What is the answer for 75% of test takers whovscored below average withou an unknown mean and standard deviation
Answer:
sir she hey Jen Jen Jenn receive surge
Answer:
Hello,
Step-by-step explanation:
z=0.7734
p(z<?)=0.75 ==> ?=0.7734
Simplify i12
A.-1
B.-i
C.i
D.1
Answer:
D 1
Step-by-step explanation:
i^12
We know i^4 = 1
Rewriting
i^4^3
1^3
1
Answer:
part 1- D. 1
part 2- Square root of -144 =12i
Step-by-step explanation:
Got them correct
Hellp PLZZzzzzzzzxxxmxxxxxxxxxx
Answer:
12. We use Rational numbers when the number is in P/q form
we don't use integers because they are not in p/q form
13. Aron is wrong . he is not correct
an opposite of rational number can out be negative it should be irrational number
opposite of integers are negative that's why
*so opposite of rational numbers will ne irrational numbers not negative
14. Greatest to least
-3.02 , -4 , -4.09 , -4.32, -4,35 , -5.11
According to the Federal Election Commission, 53.6% of all registered voters in 2012 voted in the US presidential elections in 2012. A political study conducted in January 2016 surveyed 1,251 eligible voters and found that 86% said they planned to vote in the 2016 presidential election. Based on this information, match each term to its value.
1. 1,251
2. 53.6%
3. 86%
a. statistic
b. sample size
c. parameter
Answer:
SEE BELOW
Step-by-step explanation:
1. sample size - 1,251
2 .statistic - 53.6%
3. parameter - 86%
hope this helps :)
What type of line is PQ?
A. angle bisector
B. median
C. altitude
D. side bisector
Answer:
D
Step-by-step explanation:
RS is a side.
RQ = QS They are both equal to seven.
That means that the answer is A or D
Since the word side is in D, it must be the answer.
Use the given information to determine which of the following relationships
can be proved and why.
L= 20
ME ZP
ML = PO
A. ALMN - A OPQ, because of AAS.
B. ALMNE A OPQ, because of ASA.
C. We cannot prove any relationship based on these data.
D. ALMN=A OPQ, because of SAS,
Answer:
B. ∆LMN ≅ ∆OPQ because of ASA
Step-by-step explanation:
Two triangles are congruent if two angles and an included side of one triangle are congruent to two corresponding angles and a corresponding included side of the other.
From the information given, we have:
Two angles (<L and <M) in ∆LMN that are congruent to two corresponding angles (<O and <P) in ∆OPQ.
Also, included side in both triangles are congruent (ML ≅ PO).
Therefore, ∆LMN ≅ ∆OPQ by the ASA Theorem.
In a survey of some people, 73% like to drink tea, 85% like to drink coffee and 65% like to drink tea as well as coffee .If 210 people like neither tea nor coffee, then find the total number of people taken part in the survey. Also, by a Venn diagram show how many of them like at least one of the given drink.
3000 people participated in the survey, of which 2790 like some type of drink.
Since in a survey of some people, 73% like to drink tea, 85% like to drink coffee and 65% like to drink tea as well as coffee, if 210 people like neither tea nor coffee, to find the total number of people taken part in the survey and show how many of them like at least one of the given drink, the following calculations must be performed:
-First, it must be determined how many people do not prefer any of the drinks, in percentages, subtracting the 65% who like both from the percentages of each particular drink, and adding these results.
(73 - 65) + (85 - 65) + 65 = X 8 + 20 + 65 = X 93 = X-Therefore, the 210 people who do not like any drink are 7 percent of the total survey. Therefore, to determine the total number of people who participated, the following cross multiplication must be carried out.
7 = 210 100 = X 100 x 210/7 = X 3000 = 73000 - 210 = 2790
Therefore, 3000 people participated in the survey, of which 2790 like some type of drink.
Learn more about cross multiplication in https://brainly.com/question/24327293.
. A swimming pool was filling with water at a constant rate of 200 gallons per hour. The pool had
50 gallons before the timer started. Write an equation in standard form to model the situation, then
find the amount of water in the pool after 2 hours and 15 minutes.
can anybody help with this ?
Answer:(
fx).(gx)=D. -40x^3+25x^2+45
Step-by-step explanation:
Select the statement that best justifies the conclusion based on the given information.
If a(b + c) = d, then ab + ac = d.
associative
commutative
distributive
closure
Answer:
distributive
Step-by-step explanation:
a(b + c)=ab + ac
it's distributive one
Customers receive rewards pints based on the purchase type:
plzzzzz helllllllppppppp worth 25 points
Answer:
Step-by-step explanation:
Let's fill that in with what the variables are "worth":
(3)(-3)+2(-2) and simplify to
-9 + (-4) which, when you add those 2 negatives, gives you
-13, choice B.
Answer:
[tex]x = 3 \\ y = - 3 \\ z = - 2 \\ xy + 2z = 3 \times - 3 + 2 \times - 2 \\ = - 9 - 4 \\ = - 13 \\ thank \: you[/tex]
Write the piecewise defined function for the total cost of parking in the garage. That is, state the function C(x), where x is the number of hours a car is parked in the garage.
Answer:
[tex]C(x) = \left[\begin{array}{ccc}4x &0 \le x \le 2& \\4 +2x &2 < x \le 6& \\16 &6<x\le 8& \end{array}\right[/tex]
Step-by-step explanation:
Given
See attachment for question
Required
The piece-wise function
From the attachment, we have:
(1) $4/hr for first 2 hours
This is represented as:
[tex]C(x) = 4x[/tex]
The domain is: [tex]0 \le x \le 2[/tex]
(2) $2/hr for next 4 hours
Here, we have:
[tex]Rate = 2[/tex]
The total cost in the first 2 hours is:
[tex]C(x) = 4x[/tex]
[tex]C(2) = 4*2 = 8[/tex]
So, this function is represented as:
[tex]C(x) = C(2) + Rate * (Time - 2)[/tex] ----- 2 represents the first 2 hours
So, we have:
[tex]C(x) = C(2) + Rate * (Time - 2)[/tex]
[tex]C(x) =8 + 2(x - 2)[/tex]
Open brackets
[tex]C(x) =8 + 2x - 4[/tex]
Collect like terms
[tex]C(x) =8 - 4+ 2x[/tex]
[tex]C(x) =4+ 2x[/tex]
The domain is:
[tex]2 < x \le 2 + 4[/tex]
[tex]2 <x \le 6[/tex]
(3) 0 charges for the last 2 hours
The maximum charge from (2) is:
[tex]C(x) =4+ 2x[/tex]
[tex]C(6) = 4 + 2*6[/tex]
[tex]C(6) = 4 + 12[/tex]
[tex]C(6) = 16[/tex]
Since there will be no additional charges, then:
[tex]C(x) = 16[/tex]
And the domain is:
[tex]6 < x \le 8[/tex] --- 8 represents the limit
So, we have:
[tex]C(x) = \left[\begin{array}{ccc}4x &0 \le x \le 2& \\4 +2x &2 < x \le 6& \\16 &6<x\le 8& \end{array}\right[/tex]
It’s time so please ASAP
Which expression is equivalent to the following complex fraction
3
-4
X-1
2-
2
X-1
금
O
2(x-2)
-4x+7
-4x+7
O 2(x-2)
-4x+7
2(x2-2)
21x²-2)
-4x+7
Answer:
B
Step-by-step explanation:
The answer can be obtained by simplifying the whole fraction
Work out the surface area of this solid quarter cylinder. give your answer in terms of pi. r:8cm h:15cm
Answer:
248 pi cm^2
Step-by-step explanation:
The surface area of a cylinder is given by
SA = 2 pi r^2 + pi rh where r is the radius and h is the height
= 2 pi( 8)^2 + pi (8)(15)
128 pi +120pi
248pi
PLEASE HELPPPPPPPPPP
Answer: SORRY NEED AN ACCOUNT ON - 10
Step-by-step explanation:
To resolve the proposed issue, an explanation is needed in which the subject is addressed
Can someone do #4 #5 #6?
4. Percent increase
Because Original Value < New Value
5. Percent
6. Whole
Because it's asking what number that means total.
Thanks :)
Love from India :)Find y' for the following.
Answer:
[tex]\displaystyle y' = \frac{5x - 2xy^2}{2y(x^2 - 3y)}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
DerivativesDerivative NotationDerivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Implicit Differentiation
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle 5x^2 - 2x^2y^2 + 4y^3 - 7 = 0[/tex]
Step 2: Differentiate
Implicit Differentiation: [tex]\displaystyle \frac{dy}{dx}[5x^2 - 2x^2y^2 + 4y^3 - 7] = \frac{dy}{dx}[0][/tex]Rewrite [Derivative Property - Addition/Subtraction]: [tex]\displaystyle \frac{dy}{dx}[5x^2] - \frac{dy}{dx}[2x^2y^2] + \frac{dy}{dx}[4y^3] - \frac{dy}{dx}[7] = \frac{dy}{dx}[0][/tex]Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle 5\frac{dy}{dx}[x^2] - 2\frac{dy}{dx}[x^2y^2] + 4\frac{dy}{dx}[y^3] - \frac{dy}{dx}[7] = \frac{dy}{dx}[0][/tex]Basic Power Rule [Product Rule, Chain Rule]: [tex]\displaystyle 10x - 2 \Big( \frac{d}{dx}[x^2]y^2 + x^2\frac{d}{dx}[y^2] \Big) + 12y^2y' - 0 = 0[/tex]Basic Power Rule [Chain Rule]: [tex]\displaystyle 10x - 2 \Big( 2xy^2 + x^22yy' \Big) + 12y^2y' - 0 = 0[/tex]Simplify: [tex]\displaystyle 10x - 4xy^2 - 4x^2yy' + 12y^2y' = 0[/tex]Isolate y' terms: [tex]\displaystyle -4x^2yy' + 12y^2y' = 4xy^2 - 10x[/tex]Factor: [tex]\displaystyle y'(-4x^2y + 12y^2) = 4xy^2 - 10x[/tex]Isolate y': [tex]\displaystyle y' = \frac{4xy^2 - 10x}{-4x^2y + 12y^2}[/tex]Simplify: [tex]\displaystyle y' = \frac{5x - 2xy^2}{2y(x^2 - 3y)}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e
A box contains two blue cards numbered 1 and 2, and three green numbered 1 through 3. A blue card ins picked, followed by a green card. Select sample space for such experiment
a) {1, 1), (1, 2, (1, 3)(2, 1), (2, 2), (2, 3)}
b) {(1, 1)(1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}
c) {5}
d) {6}
Answer:
The answer is a.
What is the common ratio for this geometric sequence?
27, 9, 3, 1, ...
Answer:
27:9 3:1.................
NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW!!! Given this frequency chart of 1490 passengers from the Titanic who died, choose the class(es) whose relative frequency would comprise just under, 1/2 of a pie chart
Answer:
b and eStep-by-step explanation:
Second and Third which gives in total:
0.112 + 0.354 = 0.466This is under 1/2 and greater than Crew.
The second term in a geometric sequence is 50. The forth term in the same sequence is 112.5. what is the common ratio in this sequence?
Answer:
1.5
Step-by-step explanation:
Let the first term be a and the common ratio be r
ATQ, ar=50 and ar^3=112.5, divide these two. r^2=2.25, r=1.5
Round the number to the given place value. 47,709,982; millions
Answer:
48,000,000
Step-by-step explanation:
47,709,982
Look at the millions place and then see if the number after that is a greater number than 4. If it isn't, round down but if it is, round up
Let f(x)=5-4x. Find f(3)
Answer:
-7
Step-by-step explanation:
f(x) = 5 - 4x
f(3) = 5 - 4(3) (since x = 3)
f(3) = 5 - 12
f(3) = -7
11
Select the correct answer.
Which expression is equivalent to the given expression?
In(2e/x)
O A. In 2 – In x
OB. 1 + In 2 - In x
Oc. In 2 + In x
OD. In 1 + In 2 - In
Reset
Next
Answer:
B. 1 + ln 2 - ln x
General Formulas and Concepts:
Algebra II
Natural logarithms ln and Euler's number eLogarithmic Property [Multiplying]: [tex]\displaystyle log(ab) = log(a) + log(b)[/tex] Logarithmic Property [Dividing]: [tex]\displaystyle log(\frac{a}{b}) = log(a) - log(b)[/tex]Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle ln(\frac{2e}{x})[/tex]
Step 2: Simplify
Expand [Logarithmic Property - Dividing]: [tex]\displaystyle ln(\frac{2e}{x}) = ln(2e) - ln(x)[/tex]Expand [Logarithmic Property - Multiplying]: [tex]\displaystyle ln(\frac{2e}{x}) = ln(2) + ln(e) - ln(x)[/tex]Simplify: [tex]\displaystyle ln(\frac{2e}{x}) = ln(2) + 1 - ln(x)[/tex]Rewrite: [tex]\displaystyle ln(\frac{2e}{x}) = 1 + ln(2) - ln(x)[/tex]Martina got a prepaid debit card with $20 on it. For her first purchase with the card, she bought some bulk ribbon at a craft store. The price of the ribbon was 19 cents per yard. If after that purchase there was $15.63 left on the card, how many yards of ribbon did Martina buy?
Phone card = $20
You need to minus 17.92 from 20 = $2.08
$2.08 / 0.13 = how many minutes
= 16
Verify the identity algebraically:
Csc(-x)tanx =-secx
Step-by-step explanation:
Recall that
[tex]\sin(-x) = -\sin x[/tex]
Therefore,
[tex]\csc(-x) = \dfrac{1}{\sin(-x)} = -\dfrac{1}{\sin x}[/tex]
so
[tex]\csc(-x)\tan x = \left(-\dfrac{1}{\sin x}\right)\left(\dfrac{\sin x}{\cos x}\right)[/tex]
[tex]\:\:\:\:\:\:\:\:\:= -\dfrac{1}{\cos x} = -\sec x[/tex]
10 cows, 26 horses and 4 goats are in a paddock. What is the percentage of animals that are horses?
Answer:
10+26+4=40
in total there is 40 animals
because there is in total for 40 animals then that mean 40 animals is 100%
now we see that there are 26 horses we only need to divid ( but remember you have to divid the percent and the number of animals together)
40 ÷ 20 = 2. 2 x 13 = 26
100% ÷ 20 = 5%. 5% x 13 = 65%
the answer for this question:
the percentage of animals that are horses is 65%
Charity is planting trees along her driveway, and she has 6 pine trees and 6 willows to plant in one row. What is the probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other
Answer:
0.0022 = 0.22% probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
In this question, the elements are arranged, so we have to use the arrangements formula.
Arrangements formula:
The number of possible arrangements of n elements is:
[tex]A_{n} = n![/tex]
Desired outcomes:
Pine trees(6!) then the willows(6!) or
Willows(6!) then the pine trees(6!). So
[tex]D = 2*6!*6! = 1036800 [/tex]
Total outcomes:
12 trees, so:
[tex]T = 12! = 479001600 [/tex]
What is the probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other?
[tex]p = \frac{D}{T} = \frac{1036800 }{479001600 } = 0.0022[/tex]
0.0022 = 0.22% probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other.
Help me with this question please...
Each of the following statements is true or false. Which statements are true?
A. A triangle where at least two angles are acute is called an acute triangle.
B. Some polygons are neither convex nor concave.
C. The sum of the interior angles of a concave pentagon is $540^{\circ}.$
D. The interior angles of a regular $1000$-gon are greater than the interior angles of a regular $100$-gon.
E. The exterior angles of a regular $1000$-gon are greater than the exterior angles of a regular $100$-gon.
9514 1404 393
Answer:
A. False
B. False
C. True
D. True
E. False
Step-by-step explanation:
A. False -- any triangle has at least two acute angles, whether it is acute, right, or obtuse.
B. False -- by definition, any polygon that is not convex is concave.
C. True -- the angle sum is the same regardless of whether the pentagon is convex or concave. (Provided it is a "simple" polygon, with no crossing sides.)
D. True -- the measure of the interior angle of a regular polygon increases as the number of sides increases. (see E)
E. False -- the exterior angles of a regular polygon are 360° divided by the number of sides. As the number of sides increases, the measure of each exterior angle decreases. (Interior angles are the supplement of exterior angles, so they increase as the number of sides increases.)