Answer: intersecting lines
Step-by-step explanation:
Answer:
The relationship of the lines would be Parallel.
The entire graph of the function h is shown below write the domain and range of h using interval notation.
you can only see values of [tex] x[/tex] Ranging from $-3$ to $3$ and they're included, so domain is $[-3,3]$
and $y$ values ranging from $-2$ to $4$ but $-2$ is not included so range is $(-2,4]$
there are 12 eggs in one box and 12 boxes in one crate. how many eggs are in a shipment of 24 crates
Answer:
Step-by-step explanation:
12 eggs in one box
12 boxes = 1 crate
12 x 12 = 144 eggs
144 x 24 crates = 3456 eggs
Answer:
3,456 eggs
Step-by-step explanation:
There are 12 eggs in one box and 12 boxes in one crate. To find out how many eggs are in a crate, multiply 12 and 12
12*12=144
144 eggs in one crate.
We want to find out what how many eggs are in 24 creates. We know there are 144 eggs in 1 crate. Therefore, we can multiply 144 and 24.
144*24=3,456
There are 3,456 eggs in 24 crates.
y x1 x2
10 1 16
11 5 11
15 5 14
15 9 11
20 7 1
23 11 8
27 16 7
32 21 3
a. Using technology, construct a multiple regression model with the given data.
b. Interpret the meaning of the values for b1 and b2.
Answer:
ŷ = 0.964X1 - 0.336X2 + 13.066
b1 = 0.964 which is the unit change in the value of y when x1 changes.
b2 = - 0.336 which is the unit change in the value of y when x2 changes
Step-by-step explanation:
Y
10
11
15
15
20
23
27
32
X1
1
5
5
9
7
11
16
21
X2
16
11
14
11
1
8
7
3
The general form of a multiple regression equation is in form:
ŷ = b1x1 + b2x2 + c
Where,
ŷ = predicted or dependent variable
b1 and b2 = slope or gradient Coefficient for the independent or predictor variables x1 and X2 respectively.
c = intercept (constant)
Using the online multiple regression calculator, the model obtained by Inputting the values is written below:
ŷ = 0.964X1 - 0.336X2 + 13.066
Value of b1 = 0.964 which is the unit change in the value of y when x1 changes.
Value b2 = - 0.336 which is the unit change in the value of y when x2 changes
Given a sample of 35, what is the sample standard deviation of a pair of jeans if the 90% confidence interval is [37.14, 42.86]
Answer:
10.295Step-by-step explanation:
Using the value for calculating the confidence interval as given;
CI = xbar + Z*σ/√n
xbar is the mean = 37.14+42.86/2
xbar= 80/2
xbar = 40
Z is the z-score at the 90% confidence = 1.645
σ is the standard deviation
n is the sample size = 35
Given the confidence interval CI as [37.14, 42.86]
Using the maximum value of the confidence interval to get the value of the standard deviation, we will have;
42.86 = xbar + Z*σ/√n
42.86 = 40 + 1.645* σ/√35
42.86-40 = 1.645*σ/√35
2.86 = 1.645*σ/√35
2.86/1.645 = σ/√35
1.739 = σ/√35
1.739 = σ/5.92
σ= 1.739*5.92
σ = 10.295
Hence, the sample standard deviation of a pair of jeans is 10.295
The function y=-2(x-3)2 + 4 shows the daily profit (in hundreds of dollars)
of a hot dog stand, where xis the price of a hot dog (in dollars). Find and
interpret the zeros of this function.
Select two answers: one for the zeros and one for the interpretation.
O A. Zeros at x = 3 1/2
B. The zeros are the hot dog prices at which they sell o hot dogs.
C. Zeros at x = 2 and x = 3
D. The zeros are the hot dog prices that give $0.00 profit (no profit).
Answer:
D. The zeros are the hot dog prices that give $0.00 profit (no profit).
Step-by-step explanation:
Given the function y=-2(x-3)² + 4
The zeros of the function are the points at which the graph of the function crosses the x axis if plotted. y is the daily profit (in hundreds of dollars) and x is the price of the hot dog. To find the zeros, we substitute x = 0 and solve.
Therefore: y=2(x-3)² + 4
0 = 2(x-3)² + 4
-2(x² - 6x + 9) + 4 = 0
-2x² + 12x - 18 + 4 = 0
2x² - 12x + 18 - 4 = 0
2x² - 12x + 14 = 0
2(x² - 6x + 7) = 0
x² - 6x + 7 = 0
Solving the quadratic equation gives:
x = 3 + √2 and x = 3 - √2
This means that the graph crosses x at 3 + √2 and 3 - √2.
The zeros of the function are 3 + √2 and 3 - √2. The zeros of the function is the point where y = 0, that is the point that the hot dog prices that give $0.00 profit (no profit).
Janet has 12 more cookies than Cody. If Janet has 60 cookies, write and solve to determine the number of cookies Cody has.
Answer:
48
Step-by-step explanation:
Janet - 12 = Cody
60 - 12 = Cody
60 - 12 = 48
what are the like terms of the expression.
3x+8x+y+x+8
Answer:
the like terms are:
3x+8x+x+y+8
12x+y+8
Answer:
The like terms are
3x, 8x, x
Step-by-step explanation:
3x+8x+y+x+8
The like terms are
3x, 8x, x
They are the terms that are in terms of the first power of x
If the null hypothesis is true in a chi-square test, discrepancies between observed and expected frequencies will tend to be
Answer:
If the null hypothesis is true in a chi-square test, discrepancies between observed and expected frequencies will tend to be small enough to qualify as a common outcome.
Step-by-step explanation:
Here in this question, we want to state what will happen if the null hypothesis is true in a chi-square test.
If the null hypothesis is true in a chi-square test, discrepancies between observed and expected frequencies will tend to be small enough to qualify as a common outcome.
This is because at a higher level of discrepancies, there will be a strong evidence against the null. This means that it will be rare to find discrepancies if null was true.
In the question however, since the null is true, the discrepancies we will be expecting will thus be small and common.
Consider the following. (Assume that the coins are distinguishable and that what is observed are the faces or numbers that face up.) Three coins are tossed; the result is at most one head. Which of the following sets of elements are included in the sample space
HHTHTTTTHTTTTHTHHHTHHHTH
List the elements of the given event. (Select all that apply.)
HHT
HTT
TTH
TTT
THT
HHH
THH
HTH
List the elements of the given event. (select all that apply)
HTT
TTH
HTH
THH
THT
HHH
TTT
HHT
Answer:
Even set = {HTT, THT, TTH, TTT}
Step-by-step explanation:
We are given that three coins are tossed; the result is at most one head.
And we have to find the sets of elements that are included in the sample space.
Firstly, as we know that when three coins are tossed, the total number of cases formed is 8.
Let Head on the coin be represented by 'H' and the Tail on the coin be represented by 'T'.
So, the sample space so formed is;
S = {HHH, HTH, HHT, THH, THT, TTH, HTT, TTT}
Now, our event is at most one head. So, the sample space for the favorable event is given by;
Even set = {HTT, THT, TTH, TTT}
In this, three cases are of head occurring only once and one case is of head not appearing in three tosses of a coin.
In the following studies, state whether you would use a one-sample t test or a two-independent-sample t test.
A. A study testing whether night-shift workers sleep the recommended 8 hours per day.
B. A study measuring differences in attitudes about morality among Democrats and Republicans.
C. An experiment measuring differences in brain activity among rats placed on either a continuous reward schedule (rewarded every time behavior is exhibited) or an intermittent reward schedule (rewarded after every few times behavior is exhibited).
Answer:
A) one-sample t-test
B) two sample t-test
C) two sample t-test
Step-by-step explanation: The one - sample t-test is used to determine the existence of a statistical difference between a sample mean and a given population mean. The one sample t test is only capable of making comparison between a singular sample mean and an established value. Such is the case in (A) where the aim is to determine if a group of night workers sleep for 8 hours.
The other two cases however, involves making comparison between the sample means of two different groups, this requires the use of a two independent sample t-test
For a one-sample t test:
(Sample mean - population mean) / standard error.
Sample mean = s
Population mean = p
Sample size = n
For a two sample t-test :
[(s2 - s1) - (p2 - p1)] ÷ √[(sd1^2/n1) + (sd2^2/n2)]
Factor quadratic plz 15x^2-4x-4=
Answer:
x = 2/3 or x = -2/5
Step-by-step explanation:
15x^2 - 4x - 4 = ?
factor the left side of the expression and set factors equal to zero:
(3x-2)(5x+2)=0
3x - 2 =0 or 5x + 2 =0
3x =2 or 5x = -2
x = 2/3 or x = -2/5
Stefan rode 32.95 miles.
Ben rode 25 4/5 miles. How many more miles did stefan ride than ben?
Answer:
7.15 miles
Step-by-step explanation:
4/5 of a mile is equivalent to .8 miles.
32.95
-25.8
7.15
Answer:
Step-by-step explanation:
39.95 - 25.80 = 7.15 miles
the sum of the prime divisors of 2001 is a) 55, b) 56, c) 670, d) 671, e) 2001
Answer:
Option A
Step-by-step explanation:
2001 can be divided by 3, 23, and 29 without remainders. This means that the three numbers are prime divisors of 2001.
2001/3 = 667
2001/23 = 87
2001/29 = 69
The sum of the prime divisors is 55.
3 + 23 + 29 = 55
Option A should be the correct answer.
Hope this helps.
What is the nearest 100 of 1730
Answer:
1700
Step-by-step explanation:
pls thnx and mark me brainliest
Answer gets BRAINLIEST If q varies inversely as r, and g = 10 when r = 2.5, find the equation that connects a
and r.
Answer:
D.
Step-by-step explanation:
In direct variations, we would have:
[tex]q=kr[/tex]
Where k is some constant.
Since this is indirect variation, instead of that, we would have:
[tex]q=\frac{k}{r}[/tex]
To determine the equation, find k by putting in the values for q and r:
[tex]10=\frac{k}{2.5}\\k=2.5(10)=25[/tex]
Now plug this back into the variation:
[tex]q=\frac{25}{r}[/tex]
The answer is D.
convert 8 7/9 yard into in
Answer:
316.08 inches
Step-by-step explanation:
There are 3 feet in a yard, and there is 12 inches in 1 foot, so there are 36 inches in one yard. If there is 8 7/9 yards it is the same at 8.78 yards, and 8.78 x 36 = 316.08 inches. Therefore 8 7/9 yards = 316.08 inches.
prove triangle PQR to triangle TSR
Triangle PQR=TSR
PROVED
Answer:
Image provided is correct, thank you!
A salesperson earns $99 per day, plus a 9% sales commission. Find a function that
expresses her earnings as a function of sales, and use it to compute her earnings if the
total sales were $999. The salesperson would take home $___ for the day?
$188.00
$188.91
$188.99
$189.99
Answer:
$188.91
Step-by-step explanation:
$999*.09=$89.91
$89.91+$99=$188.91
Solve the inequality -3 < 3/2(2-x)<5
Answer:
Step-by-step explanation:
How many multiples of 4, that are smaller than 1,000, do not contain any of the digits 6, 7, 8, 9 or 0? I really need a answer.
Answer:
Step-by-step explanation:
We could start by listing multiples of 4 and looking for patterns. Do
you know what a multiple of a number is? It's that number multiplied
by another number. So the first multiple of 4 is 4x1, the second
multiple of 4 is 4x2=8, the third multiple of 4 is 4x3=12, etc.
Let's make a table of multiples of 4 from 1 to 100, with columns A-E
across the top and rows 1-5 down the left-hand side:
A B C D E
1 4 8 12 16 20
2 24 28 32 36 40
3 44 48 52 56 60
4 64 68 72 76 80
5 84 88 92 96 100
Now let's look at these multiples, remembering that there will be nine
more tables like this one from 101-1000.
Let's look for 6,7,8,9, and 0 in the columns first. Aha! We can erase
all of columns B, D, and E because there's a 6 or an 8 or a 0 in each
number in those columns. Now we're left with just:
A C
1 4 12
2 24 32
3 44 52
4 64 72
5 84 92
Now let's look at the rows. Wow! We can eliminate rows 4 and 5 because
they have 6, 7, 8, or 9, leaving:
A C
1 4 12
2 24 32
3 44 52
Just 6 numbers left!
So if from 1-100 there are 6 multiples of four that do not contain any
of the digits 6, 7, 8, 9, or 0, how many multiples of four like this
are there from 1-1000?
Help me please thank you
Step-by-step explanation:
To solve for x, we set up our equation like this:
7x - 7 = 4x + 14
Next, we subtract 4x from the right side to cancel it out and then subtract 4x from the left side.
7x (-4x) - 7 = 4x (-4x) + 14
3x - 7 = 14
Then, we add 7 on both sides (to cancel the -7 out and place it on the right)
3x - 7 (+7) = 14 + 7
3x = 21
Finally, we divide both sides by 3 to isolate our variable, x.
3x ÷ 3 = x
21 ÷ 3 = 7
Our final answer: x = 7
A low-noise transistor for use in computing products is being developed. It is claimed that the mean noise level will be below the 2.5-dB level of products currently in use. It is believed that the noise level is approximately normal with a standard deviation of .8. find 95% CI
Answer:
The 95% CI is [tex]2.108 < \mu < 2.892[/tex]
Step-by-step explanation:
From the question we are told that
The population mean [tex]\mu = 2.5[/tex]
The standard deviation is [tex]\sigma = 0.8[/tex]
Given that the confidence level is 95% then the level of confidence is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
=> [tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the values is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically evaluated as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]
here we would assume that the sample size is n = 16 since the person that posted the question did not include the sample size
So
[tex]E = 1.96* \frac{0.8}{\sqrt{16} }[/tex]
[tex]E = 0.392[/tex]
The 95% CI is mathematically represented as
[tex]\= x -E < \mu < \= x +E[/tex]
substituting values
[tex]2.5 - 0.392 < \mu < 2.5 + 0.392[/tex]
substituting values
[tex]2.108 < \mu < 2.892[/tex]
Using minutes as the unit of measurement on the left-hand side of a constraint and using hours on the right-hand side is acceptable since both are a measure of time.
a. True
b. False
Answer:
True
Step-by-step explanation:
You are given the sample mean and the population standard deviation. Use this information to construct the 90% and 95% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. From a random sample of business days, the mean closing price of a certain stock was $. Assume the population standard deviation is $. The 90% confidence interval is ( nothing, nothing). (Round to two decimal places as needed.) The 95% confidence interval is ( nothing, nothing). (Round to two decimal places as needed.) Which interval is wider? Choose the correct answer below
Complete Question
The complete question is shown on the first uploaded image
Answer:
The 90% confidence interval is [tex][108.165 ,112.895][/tex]
The 95% confidence interval is [tex][107.7123 ,113.3477][/tex]
The correct option is D
Step-by-step explanation:
From the question we are told that
The sample size is n = 48
The sample mean is [tex]\= x = \$ 110.53[/tex]
The standard deviation is [tex]\sigma = \$ 9.96[/tex]
Considering first question
Given that the confidence level is 90% then the level of significance is mathematically represented as
[tex]\alpha = (100 - 90)\%[/tex]
[tex]\alpha = 0.10[/tex]
The critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table is
[tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
Generally the margin of error is mathematically represented as
[tex]E = ZZ_{ \frac{x}{y} } * \frac{\sigma}{ \sqrt{n} }[/tex]
[tex]E = 1.645 * \frac{9.96}{ \sqrt{ 48} }[/tex]
[tex]E = 2.365[/tex]
The 90% confidence interval is
[tex]\= x - E < \mu < \= x + E[/tex]
=> [tex]110.53 - 2.365 < \mu < 110.53 + 2.365[/tex]
=> [tex]108.165 < \mu < 112.895[/tex]
Considering second question
Given that the confidence level is 95% then the level of significance is mathematically represented as
[tex]\alpha = (100 - 95)\%[/tex]
[tex]\alpha = 0.05[/tex]
The critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{ \frac{x}{y} } * \frac{\sigma}{ \sqrt{n} }[/tex]
[tex]E = 1.96 * \frac{9.96}{ \sqrt{ 48} }[/tex]
[tex]E = 2.8177[/tex]
The 95% confidence interval is
[tex]\= x - E < \mu < \= x + E[/tex]
=> [tex]110.53 - 2.8177 < \mu < 110.53 + 2.8177[/tex]
=> [tex]107.7123 < \mu < 113.3477[/tex]
Please help ! I’ll mark you as brainliest if correct.
Answer:
D = -87Dx = 174Dy = -435Dz = 0(x, y, z) = (-2, 5, 0)Step-by-step explanation:
The determinant of the coefficient matrix is ...
[tex]D=\left|\begin{array}{ccc}2&5&3\\4&-1&-4\\-5&-2&6\end{array}\right|\\\\=2(-1)(6)+5(-4)(-5)+3(4)(-2)-2(-4)(-2)-5(4)(6)-3(-1)(-5)\\\\=-12+100-24-16-120-15=\boxed{-87}[/tex]
The other determinants are found in similar fashion after substituting the constants on the right for each of the above matrix columns, in turn.
Those determinants are ...
[tex]D_x=\left|\begin{array}{ccc}21&5&3\\-13&-1&-4\\0&-2&6\end{array}\right|=174[/tex]
[tex]D_y=\left|\begin{array}{ccc}2&21&3\\4&-13&-4\\-5&0&6\end{array}\right|=-435[/tex]
[tex]D_z=\left|\begin{array}{ccc}2&5&21\\4&-1&-13\\-5&-2&0\end{array}\right|=0[/tex]
The solutions are ...
x = 174/-87 = -2
y = -435/-87 = 5
z = 0
That is, (x, y, z) = (-2, 5, 0).
You’ve been contracted to wallpaper a wall 10 feet wide and 12 feet high with a square window with 3 foot sides. How many square feet of wallpaper do you need to cover the wall if you were to exclude the opening for the window? _____ square feet
Answer:
111 ft²
Step-by-step explanation:
wall: 10 x 12 = 120
window: 3 x 3 = 9
wall - window = area to wallpaper
120 - 9 = 111
111 ft²
Answer:
111 sq ft
Step-by-step explanation:
wall: 10 x 12 = 120
window: 3 x 3 = 9
wall - window = area to wallpaper
120 - 9 = 111
111 ft²
How do you solve an expansion?
[tex]\displaystyle\\(a+b)^n\\T_{r+1}=\binom{n}{r}a^{n-r}b^r\\\\\\(x+2)^7\\a=x\\b=2\\r+1=5\Rightarrow r=4\\n=7\\T_5=\binom{7}{4}x^{7-4}2^4\\T_5=\dfrac{7!}{4!3!}\cdot x^3\cdot16\\T_5=16\cdot \dfrac{5\cdot6\cdot7}{2\cdot3}\cdot x^3\\\\T_5=560x^3[/tex]
Answer:
[tex]\large \boxed{560x^3}[/tex]
Step-by-step explanation:
[tex](x+2)^7[/tex]
Expand brackets.
[tex](x+2) (x+2) (x+2) (x+2) (x+2) (x+2) (x+2)[/tex]
[tex](x^2 +4x+4) (x^2 +4x+4) (x^2 +4x+4)(x+2)[/tex]
[tex](x^4 +8x^3 +24x^2 +32x+16)(x^3 +6x^2 +12x+8)[/tex]
[tex]x^7 +14x^6 +84x^5 +280x^4 +560x^3 +672x^2 +448x+128[/tex]
The fifth term is 560x³.
Convert the polar equation to an equivalent rectangular equation:
Answer:
The correct answer will be option b
Step-by-step explanation:
We know that x = rcos( θ ), and y = rsin( θ ), so let's rewrite this polar equation.
r = 4( x / r ) + 2( y / r ),
r = 4x / r + 2y / r,
r = 4x + 2y / r,
r / 1 = 4x + 2y / r ( Cross - Multiply )
4x + 2y = r²
We also know that r² = x² + y², so let's substitute.
x² + y² = 4x + 2y,
x² - 4x - 2y + y² = 0,
Circle Equation : ( x - 2 )² + ( y - 1 )² = ( √5 )²,
Solution : ( x - 2 )² + ( y - 1 )² = 5
The hypotenuse of a right triangle is 14 in. If the base
of the triangle is 2 inches determine the
length of the remaining side.
14 in
Х
2 in
O A &
B. 318
O c. 8v3
OD. 112
Answer:
13.85
Step-by-step explanation:
U use the pythagorean theorem
So 2^2 + x^2 = 14^2
Simplify the equation: 4+x^2=196
--> x^2=192
--> x=13.85
-Hope this helps :)
9514 1404 393
Answer:
c. 8√3
Step-by-step explanation:
The Pythagorean theorem applies.
14² = s² + 2²
s = √(14² -2²) = √192 = 8√3
The length of the remaining side is 8√3.
A researcher is interested in finding a 95% confidence interval for the mean number of times per day that college students text. The study included 210 students who averaged 28 texts per day. The standard deviation was 21 texts.A. The sampling distribution follows a_______.1. "F"2. "normal"3. "T"4. "Chi-square" B. With 95% confidence the population mean number of texts per day of is between_______and______texts. A. 1. "24.92"2. "25.79"3. "27.37"4. "25.14"B. 1. "31.19"2. "31.20"3. "29.28"4. "30.86" C. If many groups of 210 randomly selected students are studied, then a different confidence interval would be produced from each group. About_______% of these confidence intervals will contain the true population mean number of texts per day and about______% will not contain the true population mean number of texts per day.A. 1. "5"2. "95"3. "1"4. "99"B. 1. "95"2. "99"3. "5"4. "1"
Answer: A. The sampling follows a normal distribution.
B. Between 25.14 and 30.86
C. About 95% will contain the true mean and about 5% won't
Step-by-step explanation: A. The sampling is normally distributed because:
it has a symmetric bell shape, mean and median are both the same and located at the center of graphic, approximately 68% of the data falls within one standard deviation;95% falls within two standard deviations;99.7% within 3 standard deviations;B. For a 95% confidence interval: α/2 = 0.025
Since n = 210, use z-score = 1.96
To calculate the interval:
mean ± [tex]z.\frac{s}{\sqrt{n} }[/tex]
Replacing for the values given:
28 ± [tex]1.96.\frac{21}{\sqrt{210} }[/tex]
28 ± [tex]1.96*1.45[/tex]
28 ± 2.84
lower limit: 28 - 2.84 = 25.14
upper limit: 28 + 2.84 = 30.86
Confidence Interval is between 25.14 and 30.86.
C. Confidence Interval at a certain percentage is an interval of values that contains the true mean with a percentage of confidence. In the case of number of times per day students text, 95% of the interval will contain the true mean, while 5% will not contain it.