Answer:
Calculated χ² = 13.425
χ² (5,0.025) >14.45 and χ²(5,0.975) <1.24
The given data does not fall in the critical region so we accept H0 and conclude there is no evidence to doubt the color distribution claimed by the website.
Step-by-step explanation:
Color Blue Orange Green Red Yellow Brown
Frequency 30 48 55 66 70 131
Expected 40 40 40 80 80 120
H0: The bag of plain M&Ms is made up of 10% blue, 10% orange, 10% green, 20% red, 20% yellow, and 30% brown
Ha: The color distribution is not equal to the distribution stated in the null hypothesis.
Calculate chi square
χ² = (30-40)² /40 + (48-40)²/40 + (55-40)²/40 + (66-80)²/80 + (70-80)²/80 + (131-120)²/120
χ² = 2.5 + 1.6 + 5.625 + 2.45 + 1.25= 13.425
The critical region for χ² for 5 degrees of freedom with ∝= 0.05 is
χ² (5,0.025) >14.45 and χ²(5,0.975) <1.24
The given data does not fall in the critical region so we accept H0 and conclude there is no evidence to doubt the color distribution claimed by the website.
Write the equation of the line that passes through (−2, 6) and (2, 14) in slope-intercept form. (2 points)
Answer:
[tex]y = 4x + 14[/tex]
Step-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
To find the equation we must first find the slope of the line
Slope of the line using points (−2, 6) and (2, 14) is
[tex]m = \frac{14 - 6}{2 + 2} = \frac{8}{2} = 4[/tex]
Now we use the slope and any of the points to find the equation of the line.
Equation of the line using point ( - 2, 6) and slope 4 is
[tex]y - 6 = 4(x + 2) \\ y - 6 = 4x + 8 \\ y = 4x + 8 + 6[/tex]
We have the final answer as
[tex]y = 4x + 14[/tex]
Hope this helps you
Chapter: Simple linear equations Answer in steps
Answer:
6x-3=21
6x=24
x=4
........
6x+27=39
6x=39-27
6x=12
x=2
........
8x-10=14
8x=24
x=3
.........
6+6x=22
6x=22-6
x=3
......
12x-2=28
12x=26
x=3
.....
8-4x=16
-4x=8
x=-2
.....
4x-24=3x-3
4x-3x=24-3
x=21
....
9x+6=6x+12
9x-6x=12-6
3x=6
x=2
Answer:
Step-by-step explanation:
1. 3(2x - 1) = 21
= 6x - 3 = 21
= 6x = 24
= x = 24/6 = 4
------------------------------
2. 3(2x+9) = 39
= 6x + 27 = 39
= 6x = 39 - 27
= 6x = 12
= x = 12/6 = 2
--------------------------------
3. 2(4x - 5) = 14
= 8x - 10 = 14
= 8x = 14+10
= x = 3
-------------------------------
Solve systems of equations 15 points NOT CLICKBAIT!!! -6y+11y= -36 -4y+7x= -24
Answer:
x = -264/35
y = -36/5
Step-by-step explanation:
-6y + 11y = -36
-4y + 7x = -24
Solve for y in the first equation.
-6y + 11y = -36
Combine like terms.
5y = -36
Divide both sides by 5.
y = -36/5
Plug y as -36/5 in the second equation and solve for x.
-4(-36/5) + 7x = -24
Expand brackets.
144/5 + 7x = -24
Subtract 144/5 from both sides.
7x = -264/5
Divide both sides by 7.
x = -264/35
Answer: -264/35
Step-by-step explanation:
i did my work on a calculator
Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) an = 1/sqrt(n)
This sequence converges to 0.
Proof: Recall that
[tex]\displaystyle\lim_{n\to\infty}\frac1{\sqrt n}=0[/tex]
is to say that for any given [tex]\varepsilon>0[/tex], there is some [tex]N[/tex] for which [tex]\left|\frac1{\sqrt n}-0\right|=\frac1{\sqrt n}<\varepsilon[/tex] for all [tex]n>N[/tex].
Let [tex]N=\left\lceil\frac1{\varepsilon^2}\right\rceil[/tex]. Then
[tex]n>\left\lceil\dfrac1{\varepsilon^2}\right\rceil\ge\dfrac1{\varepsilon^2}[/tex]
[tex]\implies\dfrac1n<\varepsilon^2[/tex]
[tex]\implies\dfrac1{\sqrt n}<\varepsilon[/tex]
as required.
For lunch, Kile can eat a sandwich with either ham or a bologna and with or without cheese. Kile also has the choice of drinking water or juice with his sandwich. The total number of lunches Kile can choose is
Answer:
8
Step-by-step explanation:
Ham with or without cheese-2 choices
Bologna with or without cheese-2 choices
Bologna with cheese with water or juice-2 choices
Bologna without cheese with juice or water-2 choices
Ham with cheese with juice or water -2 choices
Ham without cheese with juice or water -2 choices
2+2+2+2=8
Kile has 8 choices for lunch
What is 1/3 of 675 is left
Jaclyn is one-fourth of a foot taller than John. John is 31/6 feet tall. How many feet tall is Jaclyn
Answer:
5 5/12
Step-by-step explanation:
31/6 feet + 1/4 foot
= 31/6 + 1/4
= [(31 * 4) / 6 * 4] + [(1 * 6) / 4 * 6]
= [ 124/24 ] + [ 6/24 ]
= (124 + 6) / 24
= 130 / 24
= 5 10/24
= 5 5/12
Hope this helps! Tell me if I'm wrong!
The points (-6,-4) and (3,5) are the endpoints of the diameter of a circle. Find the length of the radius of the circle.
The length of the radius is a
(Round to the nearest hundredth as needed.)
Answer:
40.5
Step-by-step explanation:
diameter^2 = (3 +6)^2 + (5+4)^2
or, d^2 = 9^2 + 9^2
or, d^2 = 81 +81
or,d^2 =162
or d=√ 162
• d= 81
then radius = d/2
r = 81/2
•r= 40.5 ans
Use the order of operations to simplify this expression 1.2x3.5x4.1= What
[tex] 1.2\times3.5\times4.1=[(1+0.2)(3+0.5)](4+0.1)[/tex]
$=[1\times3+1\times0.5+0.2\times3+0.2\times0.5](4+0.1)$
$=(3+0.5+0.6+0.1)(4+0.1)$
$=(4.2)(4+0.1)=(4+0.2)(4+0.1)$
$=4\times4+4\times0.1+0.2\times4+0.2\times0.1$
$=16+0.4+0.8+0.02=17.22$
Combine like terms to simplify the expression: 2/5k - 3/5 +1/10k
━━━━━━━☆☆━━━━━━━
▹ Answer
1/2k - 3/5
▹ Step-by-Step Explanation
2/5k - 3/5 + 1/10k
Collect like terms:
2/5k + 1/10k = 1/2
Final Answer:
1/2k - 3/5
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Answer:
1/2k - 3/5
Step-by-step explanation:
Hey there!
Well the only fraction needed to combine are,
2/5 and 1/10.
To add them we need to make 2/5 have a denominator of 10.
To do that we multiply 5 by 2.
5*2 = 10
What happens to the denominator happens to the denominator.
2*2 = 4
Fraction - 4/10
4/10 + 1/10 = 5/10
5/10
simplified
1/2
1/2k - 3/5
Hope this helps :)
tan inverse 1/4 +tan inverse 2/7 = 1/2 cos inverse 3/5
Answer:
The equation is always false
Step-by-step explanation:
arctan1/4+arctan2/7=1/2arccos3/5
0.24497866+0.27829965=1/2(0.92729521)
0.52327832 =0.46364760
not equivalent and will never be.
Help me I’m stuck please
Answer:
choice 1,2,4,5 from top to bottom
Step-by-step explanation:
1:the points given are in the line where both planes intersect
2:point H is not on any plane
3:in the diagram point F is on plane R so false
4:if you connect the points given they will intersect so not collinear
5:the points F and G are on the plane R
6:so F is on plane R but H is not on any do false
To find ∫ (x − y) dx + (x + y) dy directly, we must parameterize C. Since C is a circle with radius 2 centered at the origin, then a parameterization is the following. (Use t as the independent variable.)
x = 2 cos(t)
y = 2 sin(t)
0 ≤ t ≤ 2π
With this parameterization, find the followings
dy=_____
dx=_____
Answer:
Step-by-step explanation:
Hello, please consider the following.
[tex]x=x(t)=2cos(t)\\\\dx=\dfrac{dx}{dt}dt=x'(t)dt=-2sin(t)dt[/tex]
and
[tex]y=y(t)=2sin(t)\\\\dy=\dfrac{dy}{dt}dt=y'(t)dt=2cos(t)dt[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The values of dx and dy are give as -2sin(t)dt and 2cos(t)dt respectively. The answer to the given problem can be stated as,
dy = 2cos(t)dt
And, dx = -2sin(t)dt.
What is the integration of a function?The integration can be defined as the inverse operation of differentiation. If a function is the integration of some function f(x) , then differentiation of that function is f(x).
The given integral over C is ∫ (x − y) dx + (x + y) dy.
And, the parameters for C are as follows,
x = 2cos(t)
y = 2sin(t)
0 ≤ t ≤ 2π
Now, on the basis of these parameters dx and dy can be found as follows,
x = 2cos(t)
Differentiate both sides with respect to t as follows,
dx/dt = 2d(cos(t))/dt
=> dx/dt = -2sin(t)
=> dx = -2sin(t)dt
And, y = 2sin(t)
Differentiate both sides with respect to t as follows,
dy/dt = 2d(sin(t))/dt
=> dy/dt = 2cos(t)
=> dy = 2cos(t)dt
Hence, the value of dx and dy as per the given parameters is -2sin(t)dt and 2cos(t)dt respectively.
To know more about integration click on,
https://brainly.com/question/18125359
#SPJ2
which expression have a value of 2/3
A: 8+(24 divided by 12) X 4
B:8+24 divided by (12X4)
C: 8+24 divided 12X4
D: (8+24) divided (12X4)
Question 2 Rewrite in simplest radical form 1 x −3 6 . Show each step of your process.
Answer:
√(x)
Step-by-step explanation:
(1)/(x^-(1/2)) that's 3 goes into -3 leaving 1 and goes into 6 leaving 2
1/2 is same as 2^-1
so therefore we can simplify the above as
x^-(-1/2)
x^(1/2)
and 4^(1/2)
is same as √(4)
so we conclude as
√(x)
Find the vector and parametric equations for the line through the point P(0, 0, 5) and orthogonal to the plane −1x+3y−3z=1. Vector Form: r
Answer:
Note that orthogonal to the plane means perpendicular to the plane.
Step-by-step explanation:
-1x+3y-3z=1 can also be written as -1x+3y-3z=0
The direction vector of the plane -1x+3y-3z-1=0 is (-1,3,-3).
Let us find a point on this line for which the vector from this point to (0,0,5) is perpendicular to the given line. The point is x-0,y-0 and z-0 respectively
Therefore, the vector equation is given as:
-1(x-0) + 3(y-0) + -3(z-5) = 0
-x + 3y + (-3z+15) = 0
-x + 3y -3z + 15 = 0
Multiply through by - to get a positive x coordinate to give
x - 3y + 3z - 15 = 0
8. When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the _______.
A. remainder
B. dividend
C. quotient
D. divisor
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the remainder.
A. remainder
B. dividend
C. quotient
D. divisor
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
Answer:
a. remainder
Step-by-step explanation:
took the test
dont leave your house without a vest
or you will get hit in the vital organs in your chest
Factor.
x2 – 5x - 36
(x - 9)(x + 4)
(x - 12)(x + 3)
(x + 9)(x - 4)
(x + 12)(x - 3)
Answer:
The answer is option AStep-by-step explanation:
x² - 5x - 36
To factor the expression rewrite -5x as a difference
That's
x² + 4x - 9x - 36
Factor out x from the expression
x( x + 4) - 9x - 36
Factor out -9 from the expression
x( x + 4) - 9( x+ 4)
Factor out x + 4 from the expression
The final answer is
( x - 9)( x + 4)Hope this helps you
Answer:
[tex] \boxed{(x - 9) \: (x + 4) }[/tex]
Option A is the correct option.-
Step-by-step explanation:
( See the attached picture )
Hope I helped!
Best regards!
A diameter that is perpendicular to a chord bisects the chord. True False
Answer:
[tex]\Large \boxed{\sf True}[/tex]
Step-by-step explanation:
[tex]\sf A \ diameter \ that \ is \ perpendicular \ to \ a \ chord \ bisects \ the \ chord.[/tex]
Answer:
True!!
I just did the assignment and got it right
A population of bacteria P is changing at a rate of dP/dt = 3000/1+0.25t where t is the time in days. The initial population (when t=0) is 1000. Write an equation that gives the population at any time t. Then find the population when t = 3 days.
Answer:
- At any time t, the population is:
P = 375t² + 3000t + 1000
- At time t = 3 days, the population is:
P = 13,375
Step-by-step explanation:
Given the rate of change of the population of bacteria as:
dP/dt = 3000/(1 + 0.25t)
we need to rewrite the given differential equation, and solve.
Rewriting, we have:
dP/3000 = (1 + 0.25t)dt
Integrating both sides, we have
P/3000 = t + (0.25/2)t² + C
P/3000 = t + 0.125t² + C
When t = 0, P = 1000
So,
1000/3000 = C
C = 1/3
Therefore, at any time t, the population is:
P/3000 = 0.125t² + t + 1/3
P = 375t² + 3000t + 1000
At time t = 3 days, the population is :
P = 375(3²) + 3000(3) + 1000
= 3375 + 9000 + 1000
P = 13,375
For some postive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770. The value of Z is
Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877
Each leg of a 45°-45°-90° triangle measures 12 cm.
What is the length of the hypotenuse?
Z
х
45°
45°
O 6 cm
12 cm
12 cm
O 672 cm
O 12 cm
O 122 cm
Answer:
The legs are 12 cm each, so the hypotenuse is
√(144+144)=12√2
Step-by-step explanation:
Applying the Pythagorean Theorem, the length of the hypotenuse is: 12√2 cm.
The Pythagorean TheoremWhere, a and b are two legs of a right triangle, and c is the hypotenuse, the Pythagorean Theorem states that, c² = a² + b².Given the two legs of the right triangle to be 12 cm
Therefore:c² = 12² + 12².
c² = 288
c = √288
c = 12√2 cm
Therefore, applying the Pythagorean Theorem, the length of the hypotenuse is: 12√2 cm.
Learn more about, the Pythagorean Theorem on:
https://brainly.com/question/654982
i will rate you brainliest
Answer:
Option (2)
Step-by-step explanation:
In an arithmetic progression,
[tex]a_1,a_2,a_3.........a_{n-1},a_n[/tex]
First term of the progression,
a = [tex]a_1[/tex]
Common difference 'd' = [tex](a_2-a_1)[/tex]
Recursive formula for the sequence,
a = [tex]a_1[/tex]
[tex]a_n=a_{n-1}+d[/tex]
By applying these rules in the recursive formula,
[tex]a_1=\frac{4}{5}[/tex]
[tex]a_n=a_{n-1}+\frac{3}{2}[/tex]
Common difference 'd' = [tex]\frac{3}{2}[/tex]
Therefore, Option (2) will be the answer.
Find the derivative of the function f(x) = (x3 - 2x + 1)(x – 3) using the product rule.
then by distributing and make sure they are the same answer
Answer:
Step-by-step explanation:
Hello, first, let's use the product rule.
Derivative of uv is u'v + u v', so it gives:
[tex]f(x)=(x^3-2x+1)(x-3)=u(x) \cdot v(x)\\\\f'(x)=u'(x)v(x)+u(x)v'(x)\\\\ \text{ **** } u(x)=x^3-2x+1 \ \ \ so \ \ \ u'(x)=3x^2-2\\\\\text{ **** } v(x)=x-3 \ \ \ so \ \ \ v'(x)=1\\\\f'(x)=(3x^2-2)(x-3)+(x^3-2x+1)(1)\\\\f'(x)=3x^3-9x^2-2x+6 + x^3-2x+1\\\\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]
Now, we distribute the expression of f(x) and find the derivative afterwards.
[tex]f(x)=(x^3-2x+1)(x-3)\\\\=x^4-2x^2+x-3x^3+6x-4\\\\=x^4-3x^3-2x^2+7x-4 \ \ \ so\\ \\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
In a stable matching problem, if every man has a different highest-ranking woman on his preference list, and given that women propose, then it is possible that, for some set of women's preference lists, all men end up with their respective highest-ranking woman.a. Trueb. False
Answer:
True
Step-by-step explanation:
The statement given above in the question is correct. It is mentioned that men are free to create a list of women's according to their preferences. There will be order sequence of women and men places them in queue of their preference. The men proposes the women with highest ranking in the list then it is possible that all men gets their preferred choice.
Use the gradient to find the directional derivative of the function at P in the direction of Q. g(x, y, z) = xye^z, P(2, 4, 0), Q(0, 0, 0)
Answer: Find answer in the attached files
Step-by-step explanation:
What are the solution(s) of the quadratic equation 98 - x2 = 0?
x = +27
Ox= +63
x = +7/2
no real solution
Answer:
±7 sqrt(2) = x
Step-by-step explanation:
98 - x^2 = 0
Add x^2 to each side
98 =x^2
Take the square root of each side
±sqrt(98) = sqrt(x^2)
±sqrt(49*2) = x
±7 sqrt(2) = x
Answer:
[tex]\huge \boxed{{x = \pm 7\sqrt{2} }}[/tex]
Step-by-step explanation:
[tex]98-x^2 =0[/tex]
[tex]\sf Add \ x^2 \ to \ both \ sides.[/tex]
[tex]98=x^2[/tex]
[tex]\sf Take \ the \ square \ root \ of \ both \ sides.[/tex]
[tex]\pm \sqrt{98} =x[/tex]
[tex]\sf Simplify \ radical.[/tex]
[tex]\pm \sqrt{49} \sqrt{2} =x[/tex]
[tex]\pm 7\sqrt{2} =x[/tex]
[tex]\sf Switch \ sides.[/tex]
[tex]x= \pm 7\sqrt{2}[/tex]
I will rate brainly if you answer this The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income. If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?
Answer:
[tex]\large \boxed{\sf \bf \ \ k=320 \ \ }[/tex]
Step-by-step explanation:
Hello,
The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income.
If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?
[tex]64=\dfrac{\sqrt{16}}{\sqrt[3]{8000}}\cdot k=\dfrac{4}{20}\cdot k=\dfrac{1}{5}\cdot k=0.2\cdot k\\\\k=64*5=320[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Which relation is a function?
The number two is a function
First rule of function: for each element of A there is one and only one element of B
For example, in the first one -5 is "collegated" to -2 and 3. So this isn't a function.
Naturally, every element of B can have more element of A
if 2x-7 is 5 more than x+4, what is the value of 3x+5
Answer:
53
Step-by-step explanation:
Let's start with the given relation:
2x -7 = (x+4) +5
x = 16 . . . . . . . . . add 7-x
3x +5 = 3(16) +5 = 53 . . . . . multiply by 3 and add 5
The value of 3x+5 is 53.