Answer:
F = 1010 Lb
the tension on the cable is greater than its resistance, which is why the plan is not viable
Explanation:
For this exercise we can use the kinematic relations to find the acceleration and with Newton's second law find the force to which the cable is subjected.
v = v₀ + a t
how the car comes out of rest v₀ = 0
a = v / t
let's reduce to the english system
v = 45 mph (5280 ft / 1 mile) (1h / 3600) = 66 ft / s
let's calculate
a = 66/10
a = 6.6 ft / s²
now let's write Newton's second law
X axis
Fₓ = ma
with trigonometry
cos 20 = Fₓ / F
Fₓ = F cos 20
we substitute
F cos 20 = m a
F = m a / cos20
W = mg
F = [tex]\frac{W}{g} \ \frac{a}{cos 20}[/tex]
let's calculate
F = [tex]\frac{2000}{32} \ \frac{6.6 }{cos20}[/tex](2000/32) 6.6 / cos 20
F = 1010 Lb
Under these conditions, the tension on the cable is greater than its resistance, which is why the plan is not viable.
what is the frequency of a wave related to
Answer:
Frequency is the number of complete oscillations or cycles or revolutions made in one second.
If the loading is 0.4, the coinsurance rate is 0.2, the number of units of medical care is 100, and the number of units of medical care is 1. What is the premium of this insurance?
Answer:
72 is the premimum of the insurance.
Explanation:
Below is the given values:
The loading = 0.4
Coinsurance rate = 0.2
Number of units = 100
Total number of units = 100 * 0.4 = 40
Remaining units = 60 * 0.2 = 12
Add the 60 and 12 values = 60 + 12 = 72
Thus, 72 is the premimum of the insurance.