You plan to conduct a marketing experiment in which students are to taste one of two different brands of soft drink. Their task is to correctly identify the brand tasted. You select a random sample of 200 students and assume that the students have no ability to distinguish between the two brands. The probability is 90% that the sample percentage is contained within what symmetrical limits of the population percentage

Answers

Answer 1

Answer:

the probability is 90% that the sample percentage is contained within 45.5% and 54.5% symmetric limits of the population percentage.

Step-by-step explanation:

From the given information:

Sample size n = 200

The standard deviation for a sampling distribution for two brands are equally likely because the individual has no ability to discriminate between the two soft drinks.

The population proportion [tex]p_o[/tex] = 1/2 = 0.5

NOW;

[tex]\sigma _p = \sqrt{\dfrac{p_o(1-p_o)}{n}}[/tex]

[tex]\sigma _p = \sqrt{\dfrac{0.5(1-0.5)}{200}}[/tex]

[tex]\sigma _p = \sqrt{\dfrac{0.5(0.5)}{200}}[/tex]

[tex]\sigma _p = \sqrt{\dfrac{0.25}{200}}[/tex]

[tex]\sigma _p = \sqrt{0.00125}[/tex]

[tex]\sigma _p = 0.035355[/tex]

However, in order to determine the symmetrical limits of the population percentage given that the z probability is 90%.

we use the Excel function as computed as follows in order to determine the z probability  = NORMSINV (0.9)

z value = 1.281552

Now the symmetrical limits of the population percentage can be determined as: ( 1.28, -1.28)

[tex]1.28 = \dfrac{X - 0.5}{0.035355}[/tex]

1.28 × 0.035355 = X - 0.5

0.0452544= X - 0.5

0.0452544 + 0.5 = X

0.5452544 = X

X [tex]\approx[/tex] 0.545

X = 54.5%

[tex]-1.28 = \dfrac{X - 0.5}{0.035355}[/tex]

- 1.28 × 0.035355 = X - 0.5

- 0.0452544= X - 0.5

- 0.0452544 + 0.5 = X

0.4547456 = X

X [tex]\approx[/tex] 0.455

X = 45.5%

Therefore , we can conclude that the probability is 90% that the sample percentage is contained within 45.5% and 54.5% symmetric limits of the population percentage.


Related Questions

A report states that the mean yearly salary offer for students graduating with a degree in accounting is $48,722. Suppose that a random sample of 50 accounting graduates at a large university who received job offers resulted in a mean offer of $49,870 and a standard deviation of $3900. Do the sample data provide strong support for the claim that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722? Test the relevant hypotheses using α = 0.05. State your conclusion.A. Reject H0. We do not have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.B. Do not reject H0. We do not have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.C. Reject H0. We have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.D. Do not reject H0. We have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.

Answers

Answer:

Option C - Reject H0. We have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.

Step-by-step explanation:

First of all let's define the hypothesis;

Null hypothesis;H0; μ = $48,722

Alternative hypothesis;Ha; μ > $48,722

Now, let's find the test statistic for the z-score. Formula is;

z = (x' - μ)/(σ/√n)

We are given;

x' = 48,722

μ = 49,870

σ = 3900

n = 50

Thus;

z = (49870- 48722)/(3900/√50)

z = 2.08

So from online p-value calculator as attached, using z = 2.08 and α = 0.05 ,we have p = 0.037526

This p-value of 0.037526 is less than the significance value of 0.05,thus, we reject the claim that that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722

The function s(t) = 4t – 21 is a result of the composition (q ∘ p)(t). If q(t) = 4t³ – 1, what is p(t)?

Answers

Answer:

Step-by-step explanation:

Hello, please consider the following.

[tex]q(t) = 4t^3-1\\\\(qop)(t)=q(p(t))=4\left( p(t) \right) ^3-1=4t-21\\\\p(t)^3=\dfrac{4t-21+1}{4}=\dfrac{4(t-5)}{4}=t-5\\\\p(t)=\sqrt[3]{t-5}[/tex]

Cheers.

Taking into account the definition of composite function, the function p(t) is [tex]\sqrt[3]{t-5}[/tex].

What is composite function

The composite function is one that is obtained through an operation called composition of functions, which consists of evaluating the same value of the independent variable (x) in two or more functions successively.

In other words, a composite function is generally a function that is written inside another function. The composition of a function is done by substituting a function into another function.

Solving a composite function means finding the composition of two functions.

Function p(t)

The expression of the composite function (qp)(t) is read "p composite with q". This means that you should do the following compound function: q[p(t)].

The function s(t) = 4t – 21 is a result of the composition (q ∘ p)(t). And q(t)=4t³ – 1. Then:

s(t)= q[p(t)]

4t -21= 4[p(t)]³ – 1

Solving:

4t -21 +1= 4[p(t)]³

4t -20 = 4[p(t)]³

(4t -20)÷ 4 = [p(t)]³

4t÷4 -20÷ 4 = [p(t)]³

t -5 = [p(t)]³

[tex]\sqrt[3]{t-5}=p(t)[/tex]

Finally, the function p(t) is [tex]\sqrt[3]{t-5}[/tex].

Learn more about composite function:

https://brainly.com/question/10687170

https://brainly.com/question/12396459

https://brainly.com/question/17227038

#SPJ2

CD is the perpendicular bisector of XY Determine the value of x. Question 8 options: A) –2 B) –1∕2 C) 4 D) 1.25

Answers

Answer:

Step-by-step explanation:

12x - 9 = 8x + 7

4x - 9 = 7

4x = 16

x = 4

solution is C

The solution is Option C.

The value of x is given from the equation x = 4

What is perpendicular bisector?

A perpendicular bisector is defined as a line or a line segment that divides a given line segment into two parts of equal measurement. Lines that cross each side's midpoint and are perpendicular to the specified side are known as a triangle's perpendicular bisectors.

The perpendicular bisector theorem states that any point on the perpendicular bisector is equidistant from both the endpoints of the line segment on which it is drawn

Given data ,

Let the first line be represented as CD

Let the second line be represented as XY

Now , CD is the perpendicular bisector of XY

So , the point F is the midpoint of the line segment XY

The measure of line segment XF = 12x - 9

The measure of line segment FY = 8x + 7

From the perpendicular bisector theorem ,

The measure of line segment XF = The measure of line segment FY

Substituting the values in the equation , we get

12x - 9 = 8x + 7

Subtracting 8x on both sides of the equation , we get

4x - 9 = 7

Adding 9 on both sides of the equation , we get

4x = 16

Divide by 4 on both sides of the equation , we get

x = 4

Therefore , the value of x = 4

Hence , the value of the equation is x = 4

To learn more about perpendicular bisectors click :

https://brainly.com/question/4137998

#SPJ2

What number is the opposite of -3?
Explain your reasoning

Answers

The answer is 3

Answer Explanation:

Mark has a collection of 80 coins. There are only nickels and dimes in the collection. The total value of the coins is $5.00. How many dimes does Mark have?

Answers

Answer:

number of nickel = 60

number of dimes  = 20

Step-by-step explanation:

1 nickel = 5 cents

1 dimes = 10 cents

$1 = 100 cents

we will use these value to solve the questions

_______________________________

Total no of coins = 80

let the number of nickels be x

let the number of dimes be y

thus,

x+y = 80

y = 80-x   equation 2

value of x nickels = 5x

value of y dimes = 10y

Total value of x nickels and y dimes = 5x+10y

The total value of the coins is $5.00

total value of the coins in cents = 5*100 = 500

thus

5x+10y = 500

using y = 80-x   from equation 2

5x + 10(80 - x) = 500

5x + 800 - 10x = 500

-5x = 500 - 800 = -300

x = -300/-5 = 60

Thus,

number of nickel = 60

number of dimes = 80-60 = 20

According to a Pew Research Center study, in May 2011, 40% of all American adults had a smart phone (one which the user can use to read email and surf the Internet). A communications professor at a university believes this percentage is higher among community college students. She selects 341 community college students at random and finds that 147 of them have a smart phone. Then in testing the hypotheses:

H0: p = 0.4 versus

Ha: p > 0.4,

what is the test statistic?

z =________________. (Please round your answer to two decimal places.)

B.)

According to a Pew Research Center study, in May 2011, 33% of all American adults had a smart phone (one which the user can use to read email and surf the Internet). A communications professor at a university believes this percentage is higher among community college students. She selects 349 community college students at random and finds that 138 of them have a smart phone. In testing the hypotheses:

H0: p = 0.33 versus

Ha: p > 0.33,

she calculates the test statistic as z = 2.5990.

Then the p‑value =________________ .

(Please round your answer to four decimal places.)

Answers

Answer:

z = 1.17

P - value = 0.0047

Step-by-step explanation:

A.

From the given information;

H0: p = 0.4 versus

Ha: p > 0.4,

Let's calculate the population proportion for the point estimate;

the population proportion [tex]\hat p[/tex] = 147/341

the population proportion  [tex]\hat p[/tex] = 0.431085

However; the test statistics can therefore be determined by using the formula:

[tex]z = \dfrac{\hat p - p_o}{\sqrt{\dfrac{p_o(1-p_o)}{n}}}[/tex]

[tex]z = \dfrac{0.431085 - 0.40}{\sqrt{\dfrac{0.40(1-0.40)}{341}}}[/tex]

[tex]z = \dfrac{0.031085}{\sqrt{\dfrac{0.40(0.60)}{341}}}[/tex]

[tex]z = \dfrac{0.031085}{\sqrt{\dfrac{0.24}{341}}}[/tex]

[tex]z = \dfrac{0.031085}{\sqrt{7.03812317 \times 10^{-4}}}[/tex]

[tex]z = \dfrac{0.031085}{0.0265294613}[/tex]

z = 1.1717

z = 1.17             to two decimal places

B.)

The null and the alternative hypothesis is given as:

H0: p = 0.33 versus

Ha: p > 0.33,

The z = 2.5990.

The objective here is to determine the p-value from the z test statistics.

P - value = P(Z > 2.5990)

P- value = 1 -  P(Z < 2.5990)

P - value = 1 - 0.9953

P - value = 0.0047

Factor this trinomial completely. -6x^2 +26x+20

Answers

Answer:

Step-by-step explanation:

-6x²+26x+20

=-2(3x²-13x-10)

=-2(3x²-15x+2x-10)

=-2[3x(x-5)+2(x-5)]

=-2(x-5)(3x+2)

Can someone please help me?

Answers

Negative Integers are :

Less than zeroTo the left of zero on a number line.

generate a continuous and differentiable function f(x) with the following properties: f(x) is decreasing at x=−5 f(x) has a local minimum at x=−3 f(x) has a local maximum at x=3

Answers

Answer:

see details in graph and below

Step-by-step explanation:

There are many ways to generate the function.

We'll generate a function whose first derivative f'(x) satisfies the required conditions, say, a quadratic.

1. f(x) has a local minimum at x = -3, and

2. a local maximum at x = 3

Therefore f'(x) has to cross the x-axis at x = -3 and x=+3.

Furthermore, f'(x) must be increasing at x=-3 and decreasing at x=+3.

f'(x) = -x^2+9

will satisfy the above conditions.

Finally f(x) must be decreasing at x= -5, which implies that f'(-5) must be negative.

Check: f'(-5) = -(-5)^2+9 = -25+9 = -16 < 0  so ok.

f(x) can then be obtained by integrating f'(x) :

f(x) = integral of -x^2+9 = -x^3/3 + 9x = 9x - x^3/3

A graph of f(x) is attached, and is found to satisfy all three conditions.

A function is differentiable at [tex]x = a[/tex], if the function is continuous at [tex]x = a[/tex]. The function that satisfy the given properties is [tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]

Given that:

The function decreases at [tex]x = -5[/tex] means that: [tex]f(-5) < 0[/tex]

The local minimum at [tex]x = -3[/tex] and local maximum at [tex]x = 3[/tex] means that:

[tex]x = -3[/tex] or [tex]x = 3[/tex]

Equate both equations to 0

[tex]x + 3 = 0[/tex] or [tex]3 - x = 0[/tex]

Multiply both equations to give y'

[tex]y' = (3 - x) \times (x + 3)[/tex]

Open bracket

[tex]y' = 3x + 9 - x^2 - 3x[/tex]

Collect like terms

[tex]y' = 3x - 3x+ 9 - x^2[/tex]

[tex]y' = 9 - x^2[/tex]

Integrate y'

[tex]y = \frac{9x^{0+1}}{0+1} - \frac{x^{2+1}}{2+1} + c[/tex]

[tex]y = \frac{9x^1}{1} - \frac{x^3}{3} + c[/tex]

[tex]y = 9x - \frac{x^3}{3} + c[/tex]

Express as a function

[tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]

[tex]f(-5) < 0[/tex] implies that:

[tex]9\times -5 - \frac{(-5)^3}{3} + c < 0[/tex]

[tex]-45 - \frac{-125}{3} + c < 0[/tex]

[tex]-45 + \frac{125}{3} + c < 0[/tex]

Take LCM

[tex]\frac{-135 + 125}{3} + c < 0[/tex]

[tex]-\frac{10}{3} + c < 0[/tex]

Collect like terms

[tex]c < \frac{10}{3}[/tex]

[tex]c <3.33[/tex]

We can then assume the value of c to be

[tex]c=3[/tex] or any other value less than 3.33

Substitute [tex]c=3[/tex] in [tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]

[tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]

See attachment for the function of f(x)

Read more about continuous and differentiable function at:

https://brainly.com/question/19590547

For
90° < 0 < 270°
, which of the primary trigonometric functions may have positive values?

Answers

Answer:

sine and tangent

will be positive.

Find the value of x.
A. 22
B. 7.3
C. 3.6
D. 5.5

Answers

Answer:

x= 5.5

Step-by-step explanation:

(segment piece) x (segment piece) =    (segment piece) x (segment piece)

x*4 = 11*2

4x = 22

Divide each side by 4

4x/4 = 22/4

x =5.5

True or False. The statistician should use Printout C to perform a t-test on the GROUP variable in the regression model. g

Answers

Answer:

False

Step-by-step explanation:

Regression model is a set of statistical process which estimates the relationship between two variables. The one variable is dependent variable and the other is independent variable. The statistician should not use printout C to perform a t-test in regression model.

Given the diagram below, where and mDE = 105^ and mGE = 125^ Find m

a. 65
b. 62.5
c. 55
d. 52.5

Answers

*Complete Question:

Given the diagram below, where and mDE = 105^ and mGE = 125^ Find m<DEG

Answer:

m<DEG = 65°

Step-by-step explanation:

Angle DEG is an inscribed angle that intercepts the DG. Based on the theorem of inscribed angles, angle DEG = ½ of the measure of arc DG.

To find the measure of angle DEG, find the measure of arc DG first.

Measure of arc DG = 360° - (105° + 125°) => a full circle measures 369°

Arc DG = 360° - 230 = 130°.

m<DEG = ½ of 130° = ½*130° = 65°

The graph of y = −4x2 + 13x + 12 is shown below. What are the zeros of the function (as exact values), the y-intercept, and the maximum or minimum value of the function?

Answers

Answer:

zeros: -3/4, 4y-intercept: 12maximum: 22 9/16

Step-by-step explanation:

The graph tells you the zeros of the function are x=-3/4 and x=4.

The y-intercept is the constant in the function: 12.

The maximum is 22.5625 at x = 1.625.

8 less than one-fourteenth of some number, w

Answers

Answer:

The answer is 1/14w-8

A) Which of triangle A, B, C and D is congruent to triangle E.? B) Which other two triangles (from A, B, C and D) are congruent to each other? Please help!

Answers

Answer:

c is congruent to e congruent means to be the same

Step-by-step explanation:

Nan lives 13 miles from the airport. Felipe lives 6 miles from the airport.
How many more miles does Nan live from the airport than Felipe?

Answers

Answer:

7

Step-by-step explanation:

it's simply 13 - 6

7 it the answer, that was easy

A bag contains three red marbles, two green ones, one lavender one, two yellows, and two orange marbles. HINT [See Example 7.] How many sets of seven marbles include at least one yellow one but no green ones

Answers

Answer: 8

Step-by-step explanation:

Given: A bag contains three red marbles, two green ones, one lavender one, two yellows, and two orange marbles.

Total marbles other than green = 8

Total marbles other than green and yellow = 6

Then the number of sets of seven marbles include at least one yellow one but no green ones:-

[tex]^{2}C_1\times^{6}C_6+ ^2C_2\times^6C_5\\\\= 2\times 1+1\times6\\\\=2+6=8[/tex]

Number of sets of seven marbles include at least one yellow one but no green ones = 8

(08.01 MC)
The volume of a pyramid that fits exactly inside a cube is 9 cubic feet. What is the volume of the cube? (5 points)
Select one:
a. 3 cubic feet
b. 6 cubic feet
c. 18 cubic feet
d. 27 cubic feet

Answers

Answer:

d. 27 cubic feet

Step-by-step explanation:

volume of cube = s^3 = B * s

volume of pyramid = (1/3) * B * h

The volume of a pyramid is 1/3 of the area of the base multiplied by the height. The volume of a cube is the area of the base multiplied by the height. Since the volume of a pyramid has the fraction 1/3 and the volume of the cube does not, then the volume of a cube is 3 times greater than the volume of a pyramid that fits inside and has the same base area.

volume of pyramid = 9 cu ft

volume of cube = 3 * 9 cu ft = 27 cu ft

Answer: d. 27 cubic feet

Answer:

27 ft^3 (Answer d)

Step-by-step explanation:

Here the volume of the pyramid is (1/3) the volume of the cube:

Letting s represent the length of one side of the base,

(1/3)(s)^2(s) = 9 ft^3, equivalent to  s^3 = 27.

Solving for s, we get s = 3 ft.

Thus, the volume of the cube is V = s^3 = (3 ft)^3 = 27 ft^3 (Answer d)

For each ordered pair, determine whether it is a solution to y=-9.
Is it a solution?
Yes or No
(1, -9)
(7,3)
(-9,4)
(0, -9)

Answers

Answer:

(1, -9)  yes

(7,3)  no

(-9,4)  no

(0, -9) yes

Step-by-step explanation:

The y value must be -9

The x value can be any value to satisfy   the equation y = -9

confidence interavls for a population proportion. suppose that a random sample of 1000 mortgage loans that were defaulted within the first year reveals 410 of these loans were approved on hte basis of falsified applications. what is point estiamte of and a 95% confidence interval for p, the proportion of all first year defaults that are approved on the basis of flsified application

Answers

Answer:

The 95% confidence interval is  [tex]0.3795 < p < 0.4405[/tex]

Step-by-step explanation:

From the question we are told that

     The sample size is  [tex]n = 1000[/tex]

      The  number of approved loan is  k =  410

       

Generally the sample proportion is mathematically represented as

       [tex]\r p = \frac{k}{n}[/tex]

substituting values

      [tex]\r p = \frac{410}{1000}[/tex]

       [tex]\r p = 0.41[/tex]

Given that the confidence level is  95% then the level of significance is mathematically represented as

       [tex]\alpha = 100 - 95[/tex]

        [tex]\alpha = 5\%[/tex]

       [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table,the value is  

         [tex]Z_{\frac{\alpha }{2} } =Z_{\frac{0.05 }{2} }= 1.96[/tex]

Generally the margin of error is mathematically represented as

        [tex]E = Z_{\frac{\alpha }{2} } * \sqrt{\frac{\r p(1- \r p)}{n} }[/tex]

substituting values

        [tex]E = 1.96 * \sqrt{\frac{ 0.41(1- 0.41)}{1000} }[/tex]

        [tex]E = 0.03048[/tex]

The 95% confidence interval for p is mathematically represented  as

     [tex]\r p - E < p < \r p + E[/tex]

substituting values

     [tex]0.41 - 0.03048 < p < 0.41 + 0.03048[/tex]

    [tex]0.3795 < p < 0.4405[/tex]

Lori wants to buy a radio for 60 dollars.
She can pay $60 now, or she can pay $12
a month for 6 months. How much more will
she pay for the radio if she makes monthly
payments?

Answers

Answer:

Lori will pay $12 more if she makes monthly payments

Step-by-step explanation:

to find how much she will pay for 6 months, we have to multiply 12 by 6 to get $72

subtracting the amount she would pay as a down payment

$72 - $60 is $12

Lori will pay $12 more if she makes monthly payments

Yo help me real quick?

Answers

Answer:

1,2 and 6

Step-by-step explanation:

pie symbol

2/3

0.333333....

Janine and Thor are both running for class president. Janine goes down a hallway in the school and puts a sticker on every fourth locker. Thor goes down the same hallway, putting one of his stickers on every fifth locker. If there are 130 lockers in the hallway, how many have both students' stickers?

Answers

Answer:

6 lockers have both students' stickers

Step-by-step explanation:

There are 130 lockers in the hallway

Janine goes down a hallway in the school and puts a sticker on every fourth locker.

Janine= 4th, 8th, 12th, 16th, 20th, 24th, 28th, 32nd, 36th, 40th, 44th, 48th, 52nd, 56th, 60th, 64th, 68th, 72nd, 76th, 80th, 84th, 88th, 92nd, 96th, 100th, 104th, 108th, 112th, 116th, 120th, 124th, 128th.

Thor goes down the same hallway, putting one of his stickers on every fifth locker

Thor= 5th, 10th, 15th, 20th, 25th, 30th, 35th, 40th, 45th, 50th, 55th, 60th, 65th, 70th, 75th, 80th, 85th, 90th, 95th, 100th, 105th, 110th, 115th, 120th, 125th, 130th.

Common multiples of Janine fourth locker and Thor fifth locker= 20, 40, 60, 80, 100, 120

Therefore,

6 lockers have both students' stickers

the city of James town is 2 meters below sea level. Takoradi, a city in western region, is 7 meters below sea level . How much higher is James town than Takoradi​

Answers

Answer:

James town is 5 meters higher than Takoradi​ .

Step-by-step explanation:

Given:

Height of James town = 2 meters below sea level

Height of Takoradi town = 7 meters below sea level

To find:

How much higher is James town that Takoradi = ?

Solution:

As we can see the standard of height is how much the town is below the sea level.

So, the height of town having lesser value will be at a higher level.

Value of Height of James town is lesser than that of Takoradi town.

Therefore, James town is at a higher level.

Difference of height = 7 meters - 2 meters = 5 meters

So, the answer is:

James town is 5 meters higher than Takoradi.

You are given the sample mean and the population standard deviation. Use this information to construct the​ 90% and​ 95% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. From a random sample of business​ days, the mean closing price of a certain stock was ​$. Assume the population standard deviation is ​$. The​ 90% confidence interval is ​( nothing​, nothing​). ​(Round to two decimal places as​ needed.) The​ 95% confidence interval is ​( nothing​, nothing​). ​(Round to two decimal places as​ needed.) Which interval is​ wider? Choose the correct answer below

Answers

Complete Question

The  complete question is shown on the first uploaded image

Answer:

The 90% confidence interval is  [tex][108.165 ,112.895][/tex]

The  95%  confidence interval is [tex][107.7123 ,113.3477][/tex]

The  correct option is  D

Step-by-step explanation:

From the question we are told that

    The sample size is  n =  48

     The sample  mean is  [tex]\= x = \$ 110.53[/tex]

    The standard deviation is  [tex]\sigma = \$ 9.96[/tex]

Considering first question

  Given that the confidence level is  90% then the level of significance is mathematically represented as

            [tex]\alpha = (100 - 90)\%[/tex]

           [tex]\alpha = 0.10[/tex]

The  critical value  of  [tex]\frac{\alpha }{2}[/tex] from the  normal distribution table is  

          [tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]

Generally the margin of error is mathematically represented as

            [tex]E = ZZ_{ \frac{x}{y} } * \frac{\sigma}{ \sqrt{n} }[/tex]

             [tex]E = 1.645 * \frac{9.96}{ \sqrt{ 48} }[/tex]

             [tex]E = 2.365[/tex]

The  90% confidence interval is  

       [tex]\= x - E < \mu < \= x + E[/tex]

=>    [tex]110.53 - 2.365 < \mu < 110.53 + 2.365[/tex]

=>    [tex]108.165 < \mu < 112.895[/tex]

Considering second question

  Given that the confidence level is  95% then the level of significance is mathematically represented as

            [tex]\alpha = (100 - 95)\%[/tex]

           [tex]\alpha = 0.05[/tex]

The  critical value  of  [tex]\frac{\alpha }{2}[/tex] from the  normal distribution table is  

          [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]

Generally the margin of error is mathematically represented as

            [tex]E = Z_{ \frac{x}{y} } * \frac{\sigma}{ \sqrt{n} }[/tex]

             [tex]E = 1.96 * \frac{9.96}{ \sqrt{ 48} }[/tex]

             [tex]E = 2.8177[/tex]

The  95% confidence interval is  

       [tex]\= x - E < \mu < \= x + E[/tex]

=>    [tex]110.53 - 2.8177 < \mu < 110.53 + 2.8177[/tex]

=>    [tex]107.7123 < \mu < 113.3477[/tex]

Please answer fast! :)

Answers

Answer:

D

Step-by-step explanation:

The fastest way to solve this probelm would be to plug in each x value into these equations untill it outputs the correct two y values.

When you plug 3 into equation D the entire right side it will become.

y-1=0

y=1, which is true.

When you plug 6 into that equation.

y-1=5

y=6 which is also true.

im sorry but the thing is i cant translate these words but the answer is D

What is $121 divided into ratio of 7:4

Answers

Answer:

77:44

Step-by-step explanation:

Since 7:4 is equal to 11 and 121/11, each ratio can be multiplied by 11.

Answer: 77:44

Explanation:

121 x 7/11 = 77

And

121 x 4/11 = 44

Preeti and Shikha have bookshelves of the same size. Preeti’s shelf is 56 full of books and Shikha’s shelf is 35 full. Whose bookshelf is more full and by how much?

Answers

Answer:

Step-by-step explanation:

No of books in Preeti's shelf = 56

No of books in Shikha's shelf = 35

56 > 35

∴ Preeti's shelf is more full by 21 books

as 56 - 35 = 21

Hope this helps

plz mark as brainliest!!!

Officer Jacobi drove 180 miles in his patrol car during part of May. The distance represents 40% of May. How many miles did he drive all of May? a) 710 miles b) 420 miles c) 720 miles d) 450 miles Need Help on How to work this problem out, what formula would I use?

Answers

Answer:

D: 450 miles

Step-by-step explanation:

So we know that Officer Jacobi drove 180 miles, which represents 40% of the total distance driven. In other words, 40% of the total distance traveled is 180. Thus (let D be the total distance traveled):

[tex]0.4D=180[/tex]

This equation is basically saying that 40% (0.4) of the total distance driven is 180 miles. To solve for the total distance D, we can divide both sides by 0.4. Thus:

[tex]0.4D=180\\D=450[/tex]

So the answer is D or 450 miles.

Note that there isn't a specific formula you would use. These types of problems require you to write out an equation yourself.

Answer: 450 miles


Explanation: When doing percentages, we can use the proportion is/over=%/100.

If we apply this to your problem, we can say 180 miles “is” 40% “of” x (x is the total number of miles driven in May.

Plugging in numbers for is, of, and the % gives us 180/x=40/100

Solving with cross multiplying and dividing gives us 450 miles=x
Other Questions
Combine like terms. What is a simpler form of each expression? 4c-4d+8c-3d 5/3 x 6/7 real quick plz It is necessary to focus on the ___rather than the differences in order to understand and respect other cultures,ResetNext What is the mass number of an element The mean amount purchased by a typical customer at Churchill's Grocery Store is $23.50 with a standard deviation of $5.00. Assume the distribution of amounts purchased follows the normal distribution. For a sample of 50 customers, answer the following questions.(a) What is the likelihood the sample mean is at least $25.00? (Round z value to 2 decimal places and final answer to 4 decimal places.)Probability(b) What is the likelihood the sample mean is greater than $22.50 but less than $25.00? (Round z value to 2 decimal places and final answer to 4 decimal places.)Probability(c) Within what limits will 90 percent of the sample means occur? (Round your answers to 2 decimal places.) 3(q7)=27 need help plzz 1st peep gets brainlest Suppose we want to test the color distribution claim on the M&Ms website that a bag of plain M&Ms is made up of 10% blue, 10% orange, 10% green, 20% red, 20% yellow, and 30% brown. We select a sample of 400 plain M&Ms and found the following: Color Blue Orange Green Red Yellow Brown Frequency 30 48 55 66 70 131 Is there evidence to doubt the color distribution claimed by the website? Use =0.05 URGENT PLZ HELP THANK YOU! 5 men working 6 hours a day can dig a trench 180m long in 4 days. How many days would 8 men working 3 hrs a day take to dig a trench 220m long Open space arrangements in workstations increase communication and potentially decrease noise, distractions, and loss of privacy.a. trueb. false Decide whether the pair of ratios form a proportion 15/12=4.5/3.6 A purebred tall pea plant is cross-pollinated with a tall, heterozygous pea plant. Use a Punnett square to determine the probability the offspring inheritarecessive short allele. (I point)75%25%0%50% a mother has heterozygous type a blood and the father has type ab blood. what is the probability of the offspring having type O blood I am so confused Please Help it is DUE NOW!! Select the polynomial that is a perfect square trinomial. 9x^2 + 9x + 1 36b^2 24b + 8 16x^2 + 24x + 9 4a^2 10a + 25 When analyzing the changes on a spreadsheet used to prepare a statement of cash flows, the cash flows from operating activities generally are affected by What is resource management in Wireless Communication? Explain its advantages What is the average rate of change from x = 0 to x = 18? Hormones perform important functions within the reproductive system. During puberty, secondary sex characteristics develop. Which hormone is responsible for the development of these characteristics in the female? Solve. 2xy+3z=6 2x+y=3 2y4z=4 Enter your answer, in the form (x,y,z), in the boxes in simplest terms. x= y= z= What is the thinnest soap film (excluding the case of zero thickness) that appears black when illuminated with light with a wavelength of 580 nm