Your family is moving, and you are asked
to help move some boxes. One box is so
heavy that you must push it across the
room rather than lift it. What are some
ways you could reduce friction to make
moving the box easier?

Answers

Answer 1

Answer:

Explanation:

I would use a hand truck dollies


Related Questions

As a person pushes a box across a floor, the energy from the person's moving arm is transferred to the box, and the box and the floor becomes warm. During the process, what happens to energy

Answers

Answer:

isnt heat transfer

Explanation:

sorry if im wrong

take a picture of an object in your house, describe the
energy stores and transfers that happen with it. You can be as imaginative as you wish
with the object (choose something unusual), but the stores you identify and transfers
that happen must be real.


pls give me ideas of what to take a photo of for this I'm really stuck :(​

Answers

A charger or a battery

When the bowling ball has fallen halfway down the building (height = 20 m), it has a speed of 19.8 m/s.
How much potential energy does the bowling ball have?
How much kinetic energy does the bowling ball have?
How much total energy (potential + kinetic) does the bowling ball have?
Of the bowling ball’s total energy, is more in the form of potential or kinetic energy?

Answers

Answer:

I think the answer is 19.8 potential energy

Explanation:

NONE.

Two objects travel the same distance. The one that is moving faster will:


Take more time to go the distance

Take less time to go the same distance

Take the same time as the slower object

None of the above

Answers

Answer: take less time to go the same distance

Explanation:

Because if it is going faster let’s say mph 60 mph is 60 miles per hour if you are going 40 miles per hour it will take you longer to get to your destination.

A student is driving through a mountainous region where the road is at some times flat, at some times inclined upward, and at some time inclined downward. The student maintains a speed of 20 m/s on the roadway, but is required to make an emergency stop on the three sepearte occasions. On levels roadway, it takes 25 m to stop. On a downward-sloping roadway, it takes 40 m to stop. On an upward-sloping roadway, it takes 18 m to stop. Explain why the stopping distances are different. (Focus answer using work and energy, other concepts may be used as well but be sure work and energy are included.)

Answers

Answer:

Explanation:

It is frictional force of the ground that helps in bringing the vehicle to stop . In the process of stopping , negative work is done on the car by friction force to overcome its kinetic energy .

At levelled road , for stoppage

Kinetic energy of vehicle = Work done by frictional force . = friction force x displacement .

At upward slopping road , gravitational force acting downward also helps the vehicle to stop do friction has to do less work .

At upward inclined  road , for stoppage

Kinetic energy of vehicle = Work done by frictional force + work done by gravitational force  = (friction force + gravitational force ) x displacement .

Hence displacement is less .

At downward slopping road ,  friction has to do more work because friction has to do work against gravitational force acting downwards wards and kinetic energy of the vehicle  also .

At downward inclined  road , for stoppage

Kinetic energy of vehicle + work done by gravitational force  = Work done by frictional force = friction force  x displacement .

Hence displacement is more .

Hence displacement is more in the downward slopping.

What is Displacement?

Displacement is defined as the change in position of an object. It is a vector quantity and has a direction and magnitude.

It is frictional force of the ground that helps in bringing the vehicle to stop . In the process of stopping , negative work is done on the car by friction force to overcome its kinetic energy .

At levelled road , for stoppage

Kinetic energy of vehicle = Work done by frictional force . = friction force x displacement .

At upward slopping road , gravitational force acting downward also helps the vehicle to stop do friction has to do less work .

At upward inclined  road , for stoppage

Kinetic energy of vehicle = Work done by frictional force + work done by gravitational force  = (friction force + gravitational force ) x displacement .

Hence displacement is less .

At downward slopping road ,  friction has to do more work because friction has to do work against gravitational force acting downwards wards and kinetic energy of the vehicle  also .

At downward inclined  road , for stoppage

Kinetic energy of vehicle + work done by gravitational force  = Work done by frictional force = friction force  x displacement .

Hence displacement is more in the downward slopping.

To learn more about displacement refer to the link:

brainly.com/question/11934397

#SPJ5

what is the direction of the third force that would cause the box to remain stationary on the ramp ?

Answers

An arrow pointing from the bottom of the ramp to the top, I assume it would be friction.

The arrow on the bottom pointing down due to friction the bow would not be able to go down the ramp

A truck travelling down the street suddenly brakes, applying a 14 N force over 3.5 seconds. What was the impulse over the given time.

Answers

Answer:

49 Ns

Explanation:

Given data

Force= 14N

time = 3.5seconds

Applying the expression for impulse

P= Ft

substitute

P=14*3.5

P=49 Ns

Hence the impulse is 49 Ns

As waves crash into rock along the shoreline, particles of sand, shell, and other materials in the ocean water loosen tiny bits of sediment from the rock. As the waves recede, they carry the sediment away. In this scenario, which process represents weathering, and which process represents erosion?

Answers

Answer:

WEATHERING is represented by the scenario (As waves crash into rock along the shoreline, particles of sand, shell, and other materials in the ocean water loosen tiny bits of sediment from the rock).

Erosion is represented by the scenario (As the waves recede, they carry the sediment away).

Explanation:

A wave is a disturbance which travels through a medium and transfers energy from one point to another. When wind blows over a water body like the ocean, ocean waves are formed. As the generated energy from the wind is transported through the water by the waves, the can hit against rocks on the shores leading to its break down with time. WEATHERING occurs when tiny bit of sediments from rocks are loosened due to the impact of ocean waves.

Erosion can be described as the wearing away of the earth's surface due to the impact of wind, rainfall ( water) or waves. There are different types of erosion which is classified according it's cause of formation.

Wave erosion occurs when sediments such as sand, shell and other materials are carried to the shoreline by ocean waves. This erodes the shore over time as the sediments act like sandpapers.

"45 meters north" is an example of

Answers

Answer:

Displacement

Explanation:

The quantity 45m north is a typical example of displacement.

Displacement is the distance traveled by a body in a specific direction. Displacement is a vector quantity with both magnitude and direction.

When we are specifying the displacement of a body, the direction must be indicated accurately. Therefore, the quantity given is displacement

A ratio is another name for a decimal true or false

Answers

True....................

An 8.00 kg mass moving east at 15.4 m/s on a frictionless horizontal surface collides with a 10.0 kg object that is initially at rest. After the collision, the 8.00 kg object moves south at 3.90 m/s. (a) What is the velocity of the 10.0 kg object after the collision

Answers

Answer:

9.3m/s

Explanation:

Based on the law of conservation of momentum

Sum of momentum before collision = sum of momentum after collision

m1u1 +m2u2 = m1v1+m2v2

m1 = 8kg

u1 = 15.4m/s

m2 = 10kg

u2 = 0m/s(at rest)

v1 = 3.9m/s

Required

v2.

Substitute

8(15.4)+10(0) = 8(3.9)+10v2

123.2=31.2+10v2

123.2-31.2 = 10v2

92 = 10v2

v2 = 92/10

v2 = 9.2m/s

Hence the velocity of the 10.0 kg object after the collision is 9.2m/s

A stone is dropped from the top of a high cliff with zero initial velocity. In which system is the net momentum zero as the stone falls freely

Answers

Answer:

A system that includes the stone and the earth.

Explanation:

If the system of being dropped from the height of the cliff consists of just the stone alone, then it means that its momentum will certainly undergo changes as it falls freely. However, If the system is now expanded to include not only the stone but also the Earth, then it implies that the momentum of the stone which is in the downward direction will be equal and opposite to the momentum of the Earth in the upwards direction towards the stone. Therefore, the momentum will cancel out and net momentum will be zero.

A system of stone and earth can result to a net zero momentum.

Conservation of linear momentum

The principle of conservation of linear momentum states that the sum of the initial momentum is equal to the sum of final momentum.

[tex]m_1u_1 + m_2 u_2 = m_1v_1 + m_2 v_2[/tex]

A system that consists a linear system of stone and earth can result to a net zero momentum.

Thus, a system of stone and earth can result to a net zero momentum.

Learn more about conservation of momentum here: https://brainly.com/question/7538238

One disadvantage to experimental research is that experimental conditions do not always reflect reality.


Please select the best answer from the choices provided

T
F

Answers

Answer:

It's true I took the test on Edge.

Explanation:

Answer:

True

Explanation:

Got it right on edg

What Coulombs discovered almost 300
years ago

Answers

Answer:

ummm hehe this is my time to shine

Explanation:

  MERICIA!!!!!!!!!!!!!!!!!!!!!!!

Christopher Columbus discovered
America

A mass m is gently placed on the end of a freely hanging spring. The mass then falls 33 cm before it stops and begins to rise. What is the frequency of the oscillation

Answers

Answer:

Explanation:

The mass falls by .33 m before it begins to rise . At that point loss of potential energy is equal to gain of elastic energy .

1/2 k x² = mgx

.5 x k x .33² = m x 9.8 x .33

k / m = 59.4

frequency of oscillation =  [tex]\frac{1}{2\pi} \times\sqrt{\frac{k}{m} }[/tex]

= [tex]\frac{1}{2\pi} \times\sqrt{59.4}[/tex]

= 1.22 per second .

If a person weighs 140 lb'on Earth, their mass in kilograms is

Answers

Answer:

70 kg

Explanation:

divide it by 2

Hope this helped!

Answer:

63.502932 Kilograms

Explanation:

A sprinter starts from rest and accelerated at a rate of 0.16 m/s over a distance of 50.0 meters. How fast is the athletes traveling at the end of the 50.0 meters?

Answers

Answer:

40m/s

Explanation:

v²=u²+2as

v²=0²+2(16)(50)

v²=160v=40m/s

A physics student spends part of her day walking between classes or for recreation, during which time she expends energy at an average rate of 280 W. The remainder of the day she is sitting in class, studying or resting; during these activities, she expends energy at a rate of 100 W. If she expends a total of 1.1 x 10^7 J of energy in a 24 hour day, how much of the day did she spend walking

Answers

RESULT: Twalk= 3.64 hr

The time of the day she spent walking is equal to 3.70 hrs.

What is power?

Power can be explained as the rate of doing work in unit time. The SI unit of measurement of power is J/s or Watt (W). Power can be described as a time based quantity. The mathematical expression for power can be represented as mentioned below.

Power = work/time

P = W/t

Given, the energy spends part of her day walking, Ew = 280 W

The energy is spent by sitting in the class, Es = 100 W

The total energy spends, Et = 1.1 × 10⁷J

[tex]E_w \times t + E_s(24\times 60\times 60-t)= 1.1 \times 10^7J[/tex]

[tex]280 \times t + 100(24\times 60\times 60-t)= 1.1 \times 10^7[/tex]

280 t + 0.86 × 10⁷ - 100 t = 1.1 × 10⁷

180 t = 0.24 × 10⁷

t =  0.24 × 10⁷/180 × 3600

t = 3.70 hr

Learn more about power, here:

brainly.com/question/14070854

#SPJ2

a wooden block is cut into two pieces, one with three times the mass of the other. a depression is made in both faces of the cut so that a fire cracker can be placed in it and the block is reassembled. the reassembled block is set on rough surface and the fuse is lit. when the fire cracker explodes, the two blocks separate. what is the ratio of distances traveled by blocks?

Answers

Answer:

1/9

Explanation:

Let A denote the bigger piece and let B denote the smaller piece.

We are told that one with three times the mass of the other.

Therefore, we have;

M_a = 3M_b

Firecracker is placed in the block and it explodes and thus, momentum is conserved.

Thus;

V_ai = V_bi = 0

Where V_ai is initial velocity of piece A and V_bi is initial velocity of piece B.

Since initial momentum equals final momentum, we have;

P_i = P_f

Thus;

0 = (M_a × V_af) + (M_b × V_bf)

Since M_a = 3M_b, we have;

(3M_b × V_af) + (M_b × Vbf) = 0

Making V_af the subject, we have;

V_af = -⅓V_bf

The kinetic energy gained by each block during the explosion will later be lost due to the negative work done by friction. Thus;

W_f = -½M_b•(v_bf)²

Now, let's express the work is in terms of the force and the distance.

Thus;

W_f = F_f × Δx × cos 180°

Frictional force is also expressed as μmg

Thus;

W_f = -μM_b × g × Δx

Earlier, we saw that;

W_f = -½M_b•(v_bf)²

Thus;

-½M_b•(v_bf)²= -μM_b × g × Δx

Δx = (v_bf)²/2μg

Let the distance travelled by block A be Δx_a and that travelled by B be Δx_b

Thus;

Δx_a/Δx_b = ((v_ba)²/2μg)/((v_bf)²/2μg)

Δx_a/Δx_b = ((v_af)²/((v_bf)²)

Δx_a/Δx_b = (-⅓V_bf)²/(V_bf)²

Δx_a/Δx_b = 1/9

The mass of 60 paper clips is 18.0 grams. What is the mass of one paper clip?

Answers

Answer:

3.333333333333333333333333333333333333333

Explanation:

3.3333333333333333333333333333333333

Car À moves at a speed of 8m/s for 43 seconds. Car B moves at a speed of 7 m/s for 50 seconds. Which car traveled a longer distance

Please show working

Answers

Distance = (speed) x (time)

Car A: Distance = (8 m/s) x (43 s)  =  344 meters

Car B: Distance = (7 m/s) x (50 s)  =  350 meters

350 meters is a longer distance than 344 meters.

Car-B traveled a longer distance than Car-A did.

Answer:

[tex]\boxed {\boxed {\sf Car \ B : 350 \ meters }}[/tex]

Explanation:

Distance is equal to the product of speed and time.

[tex]d=s*t[/tex]

1. Car A

Car A has a speed of 8 meters per second and travels for 43 seconds.

[tex]s= 8 \ m/s \\t= 43 \ s[/tex]

Substitute the values into the formula.

[tex]d= 8 \ m/s *43 \ s[/tex]

Multiply and note that the seconds will cancel out.

[tex]d= 8 \ m*43= 344 \ m[/tex]

2. Car B

Car B has a speed of 7 meters per second and travels for 50 seconds.

[tex]s= 7 \ m/s \\t= 50 \ s[/tex]

Substitute the values in and multiply.

[tex]d= 7 \ m/s * 50 \ s[/tex]

[tex]d= 7 \ m * 50 = 350 \ m[/tex]

350 meters is a longer distance than 344 meters, so Car B traveled the longer distance.

Which landform is produced at location E where the Mississippi River enters the Gulf of
Mexico?
a delta a drumlin an out wash an escarpment

Answers

Answer:

a delta

Explanation:

The landform produced at the location E where the Mississippi River enters the Gulf of Mexico is a delta.

A delta is a depositional landform where a smaller body of water enters into a larger one.

The Gulf of Mexico contains a larger body of water and as the Mississippi river enters into it, it splits up into many distributaries.

So, this feature is a delta.  

A vertical piston-cylinder device contains a gas at a pressure of 100 kPa. The piston has a mass of 10 kg and a diameter for 14 cm. Pressure of the gas is to be increased by placing some weights on the piston. Determine the local atmospheric pressure and the mass of the weights that will doublethe pressure of the gas inside the cylinder.

Answers

Answer:

the local atmospheric pressure is  93.63 kPa

the mass of the weights is 156.9 kg

Explanation:

Given that;

Initial pressure of gas = 100 kPa

mass of piston = 10 kg and diameter = 14 cm = 0.14 m

g = 9.81 m/s²

Now,

P_gas = P_atm + P_piston

100 = P_atm + P_piston --------- let this equation 1

P_piston = M_piston × g / A = (10 × 9.81) / π/4×d²

P_piston = 98.1 / (π/4×( 0.14 )²)

P_piston = 98.1 / 0.01539 = 6374,269 Pa = 6.37 kPa

now, from equation 1

100 = P_atm + P_piston

we substitute

100 = P_atm + 6.37

P_atm = 100 - 6.37

P_atm = 93.63 kPa

Therefore, the local atmospheric pressure is  93.63 kPa

Now for pressure of the gas in the cylinder ⇒ 2×initial pressure

Pgas_2 = 2 × 100 = 200 kPa

Pgas_2 = P_atm + P_piston + P_weight

Pgas_2 =  P_gas  + P_weight

we substitute

200 kPa =  100 kPa  + P_weight

P_weight =  200 kPa -  100 kPa

P_weight = 100 kPa =  100,000 Pa

Also;

P_weight = M×g / A

100,000 Pa = ( M × 9.81 ) / (π/4 × (0.14)²)

100,000 × 0.01539 = M × 9.81

1539 = M × 9.81

M = 1539 / 9.81

M = 156.9 kg

Therefore, the mass of the weights is 156.9 kg

is 0.8 kilograms bigger then 80 grams

Answers

Answer:

Yes

Explanation:

0.8 kilograms is equal to 800 grams

Answer:

Yes, 0.8 kilograms is greater than 80 grams

Explanation:

0.8 kilograms is equal to 800 grams and 80 grams is equal to 0.08 kilogrmas.

Sorry if I'm wrong, correct me.

A neutral metal bob is hanging on the bottom of a pendulum that is 15 cm long. A charged balloon is held near the metal bob and the pendulum is pulled up to a vertical angle of 20-deg. If the mass of the metal bob is 0.025kg, what is the charge on the balloon.

Answers

Answer:

Explanation:

See the figure attached

F is electrostatic force .

T cos20 = mg

T sin20 = F

Tan20 = F / mg

F = mg tan 20 = .025 x 9.8 tan20

= .09 N

Distance between bob and balloon

= 15 sin20 = 5.1 cm = .051 m

If q be the charge on balloon

F = 9 x 10⁹ x q² / .051²

= 3460 x 10⁹ q² = .09

q² =  26 x 10⁻⁶ x 10⁻⁹

q = 16.12 x 10⁻⁸ C .

What kind of scattering (Rayleigh, Mie, or non-selective) would you expect to be most important when radiation of the specified wavelength encounters the following natural or anthropogenic particles?
Slides 16-31, Lecture 2 ought to help - slides 19, 24, and 31 are key.
Wavelength O2 molecules Smoke particles Cloud droplets Rain droplets
(size 10^-10 m) (size 0.3 (μm) (20 μm) (size 3 mm)
550 nm
11 μm
1600 nm
1 cm

Answers

Solution :

1. Rayleigh scattering takes place when the particle size is smaller than the wavelength (λ).

2. Mie scattering takes place when particle size is nearly equal to the wavelength (λ).

3. Non-selective scatter takes place when particle size in greater than the wavelength  (λ).

We have the sizes of different particles :

[tex]$O_2 \rightarrow 10^{10} \ m $[/tex]

Smoke particles [tex]$\rightarrow 3 \times 10^{-7} \ m$[/tex]

Cloud droplets [tex]$\rightarrow 2 \times 10^{-5} \ m$[/tex]

Rain droplets [tex]$\rightarrow 3 \times 10^{-3} \ m$[/tex]

Wavelength           [tex]$ O_2 $[/tex]         Smoke particles    Cloud droplets     Rain droplets

                            [tex]$10^{-10} \ m$[/tex]        [tex]$ 3 \times 10^{-7} \ m$[/tex]           [tex]$ 2 \times 10^{-5} \ m$[/tex]              [tex]$ 3 \times 10^{-3} \ m$[/tex]

[tex]$5500 \times 10^{-4} \ m$[/tex]      Rayleigh  Non-selective      Non-selective     Non-selective

[tex]$11 \times 10^{-6} \ m $[/tex]         Rayleigh    Rayleigh            Non-selective      Non-selective

[tex]$1600 \times 10^{-10} \ m $[/tex]    Rayleigh  Non-selective      Non-selective     Non-selective

[tex]$10^{-2} \ m $[/tex]                 Rayleigh      Rayleigh               Rayleigh          Mie

It has been argued that power plants should make use of off-peak hours (such as late at night) to generate mechanical energy and store it until it is needed during peak load times, such as the middle of the day. One suggestion has been to store the energy in large flywheels spinning on nearly frictionless ball-bearings. Consider a flywheel made of iron, with a density of 7800 kg/m^3 , in the shape of a uniform disk with a thickness of 11.3 cm.

Required:
a. What would the diameter of such a disk need to be if it is to store an amount of kinetic energy of 14.1 MJ when spinning at an angular velocity of 93.0 rpm about an axis perpendicular to the disk at its center?
b. What would be the centripetal acceleration of a point on its rim when spinning at this rate?

Answers

Answer:

Explanation:

kinetic energy = 14.1 MJ = 14.1 x 10⁶ J

Let radius of flywheel be r .

volume of flywheel = π r² x t where t is thickness

= 3.14 x r² x .113 m³

= .04 r² m³

mass = volume x density

= .04 r² x 7800 = 312.73 r²kg

moment of inertia I = 1 / 2 mass x radius²

= .5 x 312.73 r² x r²

= 156.37 r⁴ kg m²

angular velocity ω = 2π x 93/60

= 9.734 rad /s

kinetic energy = 1/2 Iω² where ω is angular velocity

= .5 x 156.37 r⁴ x 9.734²

= 7408.08 r⁴

Given

7408.08 r⁴ =  14.1 x 10⁶

r⁴ = .19 x 10⁴

r = .66 x 10

= 6.60 m .

Diameter = 13.2 m

b )

centripetal acceleration of a point on its rim = ω² r

= 9.734² x 6.6

= 625.35 m /s²

Magnification of lens is 1. What does it mean?

Answers

Answer:

It means when you look into the lens your vision magnifies by x1

Explanation:

Two children, each with a mass of 25.4 kg, are at fixed locations on a merry-go-round (a disk that spins about an axis perpendicular to the disk and through its center). One child is 0.78 m from the center of the merry-go-round, and the other is near the outer edge, 3.14 m from the center. With the merry-go-round rotating at a constant angular speed, the child near the edge is moving with translational speed of 11.5 m/s.

a. What is the angular speed of each child?
b. Through what angular distance does each child move in 5.0 s?
c. Through what distance in meters does each child move in 5.0 s?
d. What is the centripetal force experienced by each child as he or she holds on?
e. Which child has a more difficult time holding on?

Answers

Answer:

a) ω₁ = ω₂ = 3.7 rad/sec

b) Δθ₁ = Δθ₂ = 18.5 rad

c) d₁ = 14.5 m  d₂ = 57.5 m

d) Fc1 = 273.9 N Fc2 = 1069.8 N

e) The boy near the outer edge.

Explanation:

a)

Since the merry-go-round is a rigid body, any point on it rotates at the same angular speed.However, linear speeds of points at different distances from  the center, are different.Applying the definition of angular velocity, and the definition of angle, we can write the following relationship between the angular and linear speeds:

       [tex]v = \omega*r (1)[/tex]

Since we know the value of v for the child near the outer edge, and the value of r for this point, we can find the value of the angular speed, as follows:

       [tex]\omega = \frac{v_{out} }{r_{out} } = \frac{11.5m/s}{3.14m} = 3.7 rad/sec (2)[/tex]

As we have already said, ωout = ωin = 3.7 rad/sec

b)

Since the angular speed is the same for both childs, the angle rotated in the same time, will be the same for both also.Applying the definition of angular speed, as the rate of change of the angle rotated with respect to time, we can find the angle rotated (in radians) as follows:[tex]\Delta \theta = \omega * t = 3.7 rad/sec* 5.0 sec = 18.5 rad (3)[/tex]

        ⇒  Δθ₁ = Δθ₂ = 18.5 rad.

c)

The linear distance traveled by each child, will be related with the linear speed of them.Knowing the value of the angular speed, and the distance from each boy to the center, we can apply (1) in order to get the linear speeds, as follows:

       [tex]v_{inn} = \omega * r_{inn} = 3.7 rad/sec * 0.78 m = 2.9 m/s (4)[/tex]

      vout is a given of the problem ⇒ vout = 11. 5 m/s

Applying the definition of linear velocity, we can find the distance traveled by each child, as follows:

       [tex]d_{inn} = v_{inn} * t = 2.9m/s* 5.0 s = 14.5 m (5)[/tex]

      [tex]d_{out} = v_{out} * t = 11.5 m/s* 5.0 s = 57.5 m (6)[/tex]

d)

The centripetal force experienced by each child is the force that keeps them on a circular movement, and can be written as follows:

       [tex]F_{c} = m*\frac{v^{2}}{r} (7)[/tex]

Replacing by the values of vin and rin, since m is a given, we can find Fcin (the force on the boy closer to the center) as follows:

      [tex]F_{cin} = m*\frac{v_{in}^{2}}{r_{in}} = 25.4 kg* \frac{(2.9m/s)^{2} }{0.78m} = 273.9 N (8)[/tex]

In the same way, we get Fcout (the force on the boy near the outer edge):

      [tex]F_{cout} = m*\frac{v_{out}^{2}}{r_{out}} = 25.4 kg* \frac{(11.5m/s)^{2} }{3.14m} = 1069.8 N (9)[/tex]

e)

The centripetal force that keeps the boys in a circular movement, is not a different type of force, and in this case, is given by the static friction force.The maximum friction force is given by the product of the coefficient of static friction times the normal force.Since the boys are not accelerated in the vertical direction, the normal force is equal and opposite to the force due to gravity, which is the weight.As both boys have the same mass, the normal force is also equal.This means that for both childs, the maximum possible static friction force, is the same, and given by the following expression:[tex]F_{frs} = \mu_{s} * m* g (10)[/tex]If this force is greater than the centripetal force, the boy will be able to hold on.So, as the centripetal force is greater for the boy close to the outer edge, he will have a more difficult time holding on.

If there is "waste" energy, does the Law of Conservation of Energy still apply? ​

Answers

Explanation:

Yes, the law of conservation of energy still applies even if there is waste energy.

The waste energy are the transformation products of energy from one form to another.

According to the law of conservation of energy "energy is neither created nor destroyed by transformed from one form to another in a system".

But of then times, energy is lost as heat or sound within a system.

If we take into account these waste energy, we can see that energy is indeed conserved. The sum total of the energy generated and those produced will be the same if we factor in other forms in which the energy has been transformed into.
Other Questions
Due in 3 minutes Need help ASAPWill mark you brainlist Ok giving brainiest[tex]\frac{7}{5} *\frac{6}{7}[/tex] In car tunes the author includes information from studies by the University of California, Riverside. Why do you think the author includes this information Literally have been at this for 20 minutes PLEASE HELP!!!! If the sales tax rate is 5% in California, then how much would you pay in Los Angeles for a pair of shoes that cost $35.00? Which scenario is an example of defensive communication?a. scenario 1 b. scenario 2 c. both a and b d. none of the above What is the area of the rectangle A)60 sq. in.B)40 sq. in.C)20 sq. in.D)28 sq. in. What is the value of the square root of 2 to the third decimal place? II. What examples can you find in your home that are examples of kinetic and potential energy (name two for each typeof energy)?11. Kinetic:12. Kinetic:13. Potential14. Potential: Graph? Which is linear why does condensation not occur on the outside of a warm glass of water? what is the likelihood of choosing a blue marble from a bag containing 8 red, 6 yellow, 12 green, and 6 blue marbles Kiara tosses four different coins. What is the probability that the coins land with two head and two tails showing?Group of answer choices4/806/86/16 Volume =18 in...... Jadas dog was 5 1/2 inches tall when it was a puppy. Now her dog is 14 1/2 inches taller than that. How tall is Jadas dog now? Read the excerpt from "Object Lesson, Part 2."Ellery searched everything in the room, from the socket of the American flag to the insect-filled bowls of the old light fixtures, reached by standing on desks.Everything."It's not here!" whispered Louise in his ear. What is the source of tension in this excerpt?A. Ellery searching everythingB. insects filling the light fixturesC. Ellery standing on the desksD. Louise Carpenter whispering $213 ski jacket with a 30% discount and a 6% tax 0Which is not one of Earth's layers?A crustB)inner coremantleDocean Identify the range of the function shown in the graph. A. {-2, 2}B. -2 < y< 2 C. y> 0 D. yis all real numbers. Throughout the play, "A Window into History: The Mystery of the Cellar Window," Patricia Cole wants to build a playground. How has Patricias point of view changed at the end of the play? A. She feels pride in the role that her city played in the Underground Railroad, so she chooses to keep the property. B. She believes that the playground will benefit everyone, which is more important than saving one house. C. She thinks that the family will be happy with their compensation, and she will save the house. D. She thinks that all houses built in 1859 should be important to the town.