Find the sum. 1. -7+(-5)
O-12
O-2
0 2
0 12
Answer:
-12
Step-by-step explanation:
-7+(-5)=
-7-5=
-12
evaluate -99 + 3^2•5
Answer:
= - 54
Step-by-step explanation:
- 99 + 3^2•5
- 99 + 9 × 5
- 99 + 45
= - 54
What is the volume of a sphere, to the nearest cubic inch, if the radius equals 5 inches? Use π = 3.14.
Answer:
V = 523 in^3
Step-by-step explanation:
The volume of a sphere is given by
V = 4/3 pi r^3
V = 4/3 ( 3.14) * 5^3
V = 523.33333repeating
Rounding to the nearest inch^3
V = 523 in^3
Answer:
[tex] 523.6 {in}^{3} [/tex]
Step-by-step explanation:
[tex]v = \frac{4}{3} \pi {r}^{3} \\ = \frac{4}{3} \pi \times 5 \times 5 \times 5 \\ = 523.6 {in}^{3} [/tex]
Joey’s pizza sells large cheese pizzas for $12.00. Each additional topping costs $0.50. Basketball Boosters bought 12 large pizzas, each with 3 toppings. There are 8 slices per pizza. How much does it cost per slice? Round to the nearest cent.
Answer:
So first you do $0.50 x 3 = 1.5
then you add that to $12.00
$12.00 + 1.5 = 13.5
13.5 is the cost of one pizza.
Since they bought 12:
The total cost of the 12 pizza is $162 <== not important
13.5 divided by 8 is 1.687
round 1.56875 to the nearest cent 1.7 = $2
so each slice costs $2
if pentagon OPQRS is dilated by a scale factor or ?
from the origin to create O'P'Q'R'S: what is the ordered pair of point S'?
Answer:
Option (D) : (3.5, 8.75)
I will rate you brainliest Select the best description of what the LCM of a set of polynomials is. a.It is the quotient of all the factors of the polynomials. b.It is the common numerator of a rational expression. c. It is the product of the prime factors that are either unique to or shared by the polynomials. d. It is all the polynomials in the set.
Answer:
C. It is the product of the prime factors that are either unique to or shared by the polynomials.
Step-by-step explanation:
LCM of polynomials is:
=> Finding the factors of all the numbers and variable in the expression
=> Next, we multiply the unique numbers and the variable of the expression to find the LCM.
So, C is the correct answer.
The LCM of a set of polynomials is the product of the prime factors that are either unique to or shared by the polynomials.
What is LCM of polynomial?To find the lowest common multiple (L.C.M.) of polynomials, we first find the factors of polynomials by the method of factorization and then adopt the same process of finding L.C.M.
Example : The L.C.M. of 4a2 - 25b2 and 6a2 + 15ab.
Factorizing 4a2 - 25b2 we get,
(2a)2 - (5b)2, by using the identity a2 - b2.
= (2a + 5b) (2a - 5b)
Also, factorizing 6a2 + 15ab by taking the common factor '3a', we get
= 3a(2a + 5b)
L.C.M. is 3a(2a + 5b) (2a - 5b)
According to the question
The LCM of a set of polynomials is
is the product of the prime factors that are either unique to or shared by the polynomials.
(from above example we can see that )
Hence, It is the product of the prime factors that are either unique to or shared by the polynomials.
To know more about LCM of polynomial here :
https://brainly.com/question/26227783
# SPJ2
The one-sample z ‑statistic for Thomas' statistical test has a value of −1.73346 , and Thomas calculates a P-value of 0.0830 . Should Thomas conclude that telephone surveys provide adequate coverage with respect to p ? Why or why not? Select all correct statements about his decision and conclusion.
Answer:
Thomas should not reject the null hypothesis.
Step-by-step explanation:
The null hypothesis is rejected or accepted on the basis of level of significance. When the p-value is greater than level of significance we fail to reject the null hypothesis and null hypothesis is then accepted. It is not necessary that all null hypothesis will be rejected at 10% level of significance. To determine the criteria for accepting or rejecting a null hypothesis we should also consider p-value. Here in this question the test value is -1.73346 and p-value is 0.0830. The p value is greater than the test value therefore the null hypothesis should be accepted.
where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50. (Round your answer to two decimal places.)
THIS IS THE COMPLETE QUESTION BELOW
The demand equation for a product is p=90000/400+3x where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50.
Answer
$168.27
Step by step Explanation
Given p=90000/400+3x
With the limits of 40 to 50
Then we need the integral in the form below to find the average price
1/(g-d)∫ⁿₐf(x)dx
Where n= 40 and a= 50, then if we substitute p and the limits then we integrate
1/(50-40)∫⁵⁰₄₀(90000/400+3x)
1/10∫⁵⁰₄₀(90000/400+3x)
If we perform some factorization we have
90000/(10)(3)∫3dx/(400+3x)
3000[ln400+3x]₄₀⁵⁰
Then let substitute the upper and lower limits we have
3000[ln400+3(50)]-ln[400+3(40]
30000[ln550-ln520]
3000[6.3099×6.254]
3000[0.056]
=168.27
the average price p on the interval 40 ≤ x ≤ 50 is
=$168.27
PLEASE HELP!!
Solve for y
a) 8
b) 12
c) 3V7
d) 4V7
Answer:
C. [tex] y = 3\sqrt{7} [/tex]
Step-by-step explanation:
Based on the right triangle altitude theorem, the altitude, y, in the diagram above, equals the geometric mean of 9 and 7.
This implies => [tex] y = \sqrt{9*7} [/tex]
Thus, solve for y.
[tex] y = \sqrt{9} * \sqrt{7} [/tex]
[tex] y = 3\sqrt{7} [/tex]
The answer is C. [tex] y = 3\sqrt{7} [/tex]
Can someone please help me with this question?
Answer:
B
Step-by-step explanation:
11q + 5 ≤ 49
Subtract 5 from each side
11q + 5-5 ≤ 49-5
11q ≤44
Divide each side by 11
q ≤44/11
q≤4
There is a close circle at 4 because of the equals sign and the lines goes to the left
Answer:
B
Step 1:
To solve this, we need to isolate the variable q. To do so, we will subtract 5 from both sides of the inequality.
[tex]11q+5(-5)\leq 49(-5)\\11q\leq 44[/tex]
Step 2:
We divide both sides by 11 to get our q.
[tex]\frac{11q}{11}\leq \frac{44}{11} \\q\leq 4[/tex]
q ≤ 4
Step 3:
To find the correct graph, we need to know that a close circle means a ≤ or ≥ and an open one means a < or >. Here, we are using a ≤ so C and D are not our answers. Also remember that if the "arrow" is pointing left (<), then the arrow on the graph should be facing the left side. If the arrow is facing the right side, then that means we are using > or ≥. Here, we are using ≤ (left), so that means the arrow on the graph should be on a 4, facing left, with a closed circle.
Our answer is B.
If x to the 2nd power equal 60, What is the value of x
Answer:
7.745
Step-by-step explanation:
Square root of 60 equals X.
 evaluate the expression for k=6 -18+2k=
Answer:
-6
Step-by-step explanation:
-18 + 2k wherre k = 6
=> -18 + 2(6)
=> -18 + 12
=> -6
Find the area of the region enclosed by the curves x=3y^2, x=0, and y=2
Answer:
8
Step-by-step explanation:
Hello,
[tex]x=3y^2<=>y=\sqrt{\dfrac{x}{3}} \ \ for \ x\geq 0[/tex]
And for y = 2, x = 3 * 2 * 2 = 12 so first, let's compute
[tex]\displaystyle \int\limits^{12}_0 {\sqrt{\dfrac{x}{3}}} \, dx =\dfrac{1}{\sqrt{3}} \int\limits^{12}_0 {\sqrt{x}} \, dx\\\\=\dfrac{1}{\sqrt{3}} \left[ \dfrac{2}{3}x^{3/2}\right]_0^{12}\\\\=\dfrac{1}{\sqrt{3}} *\dfrac{2}{3}*12*\sqrt{12}\\\\=\dfrac{2*12*2*\sqrt{3}}{3*\sqrt{3}}\\\\=2*4*2=16[/tex]
The area which is asked is 12*2 - 16 = 24 - 16 = 8
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Using integrals, it is found that the area of the region enclosed by the curves in the interval is of 27 units squared.
In this problem:
The curve is [tex]x = 3y^2[/tex], hence the integral is relative to y.The lower limit is when x = 0, hence [tex]0 = 3y^2 \rightarrow y = 0[/tex].The upper limit is when y = 2.Then, the integral for the area is:
[tex]A = \int_{0}^{2} 3y^2 dy[/tex]
[tex]A = y^3|_{y = 0}^{y = 3}[/tex]
[tex]A = 3^3 - 0^3[/tex]
[tex]A = 27[/tex]
The area of the region enclosed by the curves in the interval is of 27 units squared.
You can learn more about the use of integrals to calculate an area at https://brainly.com/question/15127807
-50 POINTS- (2/5) please no wrong answers for points. A) y = [tex]\frac{9}{2}[/tex] x + [tex]\frac{1}{2}[/tex] B) y = - [tex]\frac{1}{2} x + \frac{7}{2}[/tex] C) [tex]y = -4x +9[/tex] D) [tex]y=4x+15[/tex]
This problem is about creating a linear regression model.
First, we should take note of the points:
(-4,8)
(-2,4)
(-1,2)
(1,5)
(2,2)
(6,-5)
(7,6)
It's necessary to find a equation y = ax + b that brings us the least MSE (Mean Squared Error). You can calculate at hand, but I bet it is going to be tiresome.
So, basically intuitively you just need to choose a line that fits closer to the given points.
First: remember if y = ax+b, a is the slope which means if a > 0 the line is " / " and a < 0 the line is " \ ".
A) No, this equation is " / "
B) It could be this one.
C) It could be this one too.
D) Nope. " / "
B) a = -1/2
C) a = -4
You can draw those two lines and see that B) gets closer to the points.
Equation:
Y = -0.4957*X + 3.780
Answer: B)Answer:
[tex]\Large \boxed{y=-\frac{1}{2} x+\frac{7}{2} }[/tex]
Step-by-step explanation:
Using a graph,
we can see that the line y = -1/2x + 7/2 best fits for the data.
Suppose that Y1, Y2,..., Yn denote a random sample of size n from a Poisson distribution with mean λ. Consider λˆ 1 = (Y1 + Y2)/2 and λˆ 2 = Y . Derive the efficiency of λˆ 1 relative to λˆ 2.
Answer:
The answer is "[tex]\bold{\frac{2}{n}}[/tex]".
Step-by-step explanation:
considering [tex]Y_1, Y_2,........, Y_n[/tex] signify a random Poisson distribution of the sample size of n which means is λ.
[tex]E(Y_i)= \lambda \ \ \ \ \ and \ \ \ \ \ Var(Y_i)= \lambda[/tex]
Let assume that,
[tex]\hat \lambda_i = \frac{Y_1+Y_2}{2}[/tex]
multiply the above value by Var on both sides:
[tex]Var (\hat \lambda_1 )= Var(\frac{Y_1+Y_2}{2} )[/tex]
[tex]=\frac{1}{4}(Var (Y_1)+Var (Y_2))\\\\=\frac{1}{4}(\lambda+\lambda)\\\\=\frac{1}{4}( 2\lambda)\\\\=\frac{\lambda}{2}\\[/tex]
now consider [tex]\hat \lambda_2[/tex] = [tex]\bar Y[/tex]
[tex]Var (\hat \lambda_2 )= Var(\bar Y )[/tex]
[tex]=Var \{ \frac{\sum Y_i}{n}\}[/tex]
[tex]=\frac{1}{n^2}\{\sum_{i}^{}Var(Y_i)\}\\\\=\frac{1}{n^2}\{ n \lambda \}\\\\=\frac{\lambda }{n}\\[/tex]
For calculating the efficiency divides the [tex]\hat \lambda_1 \ \ \ and \ \ \ \hat \lambda_2[/tex] value:
Formula:
[tex]\bold{Efficiency = \frac{Var(\lambda_2)}{Var(\lambda_1)}}[/tex]
[tex]=\frac{\frac{\lambda}{n}}{\frac{\lambda}{2}}\\\\= \frac{\lambda}{n} \times \frac {2} {\lambda}\\\\ \boxed{= \frac{2}{n}}[/tex]
If f is a function that f(f(x)) = 2x² + 1, which is the value of f(f(f(f(3)))? Please help!
[tex]f(f(3))=2\cdot3^2+1=19\\f(f(f(f(3))))=2\cdot19^2+1=723[/tex]
A recent national survey found that high school students watched an average (mean) of 7.1 movies per month with a population standard deviation of 1.0. The distribution of number of movies watched per month follows the normal distribution. A random sample of 33 college students revealed that the mean number of movies watched last month was 6.2. At the 0.05 significance level, can we conclude that college students watch fewer movies a month than high school students? State the null hypothesis and the alternate hypothesis.
Answer:
H0: μc ≤ μs Ha :μc > μs
Step-by-step explanation:
The null and alternate hypotheses can be stated as
H0: μc ≤ μs Ha :μc > μs one tailed test
Where
μc = Mean of college students watching movies in a month
μs = Mean of school students watching movies in a month
For one tailed test of α =0.05 the value of Z= ± 1.645
The critical region will be Z > ± 1.645
It is of importance to note that by rejecting the null hypothesis and accepting the alternate hypothesis we are automatically rejecting all values of mean that are greater than 7.1
which best defines a service
Answer:
A service could be multiple things.
Step-by-step explanation:
Like, working as a scribe in a nursing home helping old people. Or, being part of a leadership club at school that funds food banks and things like that
Answer:
a
Step-by-step explanation:
Write three fractions that are equivalent to 3 over 11 , but written in higher terms. One of them must
include one or more variables.
Answer:
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
Step-by-step explanation:
Equivalent fractions are set of fractions in which when simplified, they have the same answer.
Given: [tex]\frac{3}{11}[/tex]
i. multiply the numerator and denominator of [tex]\frac{3}{11}[/tex] by 2,
= [tex]\frac{3*2}{11*2}[/tex] = [tex]\frac{6}{22}[/tex]
i. multiply both the numerator and denominator of [tex]\frac{6}{22}[/tex] by 4,
= [tex]\frac{6*4}{22*4}[/tex]= [tex]\frac{24}{88}[/tex]
ii. multiply the numerator and denominator of [tex]\frac{24}{88}[/tex] by 6,
= [tex]\frac{24*6}{88*6}[/tex] = [tex]\frac{144}{528}[/tex]
So that;
[tex]\frac{3}{11}[/tex] = [tex]\frac{6}{22}[/tex] = [tex]\frac{24}{88}[/tex] = [tex]\frac{144}{528}[/tex].
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
Write down the answers to a,b,c,d
Answer:
(A) 1
(B) -2
(C) 3.5
(D) -0.5
Step-by-step explanation:
We can treat each thermometer like a vertical number line and read the values on each.
A is right on 1.
B is right on -2.
C is in the middle of 3 and 4, so 3.5
D is in the middle of 0 and -1, so -0.5
Hope this helped!
Two hot air balloons are flying above a park. One balloon started at a height of 3,000 feet above the ground and is decreasing in height at a rate
of 40 feet per minute. The second balloon is rising at a rate of 50 feet per minute after beginning from a height of 1.200 feet above the ground.
Given that his the height of the balloons after m minutes, determine which system of equations represents this situation.
Answer:
a
Step-by-step explanation:
its a
The answer is m = 3000 - 40h
m = 1200 + 50h.
The answer is option A.
What is a problem in problem-solving?
Problem-solving is the act of defining a problem; figuring out the reason for the hassle; identifying, prioritizing, and selecting options for an answer; and enforcing an answer.
What is an example of problem-solving?Problem-solving begins with identifying the issue. For example, a teacher would possibly need to parent out a way to enhance scholar performance on writing scalability take a look at it. To do this, the trainer will assess the writing tests seeking out regions for improvement.
Learn more about Problem-solving here: https://brainly.com/question/13818690
#SPJ2
In order to earn an A in her math course,
Bernadette must have an average of at
least 90 on her exam scores. She has
grades of 83, 97, 89, and 82 on her first 4
exams. What is the minimum she can
score on the final exam to earn an A in the
course?
Step-by-step explanation:
Let minimum score on the final exam to earn an A be X
[tex]mean \: = \frac{sum \: of \: observation}{number \: of \: observation} [/tex]
[tex]90 = \frac{83 + 97 + 89 + 82 + x}{5} [/tex]
Further solving :
X = 99 marks
What is the correct answer and how can this be solved?
Answer:
[tex]$\mathbf{\frac{1}{19} }[/tex]
Step-by-step explanation:
[tex]$$\bullet \Nth \ Term;\\$$$\frac{n+2}{2n^{2} +3n-2}[/tex]
[tex]$$\bullet U_{10} \ Term;\\\\$$\boxed{\frac{(10+2) }{2*10^{2} +3*10-2}= \frac{1}{19} }[/tex]
Answer:
[tex]\boxed{\displaystyle \frac{1}{19}}[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{n+2}{2n^2 +3n-2}[/tex]
Replace n with 10 to find the 10th term.
[tex]\displaystyle \frac{10+2}{2(10)^2 +3(10)-2}[/tex]
Evaluate.
[tex]\displaystyle \frac{12}{2(100) +30-2}[/tex]
[tex]\displaystyle \frac{12}{200 +30-2}[/tex]
[tex]\displaystyle \frac{12}{228}[/tex]
Simplify.
[tex]\displaystyle \frac{1}{19}[/tex]
What is the equation of the following line? Be sure to scroll down first to see all answer options.
A.
y = - x
B.
y = -2x
C.
y = 2x
D.
y = x
E.
y = -4x
F.
y = - x
Answer:
The answer is option FStep-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
To calculate the equation of the line first find the slope
Slope of the line using points
(0 , 0) and (4 , -2) is
[tex]m = \frac{ - 2 - 0}{4 - 0} = \frac{ - 2}{4} = - \frac{1}{2} [/tex]
Now use the formula
y - y1 = m(x - x1) to find the equation of the line using any of the points
Using point (0,0)
That's
[tex]y - 0 = - \frac{ 1}{2} (x - 0)[/tex]
The final answer is
[tex]y = - \frac{1}{2} x[/tex]
Hope this helps you
Answer:
F
Step-by-step explanation:
How far from the base of the house do you need to place a 13-foot ladder so that it exactly reaches the top of a 10-feet wall?
Answer:
√69 or 8.3 feets
Step-by-step explanation:
Hypotenuse=13
Therefore
13²=x²+10²
x²=169-100
x²=69
x=√69 feets
The distance from the base of the house is 8.3 feet.
What is the pythagoras theorem?The pythagoras theorem is used to obtain the sides of a right angled triangle.
Given that;
The hypotenues of the triangle is 13-foot
The length of the opposite side is 10 feet
Thus;
13^2 = 10^2 + a^2
a^2 = 13^2 - 10^2
a = √13^2 - 10^2
a = 8.3 feet
Learn more about pythagoras theorem:https://brainly.com/question/343682
#SPJ1
The triangle shown on the graph above is rotated 90 degrees clockwise about the original to form triangle P’Q’R which of the following are the (x,y) coordinates of the point P’
Hey there! I'm happy to help!
When rotating a point 90 degrees clockwise about the origin, our original point (x,y) becomes (-y,x), because it is now at a negative y-value.
We see that our point P is at (1,2). We can use this rotation formula to find the coordinates of P' (the new spot where P is)/
(x,y)⇒(-y,x)
(1,2)⇒(-2,1)
Therefore, the coordinates of the point P' are (-2,1).
Have a wonderful day! :D
Find the value of x.
A. 3
B. 9
C. 0
D. 12
Answer:
x=3
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
3x(x+1) = 4x(x)
Divide each side by x
3x(x+1)/x = 4x(x)/x
3(x+1) = 4x
Distribute
3x+3 = 4x
Subtract 3x
3x+3-3x= 4x-3x
3 =x
Answer:
x = 3
Step-by-step explanation:
0 is a rediculas answer 9 and 12 are to big.
The lines are supposed to have a simular length:
3(3) + 4 = 13
4(3) + 3 = 15
These are the best answers that fit.
Simplify the following expression. 3x(4x − 3) A. 12x2 + 13x B. 12x2 + 5x C. 12x2 − 5x D. 12x2 − 9x
Answer:
Multiply using the distributive property.
D is the best answer.
Step-by-step explanation:
The simplified form of expression 3x (4x - 3) is 12x² - 9x.
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The given expression is,
3x (4x - 3).
Simplify the expression by solving bracket term,
3x × (4x) - 3 x (3x)
12x² - 9x
The given expression can be simplified as 12x² - 9x.
Hence, option (D) is correct.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
Show that the set of functions from the positive integers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable. [Hint: First set up a one-to-one correspondence between the set of real numbers between 0 and 1 and a subset of these functions. Do this by associating to the real number 0.d1d2 . . . dn . . . the function f with f(n).
Answer:
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its off functions
Step-by-step explanation:
set = {0,1,2,3,4,5,6,7,8,9}
setting up a one-to-one correspondence between the set of real numbers between 0 and 1
The function : F(n)= {0,1} is equivalent to the subset (sf) of (n) , this condition is met if n belongs to the subset (sf) when f(n) = 1
hence The power set of (n) is uncountable and is equivalent to the set of real numbers given
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its offfunctions
Translate the expression from algebra to words: 6+r
Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6
Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6