1) The area of a circle with a diameter of 1 m is approximately 0.7854 square meters.
2) The area of a circle with a diameter of 100 cm is approximately 7853.98 square centimeters.
3) The area of a circle with a radius of 100 cm is approximately 314159.27 square centimeters.
4) The area of a circle with a radius of 500 mm is approximately 785398.16 square millimeters.
The formula for the area of a circle is A = πr², where A is the area and r is the radius of the circle.
1) If the diameter of the circle is 1 m, then the radius is 0.5 m. Therefore, the area of the circle is:
A = πr² = π(0.5)² = π(0.25) ≈ 0.7854 square meters.
2) If the diameter of the circle is 100 cm, then the radius is 50 cm. Therefore, the area of the circle is:
A = πr² = π(50)² = π(2500) ≈ 7853.98 square centimeters.
3) If the radius of the circle is 100 cm, then the area of the circle is:
A = πr² = π(100)² = π(10000) ≈ 314159.27 square centimeters.
4) If the radius of the circle is 500 mm, then the area of the circle is:
A = πr² = π(500)² = π(250000) ≈ 785398.16 square millimeters.
Learn more about area here
brainly.com/question/28642423
#SPJ4
Calculator Q15. y is directly proportional to x.
When x = 500, y = 50
b) Calcualte the value of y when x = 60.
If y is directly proportional to x, when x = 60, y = 6.
What is proportional?Proportional refers to a relationship between two quantities in which one quantity is a constant multiple of the other. In other words, if one quantity increases or decreases by a certain factor, the other quantity will also increase or decrease by the same factor.
What is directly proportional?Directly proportional is a specific type of proportionality where two quantities increase or decrease by the same factor. In other words, if one quantity doubles, the other quantity also doubles. If one quantity triples, the other quantity also triples, and so on.
In the given question,
If y is directly proportional to x, we can use the formula:
y = kx
where k is the constant of proportionality.
To find the value of k, we can use the given values:
y = kx
50 = k(500)
Solving for k:
k = 50/500
k = 0.1
Now that we know the value of k, we can use the formula to find the value of y when x = 60:
y = kxy = 0.1(60)
y = 6
Therefore, when x = 60, y = 6.
To know more about proportionality, visit: https://brainly.com/question/29126727
#SPJ1
A movie theater is attracting customers with searchlights. One circular searchlight has a
radius of 2 feet. What is the searchlight's circumference?
Use 3.14 for л. If necessary, round your answer to the nearest hundredth.
The nearest hundredth, we get:
C ≈ 12.56 feet.
What is the value of 2r of a circle?Circle circumference (or perimeter) = 2R
where R denotes the circle's radius. 3.14 is the approximate (up to two decimal points) value of the mathematical constant. Again, Pi () is a special mathematical constant that represents the circumference to diameter ratio of any circle.
The circumference of a circle is calculated as follows:
C = 2πr
where C is the circumference, (pi) is a constant close to 3.14, and r is the radius of the circle.
When the given values are substituted, the following results are obtained:
C = 2(3.14)(2) \s= 12.56
We get the following when we round to the nearest hundredth:
C ≈ 12.56 feet.
To know more about Circle circumference visit:
https://brainly.com/question/26605972
#SPJ1
please help guys, I need this done
Answer:
18+m=24, 6
Step-by-step explanation:
You will get the first part by understanding that 24 is the whole and 18 is the part. Part + the other part, m, is the whole. You will then solve this by isolating the variable m, and subtracting 18 on both sides of the equation. Since 24-18=6, that is the final answer.
Find the distance between each pair of points.
a. M= (0,-11) and P=(0,2)
b. A= (0,0) and B= (-3,-4)
c. C= (8,0) and D=(0,-6)
Answer:
To calculate the distance between each pair of points given, we can use the distance formula which is derived from the Pythagorean theorem. The formula is:
distance = square root of [(x2 - x1)^2 + (y2 - y1)^2]
Using this formula, we can calculate the following distances:
a. Distance between M and P = 13 units
b. Distance between A and B = 5 units
c. Distance between C and D = 10 units
The interest rate of an auto
loan is 4%. Express this
number as a decimal.
Answer: 0.04
Step-by-step explanation:
In order to get 4% as a decimal, you must divide 4 by 100.
4/100 = 0.04
Thus, the answer to your question is 0.04
One family spent $45 on movie tickets for 2 adults and 3 childr
Another family spent $40 for 2 adults and 2 children. What are
prices of the adult movie tickets and the child movie tickets?
Answer:The prices of the adult movie tickets and the child movie tickets are $15 and $5 respectively.
Given that, the Jones family spent $45 on movie tickets for 2 adults and 3 children.
Step-by-step explanation:What is a linear system of equations?
A system of linear equations consists of two or more equations made up of two or more variables such that all equations in the system are considered simultaneously. The solution to a system of linear equations in two variables is any ordered pair that satisfies each equation independently.
Let cost of adult tickets be x and the cost of children tickets be c.
The Jones family spent $45 on movie tickets for 2 adults and 3 children.
2a+3c=45 ------(I)
The Smith family spent $40 for 2 adults and 2 children.
2a+2c=40
a+c=20 ------(II)
From equation (II), we have a=20-c
Substitute a=20-c in equation (I), we get
2(20-c)+3c=45
⇒ 40-2c+3c=45
⇒ c=$5
Put c=5 in equation (II), we get
a+5=20
⇒ a=$15
g a random sample of 100 automobile owners in the state of alabama shows that an automobile is driven on average 23,500 miles per year with a standard deviation of 3900 miles. assume the distribution of measurements to be approximately normal. a) construct a 99% confidence interval for the average number of miles an automobile is driven annually in alabama.
We can be 99% confident that the average number of miles an automobile is driven annually in Alabama is between 21,342.6 and 24,637.4 miles
To answer this question, we need to use the following formula for a confidence interval for the mean: CI = (μ - z*(σ/√n), μ + z*(σ/√n)), Where μ is the population mean, z is the z-score for the given confidence level, σ is the population standard deviation, and n is the sample size. Using the given information, we can calculate the confidence interval for the mean:CI = (23500 - 2.575*(3900/√100), 23500 + 2.575*(3900/√100)), CI = (21342.6, 24637.4)
To summarize, we used the formula for a confidence interval for the mean and the given information to calculate the confidence interval for the average number of miles an automobile is driven annually in Alabama. This confidence interval is (21342.6, 24637.4), which means we can be 99% confident that the average number of miles an automobile is driven annually in Alabama is between 21,342.6 and 24,637.4 miles.
Read more about Statistics at
https://brainly.com/question/30218856
#SPJ11
You have $3,200 to invest in stocks. You purchase shares for $11.95/sh. You decide to sell the stock at $11.87/sh?
How much did you net with this transaction?
A $21.36
B $30.71
C $11.87
D $0.08
Therefore, the net result of the transaction is a loss of $21.36. The answer is A) $21.36.
What is selling price?Selling price refers to the price at which a product or service is sold to customers or clients. It is the amount of money that a buyer pays to the seller in exchange for the product or service. The selling price is usually higher than the cost of producing or acquiring the product or service, and the difference between the selling price and the cost is the profit earned by the seller. In some cases, the selling price may also include additional charges such as taxes, shipping fees, or handling fees.
by the question.
To calculate the net result of the transaction, we need to determine how many shares were purchased with the $3,200 investment.
$3,200 divided by $11.95/sh = approximately 267.36 shares (rounded to the nearest hundredth)
Therefore, the total cost of purchasing 267 shares at $11.95/sh is:
267 shares x $11.95/sh = $3,195.65
The total revenue from selling 267 shares at $11.87/sh is:
267 shares x $11.87/sh = $3,174.29
To determine the net result of the transaction, we subtract the total revenue from the total cost:
$3,174.29 - $3,195.65 = -$21.36
To learn more about cost:
https://brainly.com/question/30045916
#SPJ1
Calculate the amount of interest on $4,000. 00 for 4 years, compounding daily at 4. 5 % APR. From the Monthly Interest Table use $1. 197204 in interest for each $1. 00 invested
The amount of interest earned on $4,000.00 for 4 years, compounding daily at 4.5% APR, is $1,064.08.
To calculate the amount of interest on $4,000.00 for 4 years, compounding daily at 4.5% APR, we can use the formula for compound interest:
A = P(1 + r/n)^(nt)
where A is the final amount, P is the principal, r is the annual interest rate as a decimal, n is the number of times the interest is compounded per year, and t is the time in years.
In this case, we have P = $4,000.00, r = 0.045, n = 365 (since interest is compounded daily), and t = 4. Plugging these values into the formula, we get:
A = $4,000.00(1 + 0.045/365)^(365*4)
A = $4,000.00(1.0001234)^1460
A = $4,889.68
The final amount is $4,889.68, which means that the interest earned is:
Interest = $4,889.68 - $4,000.00 = $889.68
We are given that the monthly interest table shows that $1.197204 in interest is earned for each $1.00 invested. Therefore, to find the interest earned on $4,000.00, we can multiply the interest earned by the factor:
$1.197204 / $1.00 = 1.197204
Interest earned = $889.68 x 1.197204 = $1,064.08
To learn more about interest click on,
https://brainly.com/question/28895435
#SPJ4
A straw that is 15cm long leans against the inside of a glass. The diameter of a glass is
5cm, and has a height of 8cm. How far past the edge of the glass would the straw extend?
Round your answer to the nearest tenth.
The straw will extend past the edge of the glass in a straight line. To find the answer, subtract the diameter of the glass (5cm) from the length of the straw (15 cm): 15 cm - 5 cm = 10 cm. This is the distance the straw will extend past the edge of the glass. To round to the nearest tenth, round 10.0 up to 10.1. Therefore, the straw will extend past the edge of the glass 10.1 cm.
Solve: 3√x-√9x-17 =1
The solution to the equation (3√x) - √(9x-17) = 1 is x = 9.
What is the solution to the given equation?Given the equation in the question (3√x) - √(9x-17) = 1.
To solve for x in the given equation:
(3√x) - √(9x-17) = 1
We can start by isolating the square root term on one side of the equation. Adding √(9x - 17) to both sides, we get:
(3√x) = √(9x - 17) + 1
Squaring both sides of the equation, we get:
(3√x)² = (√(9x - 17) + 1)²
9x = -16 + 2√(9x - 17) + 9x
Solve for 2√(9x - 17)
2√(9x - 17) = 16
36x - 68 = 256
Add 68 to both sides
36x - 68 + 68 = 256 + 68
36x = 324
x = 324/36
x = 9
Therefore, the solution is x = 9.
Learn more about square roots here: https://brainly.com/question/3120622
#SPJ1
suppose you start at the origin, move along the x-axis a distance of 7 units in the positive direction, and then move downward a distance of 6 units. what are the coordinates of your position? (x, y, z)
The coordinates of your position If we start at the origin, we are moving only along the x-axis of a distance of 7 units in positive direction and then only in the negative y-axis direction and z-coordinate is zero are (7,-6,0).
The origin is the point in space that has a position of (0, 0, 0), which represents the point where the x, y, and z axes intersect.
The first step is to move 7 units in the positive x direction. The positive x direction is the direction in which x values increase. Therefore, we move to the right along the x-axis to the point (7, 0). This means that we have moved 7 units along the x-axis, and our position is now (7, 0, 0).
The second step is to move downward a distance of 6 units. Since we are not moving in the x direction, we are only changing our position along the y-axis. Moving downward in the y direction means decreasing our y-coordinate. Therefore, we move 6 units downward from our current position to the point (7, -6, 0).
Therefore, the coordinates of our position are (7, -6, 0)
To practice more question about 'co-ordinates':
https://brainly.com/question/17206319
#SPJ11
what is the value of y in the solution to the system of equations below.
y=-x+6
2x-y=-9
Answer:
I gave a couple solutions as I wasn't sure if you were asking for graphing purposes or substituting y=-x+6 into the second equation 2x-y=-9. So I gave both solutions just in case.
for the first equation y=-x+6, y intercept is (0,6)
for equation two 2x-y=-9, y intercept is (0,9)
In both of the equations the x value is 1.
Solving for y without graphing. Y=9+2x
and x=-1
Step-by-step explanation:substitute i
HOWEVER, if you are saying that the top equation is the value of y, then you substitute it into the bottom equation. 2x--x+6=-9 which would be x=-5
It really depends on what is expected of the question. I wasn't sure which one, so I gave a couple different approaches. If you could give more information, such as, are you graphing, that would be great. I'll keep an eye out for any comments.
the length of a rectangle is 3 in longer than its width. if the perimeter of the rectangle is 50 in, find its length and widths
First, re-read the problem until you understand it and can put it into your own words. I re-wrote it like this: "Find the area of a rectangle by first finding the length (L) and the width (W)." [note that I added "find L and W," but that is how I'm going to solve the problem; I could also have said that we will need the formulas, P=2L+2W and A=LW, but you knew that already, right?).
Translate the problem:
"The length of a rectangle is 3 ft longer than its width" means
L = 3 + W (eq1)
"the perimeter of the rectangle is 30 ft" means
P = 50 (eq2)
So, now the math is easy, just find L and W so we can compute the area:
P = 50 = 2L + 2W (eq3; from eq2 and the formula for P)
50 = 2(3+W) + 2W (use eq1 to substitute for L)
50 = 6 + 2W + 2W (distribute)
50 = 6 + 4W (collect terms)
44 = 4W (subtract 6 from both sides)
11 ft = W (divide both sides by 4)
Use the easiest equation (either eq1 or else eq3) to find L:
L = 3 + W (eq1)
L = 3 + 11
L = 14 ft
What is the area (A)?
A = L*W
A = (14 ft) x (11 ft)
A = 154 sq ft
suppose we are interested in estimating the difference in survival rate between the control and treatment groups using a confidence interval. explain why we cannot construct such an interval using the normal approximation. what might go wrong if we constructed the confidence interval despite this problem?
We cannot construct an interval using the normal approximation of survival rate between control and treatment groups because the samples must be random, independent, and their sample sizes must be sufficiently large.
What is the normal approximation?The normal approximation is valid when the sample sizes are large enough to ensure that the sampling distribution of the mean of the variable is approximately normal.
The central limit theorem applies to the distribution of the sample mean when the sample size is large enough, according to the normal approximation.
As a result, the mean difference between the two groups must have a normal distribution. The normal distribution may not be an accurate representation of the underlying distribution of the difference between the two population means in the absence of this requirement, causing the confidence interval to be inaccurate. It will lead to incorrect inferences about the difference in the survival rates of the two groups.
The confidence interval constructed despite this problem will lead to incorrect inferences about the difference in the survival rates of the two groups. This would make it difficult to draw any conclusions based on the findings of this experiment.
Learn more about Confidence interval here:
https://brainly.com/question/24131141
#SPJ11
Smores, a Taste of Multivariate Normal Distribution Smores Company store makes chocolate (Xi), marshmallow (X2), and graham cracker (Xs). Assume that the profit (in millions) for selling these smores materials follow a multivariate uormal ditributim with parameters 1 0.3 0.3 and Σ= 0.31 0 0.3 01 What is the probability that 1. the profit for selling chocolate is greater than 6 millions? 2. the profit for selling chocolate is greater than 6 millions, given the sales of marshmallow is 5 million and the sales of graham cracker is 5 mllion? 3. P(3X1-1X2 + 3X3 > 20)?
The probability of [tex]3X1-1X2 + 3X3[/tex] being greater than 20 is given by[tex]P(3X1-1X2 + 3X3 > 20) = 1- Φ((20-3μ1+μ2-3μ3)/(√3σ11+σ22+3σ33))[/tex].
In this case, [tex]μ1=10, μ2=10, μ3=10, σ11=0.3, σ22=0.3, σ33=0.3,[/tex] so the probability of [tex]3X1-1X2 + 3X3[/tex] being greater than 20 is 1-Φ(-1.0).
1. To answer this question, we can use the formula for a multivariate normal distribution.
The probability of the profit for selling chocolate being greater than 6 million is given by P(X1 > 6) = 1- Φ(6-μ1)/(√σ11). In this case, μ1=10, σ11=0.3, so the probability of the profit being greater than 6 million is 1-Φ(2.667).
2. To answer this question, we need to use the formula for the conditional probability of a multivariate normal distribution.
The probability of the profit for selling chocolate being greater than 6 million, given the sales of marshmallow is 5 million and the sales of graham cracker is 5 million, is given by
[tex]P(X1>6 | X2=5, X3=5) = 1- Φ((6-μ1-Σ12*5-Σ13*5)/(√σ11-Σ12²-Σ13²))[/tex]. In this case,
[tex]μ1=10, σ11=0.3, Σ12=0.3, Σ13=0.3,[/tex]so the probability of the profit being greater than 6 million is 1-Φ(-0.1).
for such more questions on probability
https://brainly.com/question/13604758
#SPJ11
What is the answer I keep getting 32
Answer:
2 9/14
Step-by-step explanation:
what is the z-score for the 25th percentile of the standard normal distribution?A. -0.625
B. 0.50 C. 0.60 D. -0.50 E. 0.00
The z-score for the 25th percentile of a standard normal distribution is approximately -0.625. Here option A is the correct answer.
To find the z-score for the 25th percentile of a standard normal distribution, we need to use a standard normal distribution table or calculator. The 25th percentile corresponds to a cumulative area under the standard normal curve of 0.25.
Using a standard normal distribution table or calculator, we can find that the z-score corresponding to a cumulative area of 0.25 is about -0.68. This means that approximately 25% of the area under the standard normal curve lies to the left of -0.625.
So, among the given options, the correct answer is Option A, -0.625, Option D, -0.50, which is also incorrect. Option E, 0.00, is definitely incorrect because the 25th percentile is to the left of the mean.
To learn more about standard normal distribution
https://brainly.com/question/29509087
#SPJ4
Please help it’s for tmr
Leo has a number of toy soldiers between 27 and 54. If you want to group them four by four, there are none left, seven by seven, 6 remain, five by five, 3 remain. How many toy soldiers are there?
The answer is 48 but I need step by step explanation
Hence, 28 toy soldiers are the correct answer.
In mathematics, how is a group defined?A group in mathematics is created by combining a set with a binary operation. For instance, a group is formed by a set of integers with an arithmetic operation and a group is also formed by a set of real numbers with a differential operator.
Let's refer to the quantity of toy soldiers as "x".
We are aware that x is within the range of 27 and 54 thanks to the problem.
x can be divided by 4 without any remainders.
The residual is 6 when x is divided by 7.
The leftover after dividing x by five is three.
These criteria allow us to construct an equation system and find x.
Firstly, we are aware that x can be divided by 4 without any residual. As a result, x needs to have a multiple of 4. We can phrase this as:
x = 4k, where k is some integer.
Secondly, we understand that the remaining is 6 when x is divided by 7. This can be stated as follows:
x ≡ 6 (mod 7)
This indicates that x is a multiple of 7 that is 6 more than. We can solve this problem by substituting x = 4k:
4k ≡ 6 (mod 7)
We can attempt several values of k until we discover one that makes sense for this equation in order to solve for k. We can enter k in to equation starting using k = 1, as follows:
4(1) ≡ 6 (mod 7)
4 ≡ 6 (mod 7)
It is not true; thus we need to attempt a next value for k. This procedure can be carried out repeatedly until the equation is satisfied for all values of k.
k = 2:
4(2) ≡ 6 (mod 7)
1 ≡ 6 (mod 7)
k = 3:
4(3) ≡ 6 (mod 7)
5 ≡ 6 (mod 7)
k = 4:
4(4) ≡ 6 (mod 7)
2 ≡ 6 (mod 7)
k = 5:
4(5) ≡ 6 (mod 7)
6 ≡ 6 (mod 7)
k = 6:
4(6) ≡ 6 (mod 7)
3 ≡ 6 (mod 7)
k = 7:
4(7) ≡ 6 (mod 7)
0 ≡ 6 (mod 7)
We have discovered that the equation 4k 6 (mod 7) is fulfilled when k = 7. Thus, we can change k = 7 to x = 4k to determine that:
x = 4(7) = 28
This indicates that there are 28 toy troops. Yet we also understand that the leftover is 3 when x is divided by 5. We don't need to take into account any other values of x because x = 28 satisfies this requirement.
28 toy soldiers are the correct response.
To know more about group visit:
https://brainly.com/question/28854364
#SPJ1
One number is 13 less than another number. Let x represent the greater number. What is the sum of these two numbers?
Answer:
2x - 13
Step-by-step explanation:
If x represents the greater number, then the other number is x - 13. The sum of these two numbers is:
x + (x - 13) = 2x - 13
Guidance Missile System A missile guidance system has seven fail-safe components. The probability of each failing is 0.2. Assume the variable is binomial. Find the following probabilities. Do not round intermediate values. Round the final answer to three decimal places, Part: 0 / 4 Part 1 of 4 (a) Exactly two will fail. Plexactly two will fail) = Part: 1/4 Part 2 of 4 (b) More than two will fail. P(more than two will fail) = Part: 214 Part: 2/4 Part 3 of 4 (c) All will fail. P(all will fail) = Part: 3/4 Part 4 of 4 (d) Compare the answers for parts a, b, and c, and explain why these results are reasonable. Since the probability of each event becomes less likely, the probabilities become (Choose one smaller larger Х 5
The probability of all will fail is the lowest.
The given problem states that a missile guidance system has seven fail-safe components, and the probability of each failing is 0.2. The given variable is binomial. We need to find the following probabilities:
(a) Exactly two will fail.
(b) More than two will fail.
(c) All will fail.
(d) Compare the answers for parts a, b, and c, and explain why these results are reasonable.
(a) Exactly two will fail.
The probability of exactly two will fail is given by;
P(exactly two will fail) = (7C2) × (0.2)2 × (0.8)5
= 21 × 0.04 × 0.32768
= 0.2713
Therefore, the probability of exactly two will fail is 0.2713.
(b) More than two will fail.
The probability of more than two will fail is given by;
P(more than two will fail) = P(X > 2)
= 1 - P(X ≤ 2)
= 1 - (P(X = 0) + P(X = 1) + P(X = 2))
= 1 - [(7C0) × (0.2)0 × (0.8)7 + (7C1) × (0.2)1 × (0.8)6 + (7C2) × (0.2)2 × (0.8)5]
= 1 - (0.8)7 × [1 + 7 × 0.2 + 21 × (0.2)2]
= 1 - 0.2097152 × 3.848
= 0.1967
Therefore, the probability of more than two will fail is 0.1967.
(c) All will fail.
The probability of all will fail is given by;
P(all will fail) = P(X = 7) = (7C7) × (0.2)7 × (0.8)0
= 0.00002
Therefore, the probability of all will fail is 0.00002.
(d) Compare the answers for parts a, b, and c, and explain why these results are reasonable.
The probability of exactly two will fail is the highest probability, followed by the probability of more than two will fail. And, the probability of all will fail is the lowest probability. These results are reasonable since the more the number of components that fail, the less likely it is to happen. Therefore, it is reasonable that the probability of exactly two will fail is higher than the probability of more than two will fail, and the probability of all will fail is the lowest.
Learn more about Probability
brainly.com/question/23017717
#SPJ11
What is the volume of the prism below?
Answer:30
Step-by-step explanation: the formula is base x height over 2, so (6x10)/2 is 30.
n+d=21
0.05n + 0.10d= 1.70
Answer:
To solve the system of equations:
n + d = 21 ---(1)
0.05n + 0.10d = 1.70 ---(2)
We can use the substitution method by solving for one variable in terms of the other from equation (1) and substituting it into equation (2).
Solving equation (1) for n:
n = 21 - d
Substituting this expression for n into equation (2):
0.05(21 - d) + 0.10d = 1.70
Distributing the 0.05:
1.05 - 0.05d + 0.10d = 1.70
Combining like terms:
0.05d = 0.65
Dividing both sides by 0.05:
d = 13
Substituting this value of d into equation (1):
n + 13 = 21
Solving for n:
n = 8
Therefore, the solution to the system of equations is n = 8 and d = 13.
If a can of paint can cover 600 square inches, how many cans of paint are needed to cover 1,880 square inches
Answer:
1,880 sq in ÷ 600 sq in/can ≈ 3.13 cans
If you want you can round that to 4 cans.
What are the integer solutions to the inequality below?
−
4
<
x
≤
0
Step-by-step explanation:
x = +1
x = -2
x = -3
x = -4
Use number line to find the value and fit equation
Simplify 650 – 0.394 + 18. 77
If you answer on 10 minutes i will mark you as the brainliest
Answer:
668.376
Step-by-step explanation:
Please hit brainliest if this was helpful!
To simplify 650 – 0.394 + 18.77, we can first add 650 and 18.77 since they're both whole numbers:
650 + 18.77 = 668.77
Then, we can subtract 0.394 from 668.77:668.77 - 0.394 = 668.376
Therefore, 650 – 0.394 + 18.77 simplifies to 668.376.
What’s -9.1 times 3.75
Will make you brainlist!
Answer:
x = -2 , y = 2
Step-by-step explanation:
label your equations (1) and (2) the question mention to use elimination method and make x the same for both. To do that multiply equation (1) by 2. than label it (3)so 3x becomes 6x adding the equation (2)+(3) cancels out -6x and 6x so you can find value of yuse value of y to find xhope this helps :)
Find the particular solution of the first-order linear differential equation for x > 0 that satisfies the initial condition. Differential Equation Initial Condition y' + y tan x = sec X + 9 cos x y(0) = 9 y = sin x + 9x cos x +9
Previous question
Answer: Differential Equation Initial Condition y' + y tan x = sec X + 9 cos x y(0) ... linear differential equation for x > 0 that satisfies the initial condition.
Step-by-step explanation:
a data set consists of the data given below plus one more data point. when the additional point is included in the data set the sample mean of the resulting data set is 32.083. what is the value of the additional data point?
The value of the additional data point is [tex]$19.17$[/tex].
What is the value of the additional data point?Let us first find the mean of the given data:
[tex]Mean = \frac{\sum_{i=1}^{n} x_i}{n}=\frac{39 + 45 + 43 + 42 + 44}{5}= 42.6[/tex]
Now let's find the value of the additional data point. Let the value of the additional data point be x. Therefore, the new sum of data is
[tex]$(39+45+43+42+44+x)$[/tex].
Total numbers of data are 6 (five given in the set and one additional data point).So, the mean of the resulting data set is given by:
[tex]32.083 = \frac{(39+45+43+42+44+x)}{6}[/tex]
Multiplying both sides of the equation by 6 we get:
[tex]6 \times 32.083 = (39+45+43+42+44+x)[/tex]
We have the value of [tex]$39+45+43+42+44$[/tex] which is [tex]$213$[/tex].
Therefore, substituting all the values, we get:
[tex]193.83 + x = 213[/tex]
On subtracting [tex]$193.83$[/tex] from both sides, we get the value of
[tex]x. x = 213 - 193.83 = 19.17[/tex]
Therefore, the value of the additional data point is [tex]$19.17$[/tex]
See more about sample mean at: https://brainly.com/question/29441200
#SPJ11