Answer:
[tex] \boxed{f(x) = 2 {x}^{9} - 4 {x}^{2} + 4}[/tex]
Option B is the correct option
Step-by-step explanation:
By looking at the end behavior , we can say that the degree of the polynomial must be odd and leading coefficient will be positive.
Thus , the correct choice is B.
Hope I helped!
Best regards!
The polynomial function that could have created the given curve on the xy-plane is [tex]f(x)= 2x^9-4x^2+4[/tex]
What are polynomial function?Polynomial functions aree function having a leading degrees of 3 and greater.
The nature of the curve on the xy-plane depends on its end behaviour. From the given graph, the end behaviour shows that the equivalnt function has a positive leading coefficient and an odd degree.
From the listed option, the function that satisfies both criteria is [tex]f(x)=2x^9-4x^2+4[/tex].
Learn more more polynomial graphs here: https://brainly.com/question/9696642
#SPJ5
are:
4. Suppose that the distance of fly balls hit to the outfield (in baseball) is normally
distributed. We randomly sample 27 fly balls. Their recorded distances in feet
234, 310, 285, 249, 210, 311, 265, 290, 308,
254, 295, 287, 231, 302, 325, 308, 221, 237,
312, 277, 259, 223, 340, 204, 214, 303, 309
Let X be the distance of a fly ball.
Use Excel to calculate the following:
a. (1 pt) mean of the sample, x =
b. (1 pt) standard deviation of the sample, s =
C. (2 pts) Calculate the t-score at a 96% confidence level:
d. (2 pts) Calculate the Error Bound (EBM), using the formula, EBM =
(t)(s//n)
e. (1 pt) At 96% confidence level, provide the confidence interval (CI) for the
mean distance in feet of a fly ball.
hantor 92
D
Step-by-step explanation:
a. The mean can be found using the AVERAGE() function.
x = 272.7
b. The standard deviation can be found with the STDEV() function.
s = 39.9
c. The t-score can be found with the T.INV.2T() function. The confidence level is 0.04, and the degrees of freedom is 26.
t = 2.162
d. Find the lower and upper ends of the confidence interval.
Lower = 272.7 − 2.162 × 39.9 = 186.5
Upper = 272.7 + 2.162 × 39.9 = 358.9
GIVING OUT BRAINLIEST TO THE FIRST PERSON TO ANSWER!!
One circle has a diameter of 6 inches. A second, larger circle has a diameter that is four times the diameter of the first circle. What is the ratio of the area of the smaller circle to the larger circle?
A. 2:3
B. 1:6:4
C. 1:16
D. 1:64
Please include ALL work! <3
Answer:
The answer is option CStep-by-step explanation:
To find the ratio first find the diameter of the larger circle
Diameter of first circle = 6 inches
Diameter of second circle = 4 × diameter of the first circle
Which is
Diameter of second circle
= 4 × 6 = 24 inches
Area of a circle = πr²
r is the radius
Area of smaller circle
Diameter = 6 inches
Radius = 6 / 2 = 3 inches
Area = (3)² π = 9π in²
Area of larger circle
Diameter = 24 inches
Radius = 24 / 2 = 12 inches
Area = (12)²π = 144π in²
The ratio of the smaller circle to the larger circle is
[tex] \frac{9\pi}{144\pi} [/tex]
Reduce the fraction by 9π
That's
[tex] \frac{1}{16} [/tex]
We have the final answer as
1 : 16Hope this helps you
Answer:
C. 1:16
Step-by-step explanation:
Area of a circle is:
[tex]\pi \times {r}^{2} [/tex]
Small circle Area:
radius = diameter/2
radius = 6/2 = 3
[tex]area \: of \: a \: circle \: = \pi {3}^{2} [/tex]
a = 28.27
Large circle 4 times larger diameter
6*4 = 24
diameter = 24
r = 24/2
r = 12
[tex]a \: = \pi {12}^{2} [/tex]
a = 452.39
area of large circle/ area of small circle
452.39/28.27 = 16.00
ratio is 1:16
HELP ME ILL GIV ROBUX Identify the property shown by the equation. 14 × 6 = 6 × 14 A. Commutative Property B. Associative Property C. Identity Property D. Distributive Property PLEASE HELP ME
Answer:
Its commutative property..
Step-by-step explanation:
Commutative property says A×B=B×A
Explanation is attached below.
Please help . I’ll mark you as brainliest if correct!
Answer:
Stocks = $15,500
Bonds = $107,250
CD's = $47,250
Step-by-step explanation:
S + B + C = 170000
.0325S + .038B .067C = 7745
60,000 + C = b
S = $15,500
B = $107,250
C = $47,250
About 25% of young Americans have delayed starting a family due to the continued economic slump. Determine if the following statements are true or false, and explain your reasoning.a. The distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump in random samples of size 12 is right skewed.b. In order for the distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump to be approximatly normal, we need random samples where the sample size is at least 40.c. A random sample of 50 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.d. A random sample of 150 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.e. Tripling the sample size will reduce the standard error of the sample proportion by one-third.
Answer:
a. True
b. true
c. false
d. false
e. false
Step-by-step explanation:
a. true
polutation = 25% = 0.25
sample = n= 12
n x p
= 12 x o. 25 = 3 and 3 is less than 10
12(1 - p)
= 12 x 0.75
= 9 and is less than 10
b. True
the sample distribution of the population is normal when
sample size x population > or equal to 10
40 x 0.75
= 30 and 30 is greater than 10
c. false
50 x 0.25 = 12.5
50 x 0.20 = 10
z = 10 - 12.5/sqrt(12.5)
= -2.5/3.54
= -0.70
H0: Young american family who delayed
H1: young american family who did not delay
p(z = -0.70)
0.2420>0.005
therefore we accept the null hypothesis
d. false
150 x 0.20 = 30
150 x 0.75 = 37.5
z = 30 - 37.5/sqrt(37.5) = -7.5/6.12 = -1.22
p(z = -1.22) = 0.1112 > 0.05
therefore we do not reject the null hypothesis
e. false
se1 = sqrt(p(1-p)/n
se2 = sqrt(p(1-p)/3n
se2 = 1/sqrt(3)se2
Help me solve this!!!
Answer:
54°
Step-by-step explanation:
Let ∠CYX=x
AB║CD
∠AXE=∠CYX (corresponding angles)
∠AXE=3∠CYX-108
x=3x-108
3x-x=108
2x=108
x=108/2=54°
∠AXE=∠CYX=x=54°
∠BXY=∠AXE=54° (Vertically opposite angles)
The red blood cell counts (in millions of cells per microliter) for a population of adult males can be approximated by a normal distribution, with a mean of million cells per microliter and a standard deviation of million cells per microliter. (a) What is the minimum red blood cell count that can be in the top % of counts? (b) What is the maximum red blood cell count that can be in the bottom % of counts?
Answer:
(a) Minimum red blood cells 5.744 million cells per micro liter
(b) Maximum red blood cells 5.068 million cells per micro liter.
Step-by-step explanation:
Z-score formula is = [tex]\frac{x-u}{Standard deviation}[/tex]
Z-score = [tex]\frac{x-5.5}{0.4}[/tex]
The value of z-score is 0.61 so then x will be;
x = 5.744
The minimum red blood cells count that can in top is 27% of count which is 5.744 million cells per micro liter.
Z-score = [tex]\frac{x-5.5}{0.4}[/tex]
The value of z-score is 0.14 so then x will be;
x = 5.068
The maximum red blood cells count that can be in top is 14% of count which is 5.068 million cells per micro liter.
Find the mean of the data summarized in the given frequency distribution. Compare the computed mean to the actual mean of 51.1 degrees. Low Temperature (◦F) 40−44 45−49 50−54 55−59 60−64 Frequency 3 6 13 7
Answer:
[tex]Mean = 53.25[/tex]
Step-by-step explanation:
Given
Low Temperature : 40−44 || 45−49 || 50−54 || 55−59 || 60−64
Frequency: --------------- 3 -----------6----------- 1-----------3--- -----7
Required
Determine the mean
The first step is to determine the midpoints of the given temperatures
40 - 44:
[tex]Midpoint = \frac{40+44}{2}[/tex]
[tex]Midpoint = \frac{84}{2}[/tex]
[tex]Midpoint = 42[/tex]
45 - 49
[tex]Midpoint = \frac{45+49}{2}[/tex]
[tex]Midpoint = \frac{94}{2}[/tex]
[tex]Midpoint = 47[/tex]
50 - 54:
[tex]Midpoint = \frac{50+54}{2}[/tex]
[tex]Midpoint = \frac{104}{2}[/tex]
[tex]Midpoint = 52[/tex]
55- 59
[tex]Midpoint = \frac{55+59}{2}[/tex]
[tex]Midpoint = \frac{114}{2}[/tex]
[tex]Midpoint = 57[/tex]
60 - 64:
[tex]Midpoint = \frac{60+64}{2}[/tex]
[tex]Midpoint = \frac{124}{2}[/tex]
[tex]Midpoint = 62[/tex]
So, the new frequency table is as thus:
Low Temperature : 42 || 47 || 52 || 57 || 62
Frequency: ----------- 3 --||- -6-||- 1-||- --3- ||--7
Next, is to calculate mean by
[tex]Mean = \frac{\sum fx}{\sum x}[/tex]
[tex]Mean = \frac{42 * 3 + 47 * 6 + 52 * 1 + 57 * 3 + 62 * 7}{3+6+1+3+7}[/tex]
[tex]Mean = \frac{1065}{20}[/tex]
[tex]Mean = 53.25[/tex]
The computed mean is greater than the actual mean
1) Dada a função, em reais, definida por f(x)=3.x-5. calcule :
a) f(2)=
b) f(-1)=
Answer:
f(x)= 3x-5
f(2) = 3(2)-5 = 6-5= 1
f(-1)= 3(-1)-5= -3-5= -8
Hope this helps
if u have question let me know in comments ^°^
A store has clearance items that have been marked down about 30%. They are having a sale, advertising an additional 55% off clearance items. What percent of the original price do you end up paying
Answer:
60% discount given in total, so only 40% is paid.
Step-by-step explanation:
I’m struggling to understand this problem somebody please explain it to me thanks!!
ax-5d=3cx-2+7
Answer:
x = (5 +5d)/(a -3c)
Step-by-step explanation:
Maybe you're to solve for x.
__
This is a typical "3-step" linear equation.
First, you collect terms with the variable x on one side of the equation. You do that by subtracting from both sides the x-term you don't want where it is.
We choose to remove the 3cx term from the right side, so we subtract it from both sides.
ax -3cx -5d = 3cx -3cx +5 . . . . . . we have combined the constants, too
x(a -3c) -5d = 5 . . . . . . simplify and factor out x
Second, you remove any terms not containing x from the side of the equation with the x-terms. You do that by adding their opposite to both sides of the equation.
We need to remove the -5d term, so we add 5d to both sides.
x(a -3c) -5d +5d = 5 +5d
x(a -3c) = 5 +5d . . . . . . . . . . simplify
Third, we divide by the coefficient of x. We do that to both sides of the equation. We had to put parentheses around the terms on the right, because we're dividing the whole right side of the equation by (a-3c).
x(a -3c)/(a -3c) = (5 +5d)/(a -3c)
x = (5 +5d)/(a -3c)
A survey of 1,565 households estimated that 72% of the households in a given state owned a television. What is the population? all the households in given state 1565 households surveyed 1127 households that owned televisions
Answer:
all the houses in given state
Step-by-step explanation:
edge 2021
Using sampling concepts, it is found that the population is given by:
All the households in given state.
What is a sampling?In a sampling, data is taken from a sample to be estimated for the entire population.
For example, if you want to find the proportion of New York State residents that are Buffalo Bills fans, surveying a sample of 1000 residents, the population is all New York State residents.
Hence, in this problem, the population is given by all the households in given state.
More can be learned about sampling concepts at https://brainly.com/question/25122507
What number is equivalent to 9 1/2?
Answer:
the answer is going to be 2/4
What is the approximate area of the unshaded region under the standard normal curve below? Use the portion of the standard normal table given to help answer the question.
A normal curve with a peak at 0 is shown. The area under the curve shaded is 1 to 2.
z
Probability
0.00
0.5000
1.00
0.8413
2.00
0.9772
3.00
0.9987
0.14
0.16
0.86
0.98
Answer:
0.14
Step-by-step explanation:
The z score is a score used in statistics to determine by how many standard deviations ti the raw score above or below the mean. If the raw score is above the mean then the z score is positive while If the raw score is below the mean then the z score is negative, It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
From the normal distribution table, The area under the curve shaded is 1 to 2 = P(1 < z < 2) = P(z < 2) - P(z < 1) = 0.9772 - 0.8413 = 0.1359 ≈ 0.14
The area under the curve shaded is 1 to 2 is 0.14
What are probabilities?Probabilities are used to determine the chances of an event
The shaded region represents the probability of the z-scores
The shaded region 1 to 2 is represented as:
P(1 < z < 2) =
Using the probability of z-score, we have the formula
P(1 < z < 2) = P(z < 2) - P(z < 1)
From the given standard normal table:
P(z < 2) = 0.9772
P(z < 1) = 0.8413
So, we have:
P(1 < z < 2) = 0.9772 - 0.8413
P(1 < z < 2) = 0.1359
Approximate
P(1 < z < 2) = 0.14
Hence, the area under the curve shaded is 1 to 2 is 0.14
Read more about normal distribution at:
https://brainly.com/question/4079902
What is the approximate value of x in –2 ln (x + 1) − 3 = 7?
Answer:
x = 1/e^-5 - 1
Step-by-step explanation:
–2 ln (x + 1) − 3 = 7
–2 ln (x + 1) = 10
ln (x + 1) = –5
x + 1 = e^-5
x = e^-5 - 1
x = 1/e^-5 - 1
the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
To solve the equation -2 ln(x + 1) - 3 = 7 for the approximate value of x, we will follow these steps:
1. Begin with the given equation: -2 ln(x + 1) - 3 = 7.
2. Move the constant term to the other side of the equation: -2 ln(x + 1) = 7 + 3.
3. Simplify: -2 ln(x + 1) = 10.
4. Divide both sides of the equation by -2 to isolate the natural logarithm term: ln(x + 1) = -5.
5. Rewrite the equation using the exponential form of natural logarithm: e⁻⁵ = x + 1.
6. Calculate the value of e⁻⁵: e⁻⁵ ≈ 0.0067.
7. Subtract 1 from both sides of the equation: x = 0.0067 - 1.
8. Simplify: x ≈ -0.9933.
Therefore, the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
Learn more about equation here
https://brainly.com/question/32549431
#SPJ2
Little bit more math hw
Answer:
[tex]x=-2[/tex]
Step-by-step explanation:
For these kind of problems, simply take the denominator and compare it to zero. Then solve the equation.
[tex]x+2=0\\\\\Rightarrow x=-2[/tex] By subtracting 2 from both sides!
Best Regards!
!2,19,26 what comes nxt
Answer:
12 , 19 , 26 , 33
Explaination:Here, n+7
12+7=19
19+7=26
So,
26+7=33
Hope you understand ❣
Step-by-step explanation:
12 , 19 , 26 , ?
Given
___________
a1= 12
a2= 19
a3 = 26
d= ?
a4 = ?
––——————
we can solve this by using formula from Ap .
But for this we have to find d
As we know that
common difference(d) = a2-a1 = 19 -12
= 7
so difference after every no is 7 so
a4 = a3 + d
= 26 +7
= 33
So 33 is ur answer mate
Hope it helps
Evaluate b h for b = 12 and h = 2 . Type a numerical answer in the space provided. If necessary, use the / key to represent a fraction bar. Do not type spaces in your answer.
Answer:63
Step-by-step explanation:
given that f(x)=x^2-4x -3 and g(x)=x+3/4 solve for f(g(x)) when x=9
Answer:
f(g(9)) = 945/16
Step-by-step explanation:
To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).
g(x) = x + 3/4
f(x) = x² - 4x - 3
f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3
f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3
f(g(x)) = x² - 5/2x + 9/16 + 3 - 3
f(g(x)) = x² - 5/2x + 9/16
Now, put a 9 wherever there is an x in f(g(x)).
f(g(9)) = (9)² - 5/2(9) + 9/16
f(g(9)) = 81 - 5/2(9) + 9/16
f(g(9)) = 81 - 45/2 + 9/16
f(g(9)) = 117/2 + 9/16
f(g(9)) = 945/16
200,000=2x10 to the power of 6
False.
2x10^6 you move the decimal point 6 places to the right. ( add 6 zeros after the 2)
2x 10^6 = 2,000,000
Determine if the matrix is symmetric.
(-1 -5 -9 8)
The transpose of the given matrix is nothing. Because this is_____to the given matrix, the given matrix_____symmetric.
Answer:
because this is equal to the given matrix, the given matrix is symmetric.
Step-by-step explanation:
A symmetric matrix is a square matrix which has same number of rows and columns. Square matrix is equal to transpose. Equal matrices have equal dimensions. The given matrix is symmetric because the rows and columns are equally distributed.
Identify the sample space of the probability experiment and determine the number of outcomes in the sample space. Playing the game of roulette, where the wheel consists of slots numbered 00, 0, 1, 2, ..., To play the game, a metal ball is spun around the wheel and is allowed to fall into one of the numbered slots.a. The sample space is (00, 0}. b. The sample space is (00, 0, 1,2,., 33). c. The sample space is (00). d. The sample space is (1, 2,..., 33).
Answer:
The correct option is (B).
Step-by-step explanation:
It is provided that, in a game of roulette the wheel consists of slots numbered 00, 0, 1, 2, ..., 33.
The sample space of an experiment, is the set of all the possible outcomes of the random trials.
There are a total of 35 slots on the roulette wheel where the ball can land.
So, there are a total of 35 outcomes for one rotation of the wheel.
Then the sample space consists of all the 35 outcomes, i.e.
S = {00, 0, 1, 2, 3, ..., 33}
Thus, the correct option is (B).
find x, if sq.root(x) +2y^2 = 15 and sq.root(4x) - 4y^2=6
Answer:
Example: solve √(2x−5) − √(x−1) = 1
isolate one of the square roots:√(2x−5) = 1 + √(x−1) square both sides:2x−5 = (1 + √(x−1))2 ...
expand right hand side:2x−5 = 1 + 2√(x−1) + (x−1) ...
isolate the square root:√(x−1) = (x−5)/2. ...
Expand right hand side:x−1 = (x2 − 10x + 25)/4. ...
Multiply by 4 to remove division:4x−4 = x2 − 10x + 25.
Answer:
Step-by-step explanation:
ewrerewrwrwerrwer
CALC 1: Spud's mom is going to make him a round birthday cake, and has asked for your help. Spud is a bit weird, and has already
announced that when he slices the cake, your slice will have a perimeter of 16 inches, because you're his favorite friend, and
that's his favorite number. Since you're helping his mom with the baking, what diameter cake will you recommend she makes
so that you end up with the most possible cake at weird Spud's party? (Hint: you can ignore the thickness df the cake, since
this will be the same, regardless of its diameter.)
10.1
in
Answer:
15.7 in
Step-by-step explanation:
A slice of a round pie is a sector of a circle.
The perimeter of a slice is the arc length s plus twice the radius r.
P = s + 2r
s = rθ = r(16/360) = r/22.5. So,
16 = (r/22.5) + 2r = (r + 45r)/22.5 = 46r/22.5
16 × 22.5 = 46r
360 = 46r
r = 7.826
D = 2r = 2 × 7.826 = 15.7 in
The diameter of the cake should be 15.7 in.
Check:
[tex]\begin{array}{rcl}P & = & s + 2r\\& = & \dfrac{r}{22.5} + 2r\\\\16 & = & \dfrac{7.826}{22.5} + 2 \times 7.826\\\\16 & = & 0.35 + 15.65\\16 & = & 16.00\\\end{array}[/tex]
It checks.
what is the least number to be added to 1500 to make it a perfect square?
Answer:
21
Step-by-step explanation:
√1500 ≈ 38.7
round that up to 39 and square it:
39² = 1521
Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 5 + ln(t), y = t2 + 2, (5, 3)
Answer:
Step-by-step explanation:
Given that:
[tex]x = 5 + In (t)[/tex]
[tex]y = t^2+2[/tex]
At point (5,3)
To find an equation of the tangent to the curve at the given point,
By without eliminating the parameter
[tex]\dfrac{dx}{dt}= \dfrac{1}{t}[/tex]
[tex]\dfrac{dy}{dt}= 2t[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ \dfrac{dy}{dt} }{\dfrac{dx}{dt} }[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ 2t }{\dfrac{1}{t} }[/tex]
[tex]\dfrac{dy}{dx}= 2t^2[/tex]
[tex]\dfrac{dy}{dx}_{ (5,3)}= 2t^2_{ (5,3)}[/tex]
t² + 5 = 4
t² = 4 - 5
t² = - 1
Then;
[tex]\dfrac{dy}{dx}_{ (5,3)}= -2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
By eliminating the parameter
x = 5 + In(t)
In(t) = 5 - x
[tex]t =e^{x-5}[/tex]
[tex]y = (e^{x-5})^2+5[/tex][tex]y = (e^{2x-10})+5[/tex]
[tex]\dfrac{dy}{dx} = 2e^{2x-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2e^{10-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
If 6x +3= 2x+ 19, then x =
Answer:
x = 4
Step-by-step explanation:
6x + 3 = 2x + 19 ------ subtract 3 both sides
6x + 3 - 3 = 2x + 19 - 3 simplify
6x = 2x + 16 ------ subtract 2x both sides
6x - 2x = 2x + 16 - 2x simplify
4x = 16
x = 16 / 4
x = 4
Answer: x = 4
Step-by-step explanation: If the variable appears on both sides of the equation, we put the variables together on one side of the equation and the numbers together on the other side of the equation.
So let's put our variables on the left side by first subtracting
2x from both sides of the equation to get 4x + 3 = 19.
Next, we subtract 3 from both sides to get 4x = 16.
Finally, we divide both sides by 4 to get x = 4.
Use parenthesis to make each number sentence true.
124 - 6 x 0 + 15 = 34
Answer:
12 - 6 x (0 + 15) = 34
How I got my answer
First, how i got my answer was that I had to solve the equation first, ignoring the answer. I got 0 x 6 = 0, then I did 124 - 0 = 124, then I did 124 - 15 = 109, which clearly isn't 34. I figured that we have to put the parentheses around the zero because if we don't, we are going have to multiply something by zero, which always gets zero. After that, I decided that I should put the parentheses around either the 6, or the 15. I did both, and saw which one was correct. If we put it around the 6, we get, 124 - (6 x 0) + 15 = 124 - 0 - 15 = 124 - 15 = 109, which isn't 34. Then I checked 124 - 6 x (0 + 15) = 124 - 6 x 15 = 124 - 90 = 34, and we just got the answer.
P.S. Sorry if it was confusing, I didn't really know how to explain it
A baking scale measures mass to the tenth of a gram, up to 650 grams. Which of the following measurements is possible using this scale? a.3.8 grams b.120.01 grams c.800.0 grams d.54 milligrams
Answer:
Step-by-step explanation:
The answer is b
120.01 grams
1. Quadratics: The path of the longest shot put by the Women’s track team at Sun Devil U is modeledby h(x) = -0.015x2 + 1.08x + 5.8, where x represents the horizontal distance from the start and h(x) isthe height of the shot put above the ground. (Both x and h(x) are measured in feet.)a. [3 pts] Determine h(24). Round your answer to 2 decimal places.
Answer:
23.08 feetStep-by-step explanation:
If the path of the longest shot put by the Women’s track team at Sun Devil U is modeled by h(x) = -0.015x² + 1.08x + 5.8 where x represents the horizontal distance from the start and h(x) is the height of the shot put above the ground, to determine h(24), we will have to substitute x = 24 into the modeled equation as shown;
[tex]h(x) = -0.015x^2 + 1.08x + 5.8\\\\if \ x = 24;\\\\h(24) = -0.015(24)^2 + 1.08(24) + 5.8\\\\h(24) = -0.015(576)+25.92+5.8\\\\h(24) = -8.64+31.72\\\\h(24) = 23.08\\[/tex]
Hence the value of the height at the horizontal distance of 24 feet is 23.08 feet to 2 decimal place.