Answer:
10/1 is the largest because 10÷1 = 10
Answer:
10/1 = 10 and is by far the biggest value in the list
Step-by-step explanation:
A 13-ounce can of coffee costs $2.73. What is the unit price per pound (1 pound=16 ounces)?
Which comparison is correct?
Answer:
C is correct
Step-by-step explanation:
10/12=0.83...
2/3=0.66...
2/3<10/12
Answer:
C
Step-by-step explanation:
Why the others are incorrect:
A: [tex]\frac{2}{10} > \frac{3*2}{5*2}[/tex] → [tex]\frac{2}{10} > \frac{ 6}{10}[/tex] This statement/comparison is false
B : [tex]\frac{2*2}{4*2} > \frac{4}{8}[/tex] → [tex]\frac{4}{8} > \frac{4}{8}[/tex] This statement/comparison is false
D:[tex]\frac{9}{12} < \frac{3*2}{6*2}[/tex] → [tex]\frac{9}{12} < \frac{6}{12}[/tex] This statement/comparison is false
Why answer C is CorrectC: [tex]\frac{2*4}{3*4} < \frac{10}{12}[/tex] → [tex]\frac{8}{12} < \frac{10}{12}[/tex] This statement/comparison is true
If 6 pounds of fruit is 96 cents how much is one pound
Answer:
16 cents per pound
Step-by-step explanation:
Take the cost and divide by the number of pounds
96 cents / 6 lbs
16 cents per pound
–20 ÷ 5 =
I need help
urgent !!!!!!!!!!!!!!! 10 points
Answer:
136 cm²
Step-by-step explanation:
Surface area = 2(lw+wh+hl)
l = 7
w = 2
h = 6
so,
2(7×2+2×6+7×6)
= 136 cm²
Answer:
136 cm^2
Step-by-step explanation:
L 7cm
W 6cm
D 2cm
7 x 6 + 6 x 2 + 2 x 7 (x 2) = 68 x 2 = 136cm^2
Help me
Thank you
(Make you the brainliest☺️)
Answer:
55°
Step-by-step explanation:
sin(x°) = [tex]\frac{opposite}{hypotenuse}[/tex]
x° = [tex]sin^-1(\frac{9}{11} )=54.90319877[/tex]
Rounded to the nearest degree, the answer is 55°
NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW. Find each measurement. Round your answers to the nearest tenth. Part 2dd
Answer:
see explanation
Step-by-step explanation:
Using the Sine rule in all 3 questions
[tex]\frac{a}{sinA}[/tex] = [tex]\frac{b}{sinB}[/tex] = [tex]\frac{c}{sinC}[/tex]
(2)
[tex]\frac{b}{sinB}[/tex] = [tex]\frac{c}{sinC}[/tex] , substitute values
[tex]\frac{45}{sin133}[/tex] = [tex]\frac{c}{sin26}[/tex] ( cross- multiply )
c × sin133° = 45 × sin26° ( divide both sides by sin133° )
c = [tex]\frac{45sin26}{sin133}[/tex] ≈ 27.0 ( to the nearest tenth )
(4)
[tex]\frac{b}{sinB}[/tex] = [tex]\frac{c}{sinC}[/tex] , substitute values
[tex]\frac{19}{sinB}[/tex] = [tex]\frac{30}{sin97}[/tex] ( cross- multiply )
30 sinB = 19 sin97° ( divide both sides by 30 )
sinB = [tex]\frac{19sin97}{30}[/tex] , then
∠ B = [tex]sin^{-1}[/tex] ( [tex]\frac{19sin37}{30}[/tex] ) ≈ 38.9° ( to the nearest tenth )
(6)
[tex]\frac{b}{sinB}[/tex] = [tex]\frac{c}{sinC}[/tex], substitute values
[tex]\frac{18}{sin102}[/tex] = [tex]\frac{xAB}{sin45}[/tex] ( cross- multiply )
AB sin102° = 18 sin45° ( divide both sides by sin102° )
AB = [tex]\frac{18sin45}{sin102}[/tex] ≈ 13.0 ( to the nearest tenth )
what are the exponent and coefficient of the expression 4b-^3
9514 1404 393
Answer:
exponent: -3coefficient: 4Step-by-step explanation:
The coefficient of a term is its constant multiplier. The exponent is the power to which the base is raised.
The term 4·b^(-3) has an exponent of -3, a base of b and a coefficient of 4.
The exponent is -3; the coefficient is 4.
Answer:
exponent = -3 coefficent = 4
Step-by-step explanation:
Compose an expression to find the 20th term of any arithmetic sequence in terms of just a and d. Look at the pattern in
part A with the first three terms to help you.
20th term:
Answer:
Hello,
Step-by-step explanation:
u(i) is the ith term of the a.s
a is the first term and d the common difference
for n in {1,2,3...}: u(n)=a+(n-1)*d
u(1)=a+0*d=a
u(2)=u(1)+d=a+d=a+1*d
u(3)=u(2)+d=a+1*d+d=a+2*d
...
u(20)=a+19*d
Answer:
a+19d
Step-by-step explanation:
edmentum
The length of a rectangle is shown below:
On a coordinate grid from negative 6 to positive 6 on the x-axis and on the y-axis, two points A and B are shown. Point A is on ordered pair negative 4, 5, and the point B is on ordered pair 5, 5.
If the area of the rectangle to be drawn is 90 square units, where should points C and D be located, if they lie vertically below A and B, to make this rectangle?
C(4, −5), D(−3, −5)
C(5, −4), D(−4, −4)
C(5, −5), D(−4, −5)
C(−5, 5), D(−5, −4)
Answer:
C(5, −5), D(−4, −5)
Step-by-step explanation:
9 across
A(-4, 5) ————————— B(5, 5)
| |
| 90 square units | 10 down
| |
D(-4, -5) ————————— C(5, -5)
please help me solve this question
Help me please --------------------
9514 1404 393
Answer:
139.39 in
Step-by-step explanation:
The length of a semicircle of diameter D is ...
C = (1/2)πD
For the given diameter of 27 inches, the length of the curved edge of the figure is ...
C = 1/2(3.14)(27 in) = 42.39 in
__
The perimeter of the figure is the sum of the side lengths. Clockwise from left, that sum is ...
P = 27 + 35 + 42.39 + 35 = 139.39 . . . inches
The perimeter of the figure is 139.39 inches.
Help Please
2(-1+-4)-d^2
what is the value of k
Answer:
(A)
Step-by-step explanation:
M=-2
therefore
x¹=3, y¹=-12, x²=6 y²=k
M=(y²-y¹)/(x²-x¹)
-2=(k+12)/(6-3)
-2×3=k+12
-6=k+12
k=-18
Mutiplying intergers.
Right answer only! Help!! Lots of points and free brainlist! Wrong and scam answers wiLl be reported and dealed with.
(-1) x 1=
Answer:
Step-by-step explanation:
(-1) × 1 = -1
Answer:
-1
Step-by-step explanation:
anything times 1 =1. except 0.
The Barnes store manager prefers that customers use the Barnes preferred
customer credit card for most purchases. In which case, would the manager prefer
customers use their MCVS credit card?
A. When the purchase is less than $100.00
B. When the purchase is less than $150.00
C. When the purchase is greater than $300.00
D. When the purchase is greater than $350.00
Answer:
D. When the purchase is greater than $350.
Step-by-step explanation:
Stores prefer to use credit card for customer whose purchase are worth high. The Barnes store manager prefer that customers use credit card for most purchases. When customers buy more than worth of $350, the store manager will prefer to use credit card.
Answer:
B
Step-by-step explanation:
Which expression is equivalent to 3√x10
Answer:
Hes correct ^
Step-by-step explanation:
Use Taylor series to evaluate
limx→0(tan x − x)/x^3
Recall that
tan(x) = sin(x)/cos(x)
and
sin(x) = x - x ³/6 + x ⁵/120 - x ⁷/5040 + …
cos(x) = 1 - x ²/2 + x ⁴/24 - x ⁶/720 + …
Truncate the series to three terms. Then
[tex]\displaystyle \lim_{x\to0}\frac{\tan(x)-x}{x^3} = \lim_{x\to0}\frac{\frac{x-x^3/6+x^5/120}{1-x^2/2+x^4/24}-x}{x^3} \\\\ = \lim_{x\to0}\left(\frac{x-x^3/6+x^5/120}{x^3-x^5/2+x^7/24}-\frac1{x^2}\right) \\\\ = \lim_{x\to0}\left(\frac{1-x^2/6+x^4/120}{x^2-x^4/2+x^6/24}-\frac1{x^2}\right) \\\\ = \lim_{x\to0}\left(\frac{1-x^2/6+x^4/120}{x^2\left(1-x^2/2+x^4/24\right)}-\frac1{x^2}\right) \\\\ = \lim_{x\to0}\left(\frac{1-x^2/6+x^4/120}{x^2\left(1-x^2/2+x^4/24\right)}-\frac{1-x^2/2+x^4/24}{x^2\left(1-x^2/2+x^4/24\right)}\right) \\\\ = \lim_{x\to0}\frac{x^2/3-x^4/30}{x^2\left(1-x^2/2+x^4/24\right)} \\\\ = \lim_{x\to0}\frac{1/3-x^2/30}{1-x^2/2+x^4/24} = \boxed{\frac13}[/tex]
A random variable X is generated as follows. We flip a coin. With probability p , the result is Heads, and then X is generated according to a PDF f X|H which is uniform on [0,1] . With probability 1−p the result is Tails, and then X is generated according to a PDF f X|T of the form
f X|T (x)=2x,if x∈[0,1]. (The PDF is zero everywhere else.)
1. What is the (unconditional) PDF f X (x) of X ? For 0≤x≤1 : f X (x)=
2. Calculate E[X] .
Answer:
Following are the solution to the given points:
Step-by-step explanation:
For point a:
[tex]fx|H(x) = 1;0< x<1\\\\fX|T(x) = 2x; 0\leq x \leq 1\\\\fx(x) = P(H \bigcap X = x) +P(T \bigcap X=x)\\\\[/tex]
[tex]=P(H)fX|H(x)+P(T)fX|T(x)\\\\= p(1) + (1-p)2x\\\\= p(1 -2x)+2x\\\\[/tex]
Using the PDF of the X value
[tex]fX(x) =2x +p(1 - 2x); \ 0\leq x\leq 1[/tex]
0 ; otherwise
For point b:
[tex]E(X)=\int^{1}_{0} \ x fX (x)\ dx=\int^{1}_{0} \ x(2x+p(1-2x))\ dx\\\\=\int^{1}_{0} \ (2x^2+(x-2x^2)p) dx\\\\[/tex]
[tex]= 2(\frac{x^3}{3}) + (\frac{x^2}{2}-2(\frac{x^3}{3}) \begin{vmatrix} x=1\\ x=0\end{vmatrix} \\\\[/tex]
[tex]= \frac{2}{3} + (\frac{1}{2} - \frac{2}{3})p\\\\= \frac{2}{3} -\frac{p}{6}\\\\= \frac{(4 - p)}{6}[/tex]
identify an equation in point slope form for the line perpendicular to the y=-1/2x+11 that passes through (4,-8). a. y+8=1/2(x-4) b. y-4=2(x+8) c. y-8=1/2(x+4) d. y+8=2(x-4)
Answer:
d. y+8=2(x-4)
Step-by-step explanation:
There are 2 important parts to this question. First, understanding which slopes are perpendicular. The negative reciprocal of a number will be perpendicular to it. So, since the original slope is -1/2 the new slope should be 2.
Then, remember what the point-slope formula is. The point-slope formula is: [tex]y-y_{2}=m(x-x_{2})[/tex]. So if you plug in the point and slope the new equation looks like, [tex]y--8=2(x-4)[/tex]. Then, simplify for the final answer of [tex]y+8=2(x-4)[/tex].
Please see the attached picture
Answer:
C.I = (0.259,1.175) -> Fail to Reject H0
Step-by-step explanation:
Explain why the equation x=x+1 is a contradiction
Answer:
It results in no solution.
Step-by-step explanation:
If you subtract x on both sides, this will leave you with 0 ≠ 3. The result is no solution. This is why it is contradictory.
A piece of iron wire can be made into a circle with a radius of three centimeters.If I make a square around this wire,what is the area of the square
Answer:
the area should be 3 centimeters around the square
Step-by-step explanation:
someone help me pls i need to pass summer school
Answer:
A
Step-by-step explanation:
The be the inverse function the domain {4,5,6,7} becomes the range and the range {14,12,10,8} becomes the domain
14 → 4
12 →5
10 →6
8 →7
) Express the prime number 43 as the difference of two squares?
Step-by-step explanation:
The prime 43 appears in the sixth twin-prime pair 41, 43. As a sum of four or fewer squares: 43 = 32 + 32 + 52 = 12 + 12 + 42 + 52 = 32 + 32 + 32 + 42. ... As a difference of two squares: 43 = 222 − 212.
3 x {(300 - 70 ÷ 5) - [3 x 23 - (8 - 2 x 3)]}
A.657
B.2433
C. -843
Answer:
657
Step-by-step explanation:
pemdas
The value of the expression 3 x {(300 - 70 ÷ 5) - [3 x 23 - (8 - 2 x 3)]} is 657.
Hence option A is correct.
Given is an expression, 3 x {(300 - 70 ÷ 5) - [3 x 23 - (8 - 2 x 3)]}, we need to simplify it,
Let's break down the expression step by step:
First, let's simplify the expression inside the innermost parentheses:
8 - 2 x 3 = 8 - 6 = 2
Next, let's simplify the expression inside the brackets:
3 x 23 - 2 = 69 - 2 = 67
Now, let's substitute the simplified expression inside the brackets back into the original expression:
(300 - 70 ÷ 5) - 67
Next, let's simplify the expression inside the remaining parentheses:
70 ÷ 5 = 14
Now, let's substitute the simplified expression inside the parentheses back into the expression:
(300 - 14) - 67
Next, let's simplify the expression inside the remaining parentheses:
300 - 14 = 286
Now, let's substitute the simplified expression inside the parentheses back into the expression:
286 - 67
Finally, let's perform the subtraction:
286 - 67 = 219
Now, let's multiply the result by 3:
3 x 219 = 657
Therefore, the value of the expression 3 x {(300 - 70 ÷ 5) - [3 x 23 - (8 - 2 x 3)]} is 657.
Learn more about expression click;
https://brainly.com/question/28170201
#SPJ2
An experiment consists of 400 observations and four mutually exclusive groups. If the probability of a randomly selected item being classified into any of the four groups is equal, then the expected number of items that will be classified into group 1 is ________.
Answer:
The expected number of items that will be classified into group 1 is 100.
Step-by-step explanation:
For each observation, there are only two possible outcomes. Either it will be classified into group 1, or it will not. The probability of an observation being classified into group 1 is independent of any other observation, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
400 observations
This means that [tex]n = 400[/tex]
Four mutually exclusive groups. The probability of a randomly selected item being classified into any of the four groups is equal.
This means that [tex]p = 0.25[/tex]
Then the expected number of items that will be classified into group 1 is
[tex]E(X) = np = 400*0.25 = 100[/tex]
100 is the answer.
find the derivative of y=(x³-5)⁴(x⁴+3)⁵
Answer:
[tex]12x^{2} (x^{3}-5)^{3} (x^{4}+3)^{5} +20x^{3} (x^{3}-5)^{4} (x^{4}+3)^{4}[/tex]
Step-by-step explanation:
Algebra II Part 1
Choose the expression or equation that correctly represents this information
Rose works eight hours a day for five days a week. How many hours will she work in sa
weeks?
hours = 40 = 6
hours = 40.6
hours = 6 = 40
Answer:
240 i.e 40*6
Step-by-step explanation:
if rose works 8hrs per day then she works 40 hrs per week (5 days) therefore 40 hrs per 6 weeks =40*6=240
Answer:
40
Step-by-step explanation:
pls help! I need the answer fast!
Answer:
B is the answer
Step-by-step explanation:
hope it helps