Answer:
a) Means: 24 and 2; Extremes: 4 and 12
b) Means: 6 and 16; Extremes: 24 and 4
c) Means: 8 and 8; Extremes: 4 and 16
d) Means: 50 and 3; Extremes: 6 and 25
Step-by-step explanation:
The Means and Extremes in a proportion are defined based on the writing the proportion in one lie using colons the indicate the fraction, like in:
a : b = c : d The extremes values here are those that you see at the extreme left and extreme right of that expression. That is: a, and d.
The Means are the values that appear in the middle of the one line expression, that is: b and c.
Recall as well that the proportion can also be written with fractions:
a : b = c : d is the same as: a / b = c / d
so convert the expression to a one line with colons when the question comes in fraction form, and that way you can answer.
Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle?
Answer:
7.5 cm²
Step-by-step explanation:
Dimensions of the large ∆:
[tex] base (b) = 3cm, height (h) = 9cm [/tex]
[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]
Dimensions of the small ∆:
[tex] base (b) = 2cm, height (h) = 6cm [/tex]
[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]
Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²
write a thirdthird-degree polynomial expression that has only two terms with a leading term that has a coefficient of five and a constant of negative two
Answer:
5x^3-2
[tex]ax^{3} +bx^{2} +cx+d\\5x^{3}-given\\ d=-2-given\\5x^{3} -2[/tex]
Explanation:
The two terms are [tex]5x^3[/tex] and [tex]2[/tex]. Terms are separated by either a plus or minus.
We can write it as [tex]5x^3+(-2)[/tex] which is an equivalent form. Here the two terms are [tex]5x^3[/tex] and [tex]-2[/tex]. This is because adding a negative is the same as subtracting.
The coefficient is the number to the left of the variable.
The degree is the largest exponent, which helps form the leading term.
The third degree polynomial written above is considered a cubic binomial. "Cubic" refers to the third degree, while "binomial" means there are 2 terms.
We can write something like [tex]5x^3[/tex] as 5x^3 when it comes to computer settings.
write a letter to your friend in Ghana stating your experience in your presentation school in nigeria
Answer:
hi Ghana how are you doing I am fine here. I really miss u and my friends in the old.U know what in Nigeria this school is really awesome and fantastic we have a swimming pool here and we can go to trip and we can have many things here I really loved this school.
at starting I was not have any friends and know I have many friends. But I really miss u this is what about our . Come to my house I can show you my school it is very near to my house .
Ur friend
writ ur name
Solve for 2 in the diagram below.
120°
32°
T=
Step-by-step explanation:
Hello, there!!!
It's so simple here,
Here,
we have is 1 angle is 120°and other is 3x°.
now,
3x°=120° {because when two st.line intersects eachother then the opposite angle formed are equal}
so, 3x°=120
or, x=120°/3
=40°
Therefore, the value of x is 40°.
Hope it helps....
A survey showed that among 785 randomly selected subjects who completed four years of college, 144 of them are smokers and 84 do not smoke (based on data from the American Medical Association). Suppose you want to test at the 0.01 significance level the claim that the rate of smoking among those with four years of college is less than the 27% rate for the general population.
A. State the null and alternative hypotheses.
B. Find the sample statistic and the p-value.
C. What is your conclusion?
Answer:
We conclude that the rate of smoking among those with four years of college is less than the 27% rate for the general population.
Step-by-step explanation:
We are given that a survey showed that among 785 randomly selected subjects who completed four years of college, 144 of them are smokers.
Let p = population proportion of smokers among those with four years of college
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\geq[/tex] 27% {means that the rate of smoking among those with four years of college is more than or equal to the 27% rate for the general population}
Alternate Hypothesis, [tex]H_A[/tex] : p < 27% {means that the rate of smoking among those with four years of college is less than the 27% rate for the general population}
The test statistics that will be used here is One-sample z-test for proportions;
T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of smokers = [tex]\frac{144}{785}[/tex] = 0.18
n = sample of subjects = 785
So, the test statistics = [tex]\frac{0.18-0.27}{\sqrt{\frac{0.27(1-0.27)}{785} } }[/tex]
= -5.68
The value of z-test statistics is -5.68.
Also, the P-value of the test statistics is given by;P-value = P(Z < -5.68) = Less than 0.0001
Now, at a 0.01 level of significance, the z table gives a critical value of -2.3262 for the left-tailed test.
Since the value of our test statistics is less than the critical value of z, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the rate of smoking among those with four years of college is less than the 27% rate for the general population.
100 students are interviewed to see which of biology, chemistry or physics they prefer.
59 of the students are girls. 35 of the girls like biology best.
2 of the boys prefer physics.
6 out of the 30 who prefer chemistry are girls.
What percentage of the students prefer biology?
Answer:
50%
Step-by-step explanation:
Girls Boys
total: 59 total: 41
- Chemistry 35 - Physics 2
= 24 = 39
- Chemistry ( 30 - 6 ) 24
= 15
Total boys and girls for Biology = 35 + 15 = 50
% = 50/100*100
= 50%
Hope it helps and also mark it as brainliest!!!!Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.
Answer:
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = 3.5
Step-by-step explanation:
Given that:
Consider the following ordered data. 6 9 9 10 11 11 12 13 14
From the above dataset, the highest value = 14 and the lowest value = 6
The median is the middle number = 11
For Q1, i.e the median of the lower half
we have the ordered data = 6, 9, 9, 10
here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.
i.e
median = [tex]\dfrac{9+9}{2}[/tex]
median = [tex]\dfrac{18}{2}[/tex]
median = 9
Q3, i.e median of the upper half
we have the ordered data = 11 12 13 14
The same use case is applicable here.
Median = [tex]\dfrac{12+13}{2}[/tex]
Median = [tex]\dfrac{25}{2}[/tex]
Median = 12.5
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = Q3 - Q1
The interquartile range = 12.5 - 9
The interquartile range = 3.5
. A discount brokerage selected a random sample of 64 customers and reviewed the value of their accounts. The mean was $32,000 with a population standard deviation of $8,200. What is a 90% confidence interval for the mean account value of the population of customers
Answer:
The 90% confidence interval is [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 64
The sample mean is [tex]\= x = \$ 32, 000[/tex]
The standard deviation is [tex]\sigma= \$ 8, 200[/tex]
Given that the confidence interval is 90% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha = 10 \%[/tex]
[tex]\alpha = 0.10[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table , the value is
[tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{ \sigma }{ \sqrt{n} }[/tex]
=> [tex]E = 1.645 * \frac{ 8200 }{ \sqrt{64} }[/tex]
=> [tex]E = 1686.13[/tex]
The 90% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
=> [tex]32000 - 1689.13 < \mu < 32000 + 1689.13[/tex]
=> [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]
What is the difference? Complete the equation. -1 2/5 - (-4/5) = ?
Answer:
First convert them which will be
-7/5 - (-4/5)
so when you subtract a negative number from negative number they actually subtract ex = -4-(-2) = -2
so its simply 7/5-4/5 then add a negative sign
so
3/5
now add negative sign so
-3/5
3.24 (4 being repeated) to a fraction
Answer:
146/45
Step-by-step explanation:
Let x represent the value of the number of interest. Then we can do the following math to find its representation as a fraction.
[tex]x=3.2\overline{4}\\10x=32.4\overline{4}\\10x-x=9x=32.4\overline{4}-3.2\overline{4}=29.2\\\\x=\dfrac{29.2}{9}=\boxed{\dfrac{146}{45}}[/tex]
__
Comment on procedure
The power of 10 that we multiply by (10x) is the number of repeated digits. Here, there is a 1-digit repeat, so we multiply by 10^1. If there were a 2-digit repeat, we would compute 10^2x -x = 99x to rationalize the number.
What is the slope of a line perpendicular to y=-7/4x
O A.
IN
O B.
7
O c.
4
-
O D.
7
4
Answer:
y=4/7x
Step-by-step explanation:
perpendicular lines have opposite slopes. that means reciprocal and opposite sign.
A cabinet door has a perimeter of 76 inches. Its area is 357 square inches. What are the dimensions of the door?
Answer:
17 by 21 inches
Step-by-step explanation:
The perimeter is twice the sum of the dimensions, and the area is their product, so you have ...
L + W = 38
LW = 357
__
Solution:
W(38 -W) = 357 . . . . . substitute for L
-(W^2 -76W) = 357 . . expand on the left
-(W^2 -38 +19^2) = 357 -19^2 . . . . complete the square
(W -19)^2 = 4 . . . . . . . write as a square
W -19 = ±√4 = ±2 . . . take the square root; next, add 19
W = 19 ±2 = {17, 21} . . . . if width is one of these, length is the other
The dimensions are 17 by 21 inches.
Please answer this correctly without making mistakes
Answer: 7 mi
Step-by-step explanation: since the distance from bluepoint to Manchester is 12 9/10 mi and you know that bluepoint to Silverstone is 5 9/10 subtract that and you get 7 mi as your answer
Answer:
7 miles
Step-by-step explanation:
Hey there!
Well given BM and BS, we need to subtract them.
12 9 /10 - 5 9/10
9/10 - 9/10 = 0
12 - 5 = 7
Silvergrove to Manchester is 7 miles.
Hope this helps :)
Find the number of pieces of floor tiles each measuring 26cm long and 10cm wide needed to lay a floor measuring 260m long and 15m wide
Answer:
150,000
Step-by-step explanation:
1 m = 100 cm
260 m = 260 * 100 cm = 26000 cm
15 m = 15 * 100 cm = 1500 cm
area of floor = LW = 26000 cm * 1500 cm = 39,000,000 cm^2
area of 1 tile = 26 cm + 10 cm = 260 cm^2
number of tiles needed = 39,000,000/260 = 150,000
Answer: 150,000 tiles
Give the domain and range of each relation using set notation
Answer:
See below.
Step-by-step explanation:
First, recall the meanings of the domain and range.
The domain is the span of x-values covered by the graph.
And the range is the span of y-values covered by the graph.
1)
So, we have here an absolute value function.
As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:
[tex]\{x|x\in\textbb{R}\}[/tex]
(You are correct!)
For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:
[tex]\{y|y\leq 7\}[/tex]
2)
We have here an ellipse.
First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:
[tex]-4\leq x\leq 6[/tex]
So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:
[tex]\{x|-4\leq x\leq 6\}[/tex]
For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:
[tex]-5\leq y\leq 1[/tex]
This represents all the y-values between -5 and 1, including -5 and 1.
In set notation, thi is:
[tex]\{y|-5\leq y\leq 1\}[/tex]
What is 5 feet and 11 inches in inches
Answer:
60
Step-by-step explanation:
5 is 60 inch
If f(x)=ax+b/x and f(1)=1 and f(2)=5, what is the value of A and B?
Answer:
[tex]\huge\boxed{a=9 ; b = -8}[/tex]
Step-by-step explanation:
[tex]f(x) = \frac{ax+b}{x}[/tex]
Putting x = 1
=> [tex]f(1) = \frac{a(1)+b}{1}[/tex]
Given that f(1) = 1
=> [tex]1 = a + b[/tex]
=> [tex]a+b = 1[/tex] -------------------(1)
Now,
Putting x = 2
=> [tex]f(2) = \frac{a(2)+b}{2}[/tex]
Given that f(2) = 5
=> [tex]5 = \frac{2a+b}{2}[/tex]
=> [tex]2a+b = 5*2[/tex]
=> [tex]2a+b = 10[/tex] ----------------(2)
Subtracting (2) from (1)
[tex]a+b-(2a+b) = 1-10\\a+b-2a-b = -9\\a-2a = -9\\-a = -9\\a = 9[/tex]
For b , Put a = 9 in equation (1)
[tex]9+b = 1\\Subtracting \ both \ sides \ by \ 9\\b = 1-9\\b = -8[/tex]
The table shows the height, in meters, of an object that is dropped as time passes until the object hits the ground. A 2-row table with 10 columns. The first row is labeled time (seconds), x with entries 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.6. The second row is labeled height (meters), h with entries 100, 98.8, 95.1, 89.0, 80.4, 69.4, 55.9, 40.0, 21.6, 0. A line of best fit for the data is represented by h = –21.962x + 114.655. Which statement compares the line of best fit with the actual data given by the table? According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground. According to the line of best fit, the object was dropped from a lower height. The line of best fit correctly predicts that the object reaches a height of 40 meters after 3.5 seconds. The line of best fit predicts a height of 4 meters greater than the actual height for any time given in the table.
Answer: A. According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground.
The statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.
What is the line of best fit?A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.
We have a line of best fit:
h = –21.962x + 114.655
As per the data given and line of best fit, we can say the object would have impacted the ground 0.6 seconds later than it did according to the line of best fit.
Thus, the statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.
Learn more about the line of best fit here:
brainly.com/question/14279419
#SPJ2
if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=
Answer:
3
Step-by-step explanation:
f(x)=3x-3
g(x)=-x^2+4,
f(2) = 3(2) -3 = 6-3 =3
g(-2) = -(-2)^2+4 = -4+4 = 0
f(2)-g(-2)= = 3-0 = 3
What is the volume of a cube with a side length of
of a unit?
Transform the polar equation to a Cartesian (rectangular) equation: r= 4sinθ
options include:
x^2+y^2 = 4y
x^2+y^2 = -4
x^2+y^2 = 4
x^2+y^2 = -4y
Answer:
x^2 +y^2 = 4y
Step-by-step explanation:
Using the usual translation relations, we have ...
r^2 = x^2+y^2
x = r·cos(θ)
y = r·sin(θ)
Substituting for sin(θ) the equation becomes ...
r = 4sin(θ)
r = 4(y/r)
r^2 = 4y
Then, substituting for r^2 we get ...
x^2 +y^2 = 4y . . . . . matches the first choice
The area of the circle x² + y2 - 6x-4y +9 = 0 is
Answer:
Your answer is here.Enjoy dude
Answer:
12.56 unit²
Step-by-step explanation:
Given:x² + y² - 6x - 4y + 9 = 0To find:The area of circleSolution:The form of the circle is:
(x- h)² + (y-k)² = r²Let's bring the given to the form of a circle as above:
x² + y² - 6x - 4y + 9 = 0x² - 6x + y²- 4y + 9 = 0 ⇒ combining like terms and completing squarex² - 6x + 9 + y²- 4y + 4 = 4 ⇒ adding 4 to both sides(x-3)² + (y - 2)² = 2² ⇒ got the form of this circleAs per the form, we got r² = 2², so the radius of circle is 2 units.
The area of circle:
A= πr² = 3.14×2² = 12.56 unit²(a^8)3/2 in simplest form
Answer:
[tex]\large\boxed{\frac{3}{2}a^{8}}[/tex]
Step-by-step explanation:
([tex]a^{8}[/tex]) * [tex]\frac{3}{2}[/tex]
Remove the parenthesis by multiplying
[tex]\frac{3}{2}[/tex][tex]a^{8}[/tex]
This expression cannot be simplified further
[tex]\large\boxed{\frac{3}{2}a^{8}}[/tex]
Hope this helps :)
On a coordinate plane, 2 lines are shown. Line A B has points (negative 4, negative 2) and (4, 4). Line C D has points (0, negative 3) and (4, 0). Which statement best explains the relationship between lines AB and CD? They are parallel because their slopes are equal. They are parallel because their slopes are negative reciprocals. They are not parallel because their slopes are not equal. They are not parallel because their slopes are negative reciprocals.
Answer:
A. they are parallel because their slopes are equal.
Step-by-step explanation:
edge 2020
Answer:
its A in egde
Step-by-step explanation:
Which expression is equivalent to (jk)l? A. (j + k) + l B. j(kl) C. (2jk)l D. (j + k)l
Answer:
B. j(kl)
Step-by-step explanation:
(jk)l
We can change the order we multiply and still get the same result
j(kl)
Answer:
Step-by-step explanation:
its B i did it
How do you find x when knowing the probability?
Answer:
x
Step-by-step explanation:
probability is the branch of mathematics concerning numeral descriptions of how likely an event is to occur or how likely it is that a proposition is true
How should a musician effectively convey emotions or ideas in a performance?
Answer:
Within the factors hindering expression in music, tempo is the most important number of factors such as your mood.
Step-by-step explanation:
If one wants to convey a message, they should try these:
a) Use real life
b) introduce symbolism
c) convey sensory disruption, e.t.c.
Hope these helps.
The formula for the area of a square is s2, where s is the side length of the square. What is the area of a square with a side length of 6 centimeters? Do not include units in your answer.
Answer:
36
Step-by-step explanation:
formula of area for square:
A=s^2
s=6
A=6^2
A=36
Answer:
36
Step-by-step explanation:
I got it right
(12x^(2)+x-35)-:(4x+17)
Answer:
(3x-5)(4x+7) / 4x + 17
Step-by-step explanation:
Rewrite the division as a fraction
12 x ^2 + x-35 / 4x+17
Factor by grouping
(3x-5)(4x+7) / 4x + 17
Hope this was the answer you were looking for
Find the length of AB¯¯¯¯¯¯¯¯ A. 19.56 B. 51.86 C. 42.99 D. 34.98
Answer:
Apllying cos on the triangle
cos(angle)= Base/ Hyp
cos(34)= 29/ AB
AB= 29/0.8290
AB=34.98
Step-by-step explanation:
The length of AB is 34.98 units which the correct answer would be an option (D).
What is the right triangle?A right triangle is defined as a triangle in which one angle is a right angle or two sides are perpendicular.
What are Trigonometric functions?Trigonometric functions are defined as the functions which show the relationship between the angle and sides of a right-angled triangle.
Given that ΔABC
∠C = 90°
Here base = BC = 29 units and hypotenuse = AB
To determine the length of AB
Apply the cosine on the given right triangle
⇒ cos(θ) = Base/hypotenuse
⇒ cos(34) = 29/ AB
∴ cos(34°) = 0.8290
⇒ 0.8290 = 29/ AB
⇒ AB= 29/0.8290
⇒ AB = 34.98 units
Hence, the length of AB is 34.98 units
Learn more about Trigonometric functions here:
https://brainly.com/question/6904750
#SPJ2