanation: because the voltage and time put together is 23
nariz (am
miria amy
0 = 0 +260 + (0)
U= 29 mb
6= ut +1 (04)
Car I was sitting at rest when it nous hit from
the rear by car 2 of identical mass. Both cant had
their heaks on and they stidled together Guy
in the original directioned of motion. If the stopping
force is notx (Combined weight of the cars), die
u=0 to find the approximate speed of car a just
before the collision took place on
Answer:
33 mph
Explanation:
My best guess
A rock is pulled back in a slingshot as shown in the diagram below. The elastic on the slingshot is displaced 0.2 meters from its initial position. The rock is pulled back with a force of 10 newtons.
When the rock is released, what is its kinetic energy?
Answer:
id
Explanation:
i don't know
The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.
What will be the speed of the rock?Initial speed of the rock, u = 40m/s
Final position of the rock s = 0m taking the release point as reference. The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.
Nuclear energy is a useful source of power but has disadvantages. The disadvantage of nuclear energy is it produces dangerous waste.
Initial speed of the rock, u = 40m/s
Final position of the rock s = 0m taking the release point as reference
From the second equation of motion:
solving above we get:
t = 0s or t = 8.16s, t =0 seconds is neglected since it represents the initial position which is the same as the final position at t = 8.16s
So, the rock takes 8.16 seconds to return to the release point.
Therefore, The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.
Learn more about speed of rock on:
brainly.com/question/11049671
#SPJ2
12. What type of lens is pictures below?
Oconverging lens
diverging lens
This is convex lens .
hence It's a converging lens .
The picture shown is a type of converging lens. The correct option is A.
What is a converging lens?A converging lens, also known as a convex lens, is a type of optical lens that is thicker in the middle than at the edges. It is shaped like a curved-outward disc and is commonly used in optical systems such as cameras, telescopes, and microscopes. When light passes through a converging lens, it bends inward and converges at a focal point located on the other side of the lens.
This focal point is determined by the curvature of the lens and its refractive index, which affects how much the light is bent. The distance between the lens and the focal point is called the focal length, and it determines the magnification and the image size produced by the lens. Converging lenses are used in many applications that require focusing and magnifying light, such as correcting vision problems and creating images in photography and microscopy.
Therefore, The correct answer is converging lens.
To learn more about the lens equation click:
https://brainly.com/question/11971432
#SPJ2
5. Tests performed on a 16.0 cm strip of the donated aorta reveal that it stretches 3.37 cm when a 1.80 N pull is exerted on it. (a) What is the force constant of this strip of aortal material
Answer:
53.41 N/m
Explanation:
From Hooke's law,
Applying,
F = ke............. Equation 1
Where F = Force, e = extension, k = force constant of the aortal material
Make k the subject of the equation
k = F/e............. Equation 2
From the question,
Given: F = 1.8 N, e = 3.37 cm = 0.0337 m
Substitute these values into equation 2
k = 1.8/(0.0337)
k = 53.41 N/m
Hence the force constant of the aortal material is 53.41 N/m
A large dump truck can move 1,170 tons/h of gravel from one point to another on a work site. What is this rate in lb/s
Answer:
The rate of the dump truck is 650 [tex]\frac{lb}{s}[/tex]
Explanation:
A large dump truck can move 1,170 tons/h of gravel from one point to another on a work site.
To convert the units from tons/h to lb/s, you should know that:
1 ton= 2000 lb1 h= 3600 s (1 h= 60 minutes and 1 minute= 60 seconds)To carry out the unit conversion you must perform the following steps:
[tex]1170 \frac{ton}{h}*\frac{2000 lb}{1 ton} *\frac{1 h}{3600 s}[/tex]
Solving:
[tex]1170 \frac{ton}{h}*=650 \frac{lb}{s}[/tex]
So, the rate of the dump truck is 650 [tex]\frac{lb}{s}[/tex]
steps btw if possible
asap pls I will give u everyting
Answer:
(4) 50 ohms (5) 11.76 ohms
Explanation:
In the parallel combination, the equivalent resistance is given by :
[tex]\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+....[/tex]
4. When three 150 ohms resistors are connected in parallel, the equivalent is given by :
[tex]\dfrac{1}{R}=\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}\\\\R=50\ \Omega[/tex]
5. Three resistors of 20 ohms, 40 ohms and 100 ohms are connected in parallel, So,
[tex]\dfrac{1}{R}=\dfrac{1}{20}+\dfrac{1}{40}+\dfrac{1}{100}\\\\=11.76\ \Omega[/tex]
Hence, this is the required solution.
Transfer of thermal energy between air molecules in closed room is an example of
conduction
convection
radiation
Answer and I will give you brainiliest
Answer: Conduction
Explanation: Conduction is the process by which heat energy is transmitted through collisions between neighboring atoms or molecules. Conduction occurs more readily in solids and liquids, where the particles are closer to together, than in gases, where particles are further apart.
Two children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 3.3 m long, its mass is 0.52 kg, and the force exerted on it by the children is 47 N. (a) What is the linear mass density of the rope (in kg/m)
Answer:
The linear mass density of rope is 0.16 kg/m.
Explanation:
mass, m = 0.52 kg
force, F = 47 N
length, L = 3.3 m
(a) The linear mass density of the rope is defined as the mass of the rope per unit length.
Linear mass density = m/L = 0.52/3.3 = 0.16 kg/m
can some one tell the answers
An amusement park ride whisks you vertically upward. You travel at a constant speed of 15 m/s during the entire ascent. You drop your phone 4.0 s after you (and your phone) begin your ascent from ground level.
a. How high above the ground is your phone when you drop it?
b. Find the maximum height above the ground reached by your phone.
Answer:
a. 60 m
b. 71.48 m
Explanation:
Below are the calculations:
a. The phone's height above the ground = Speed x Time
The phone's height above the ground = 15 x 4 = 60 m
b. Speed when phone drops, u = 15 m/s
At maximum height, v = 0
Use below formula:
v² = u² -2gh
0 = 15² + 2 × 9.8 × h
h = 11.48 m
Total height = 60 + 11.48 = 71.48 m
The heat capacity of sodium metal is 1500 JK-1, if the mass of the sodium metal is 75 kg, the specific
heat capacity would be
Explanation:
the answer is in the image above
Its volume is 20 cm3, and its mass is 100 grams. What is the sample’s density?