Explanation:
Volume is the quantity of three-dimensional space enclosed by a closed surface
The si unit of mass is kilogram (kg) and the si unit of length is metre(m)
which best describes how air moves during convection?
a. cool air warms as it mixes with denser air
b. warm air cools as it mixes with cooler, denser air
c. warm air is displaced by cooler denser air
a. cool air warms as it mixes with denser air
Explanation:
c. warm air is displaced by cooler denser air
rjeheheuwyeydyevevevrvdvev4hdj374gdddfeh4uarjtsk5sk5ek6eel5os5je5ie663i63iw64niw4h8
Pls help asap!!
A bucket contains hot water at 95°c. A man wants to bath with water at 40°c. What is the ratio of the mass of hot water to the mass of cold water that he needs.
Answer:
55
Explanation:95-40=55
i hope i did the math right if i didnt please tell me
Is a nanoliter greater then one liter?
For saving lives, what is the most important safety feature on a car? A. Air bag B. Safety Belt C. Anti-lock brakes
For saving lives the most important safety feature on a car is B. Safety Belt
What are safety features of a car ?Safety features of a car is a feature of a product designed to ensure or increase safety.
Air bag and Anti-lock brakes are the supplemental protection and designed to work best with combination with seat bells.
Air bag reduce the chance that upper body or head will strike the vehicle's interior during a crash alongside with belt that will also hold your upper body
so, the primary safety feature is seat belt and Air bag and Anti-lock brakes comes in secondary safety feature as they increases the safety and risk of getting an injury during any accident
correct answer is B. Safety Belt
learn more about Safety features
https://brainly.com/question/25820562?referrer=searchResults
#SPJ3
Which object has potential energy but not kinetic energy?

A.
A battery in a pair of headphones

B.
A person riding an elevator upward

C.
A person climbing a ladder

D.
A car that is slowing down
Answer:
A.
A battery in a pair of headphones
Explanation:
Potenial energy - the energy possessed by a body by virtue of its position relative to others, stresses within itself, electric charge, and other factors.
Which wave has the largest amplitude?
A.D
B.B
C.C
D.A
Answer:
D. A
General Formulas and Concepts:
Simple Harmonic Motion
Parts of a wave
PeriodAmplitudeWavelengthCrest/TroughExplanation:
The amplitude is the distance from the horizon to either the crest or trough of a wave.
In layman's terms, it is how high the wave is.
The "highest" wave would be wave A.
∴ our answer is D.
Topic: AP Physics 1 Algebra-Based
Unit: SMH
Answer:
A (The wave)
Explanation:
Wave A
Which statement describes why energy is released in a nuclear fission reaction based on mass-energy equivalence?
A. For large nuclei, the mass of the original nucleus is greater than the mass of the products.
B. For large nuclei, the mass of the original nucleus is less than the mass of the products.
C. For small nuclei, the binding energy of the lighter nuclei is greater than the binding energy of the heavier nucleus.
D. For small nuclei, the binding energy of the lighter nuclei is less than the binding energy of the heavier nucleus.
Answer:
A is the answer!
Explanation:
Edge 2021
Answer:
A
Explanation:
Edge
un litro de un gas es calentado a presión constante desde 20°C hasta 60°C que volumen final ocupará dicho gas?
Answer:
Final volume, V2 = 3 Litres
Explanation:
Given the following data;
Initial volume, V1 = 1 litre
Initial temperature, T1 = 20°C
Final temperature, T2 = 60°C
To find the final volume, we would use Charles' law;
Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles is given by;
V1/T1 = V2/T2
Making V2 as the subject formula, we have;
V1T2 = V2T1
V2 = (V1T2)/T1
Substituting into the formula, we have;
V2 = (1 * 60)/20
V2 = 60/20
Final volume, V2 = 3 Litres
What is the relationship between electric field lines and equipotential lines that you observed in doing the lab
Answer:
Explained below
Explanation:
Generally speaking, we know in physics that Electric field lines are lines which usually start at positive charges and deflect away from them to terminate at the negative charges. Meanwhile Equipotential lines are lines that are used to connect points located on the same electric potential.
Finally, in conclusion, electric field lines are usually lines that go through in a perpendicular manner across every equipotential lines.
which is part of the convection cycle in earths atmosphere?
a. hot, denser air rises
b. cold, denser air rises
c. hot, less-dense air rises
d. cold, less-dense air falls
A stone is thrown vertically upwards with an initial velocity of 20m/sec. Find the maximum height ot reaches and the time taken by it to reach the height. (g=10m/s2)
plz short numerical ASAP
Answer:
The height reached is 20m, The time taken to reach 20m is 2 seconds
Explanation:
Observing the equations of motion we can see that the following equation will be most helpful for this question.
[tex]v^{2} = u^{2} + 2as[/tex]
We are given initial velocity, u
We know that the stone will stop at its maximum height, so final velocity, v
Acceleration, a
And we are looking for the displacement (height reached), s
Substitute the values we are given into the equation
[tex]0^{2} = 20^{2} + 2(10)s[/tex]
Rearrange for s
[tex]0^{2} -20^{2} =20s[/tex]
[tex]-400=20s[/tex]
[tex]\frac{-400}{20} =s[/tex]
s = -20 (The negative is just showing direction, it can be ignored for now)
The height reached is 20m
Use a different equation to find the time taken
[tex]s = vt - \frac{1}{2} at^{2}[/tex]
Substitute in the values we have
[tex]-20=(0)t - \frac{1}{2} (10)t^{2}[/tex]
Rearrange for t
[tex]-20 =0 -5 t^{2}[/tex]
[tex]\frac{-20}{-5} =t^{2}[/tex]
[tex]4 = t^{2}[/tex]
t = 2s
The time taken to reach 20m is 2 seconds
Which symbol and unit of measurement are used for electric current?
symbol. A, unit: 1
symbol: C, unit: A
symbol l; unit C
symbol: 1; unitA
Answer: Symbol is I and unit A
Explanation: A represents Amperes
HOPE THIS HELPS!!!!!!!!
A 25.0 kg probe fell freely with acceleration of 2.00 m/s^2 just before it landed on a distant planet. What is the weight of the space probe on that planet
Answer:
The weight of the probe is 50 Newtons
Explanation:
Newtons second law states that F = ma
Given the mass of 25kg, and the acceleration of 2m/s^2, we can substitute both values into the equation to find the weight force.
[tex]F = ma[/tex]
[tex]F = 25 * 2[/tex]
[tex]F = 50N[/tex]
The weight of the probe is 50 Newtons
A frictionless pulley used to lift 8000N of concrete. What is the minimum effort required to raise the block
Answer: 8000N
Explanation: since it is frictionless that means it has 100% efficiency therefore the mechanical advantage is 1 meaning the load equals to the effort
Kevin used a pulley to lift a piano to the third floor of his apartment. His input work was 12,000 J and the output work was 10,000 J. What was the mechanical efficiency of the pulley?
A . 50%
B. 83.3%
C . 120%
D. 16.7%
Answer:
B
Explanation:
Eff = output work/input work ×100
Hence, Eff = 10000/12000 × 100
Eff = 83.3%
A pendulum of mass 18 kg is released from rest at some height, as shown by
point A in the image below. At the bottom of its arc at point B, it is traveling at
a speed of 17 m/s. What is the approximate amount of energy that has been
lost due to friction and air resistance? (Recall that a=98 m/s2
By the work-energy theorem, the total work done on the mass as it swings is
W = ∆K = 1/2 (18 kg) (17 m/s)² = 153 J
No work is done by the tension in the string, since it's directed perpendicular to the mass at every point in the arc. Similarly, the component of the mass's weight mg pointing perpendicular to the arc also performs no work.
If we ignore friction/drag for the moment, the only remaining force is the parallel component of weight, which performs mgh = (176.4 N) h of work, where h is the vertical distance between points A and B.
Now, if w is the amount of work done by friction/air resistance, then
(176.4 N) h - w = 153 J
If you know the starting height h, then you can solve for w.
write the relation of m² with its a multiple
Explanation:
The square meter is the SI-derived unit of area. It has a symbol m² (33A1 in Unicode). It is defined as the area of a square whose sides measure exactly one metre.
An ice-skater with a mass of 80kg is holding a bowling ball with a mass of 8 kg. Suppose that the skater tosses the bowling ball forward with a speed of 6 m/s. What is the skater's reactive velocity? Show all work.
Answer:
0.6 m/s
Explanation:
The details of the masses and velocities are;
The mass of the ice skater, m₁ = 80 kg
The mass of the ball, m₂ = 8 kg
The speed with which the skater tosses the ball forward, v₂ = 6 m/s
Therefore;
According to the principle of conservation of linear momentum, we have;
m₁·v₁ = m₂·v₂
Where;
v₁ = The skater's reactive velocity
Therefore, we get;
80 kg × v₁ = 8 kg × 6 m/s
v₁ = 8 kg × 6 m/s/(80 kg) = 0.6 m/s
The skater's reactive velocity, v₁ = 0.6 m/s.
what is the source of energy
You are trying to hold your 550 g physics books with your hand against a vertical wall. Using a force sensor you know that the force you are applying is 10.0 N. Below the book on the floor you have placed a motion sensor. The position time graph for the book is given. Find the coefficient of kinetic friction.
The book's position is changing linearly with time, so its velocity is constant. This means that the net force acting on the book in the direction parallel to the surface is
∑ F = 10.0 N - n = 0
where n is the magnitude of the normal force on the book due to the wall, and the net force perpedicular to the surface is
∑ F = f - (0.550 kg) g = 0
where f is the mag. of kinetic friction, and f = µn where µ is the coefficient of kinetic friction.
Then
• n = 10.0 N
• f = (0.550 kg) g = 5.39 N
• 5.39 N = µ (10.0 N)
==> µ = 0.539
Answer:
Above answer
Explanation:
The book's position is changing linearly with time, so its velocity is constant. This means that the net force acting on the book in the direction parallel to the surface is
∑ F = 10.0 N - n = 0
where n is the magnitude of the normal force on the book due to the wall, and the net force perpedicular to the surface is
∑ F = f - (0.550 kg) g = 0
where f is the mag. of kinetic friction, and f = µn where µ is the coefficient of kinetic friction.
Then
• n = 10.0 N
• f = (0.550 kg) g = 5.39 N
• 5.39 N = µ (10.0 N)
==> µ = 0.539
what is projectile motion
[tex]\boxed{\large{\bold{\textbf{\textsf{{\color{blue}{Answer}}}}}}:)}[/tex]
[tex]\sf{\qquad{\qquad{\underline{\underline{ Projectile~motion }}}}}[/tex]
If an object is given an initial velocity in any direction and then allowed to travel freely under gravity only, it is called a projectile motion.
It is basically 3 types
horizontally projectile motion oblique projectile motion included plane projectile motionThe path followed by a projectile is called its trajectory.
Projectile motion is when an object moves in a bilaterally symmetrical, parabolic path.
The path that the object follows is called its trajectory.
Projectile motion only occurs when there is one force applied at the beginning, after which the only influence on the trajectory is that of gravity
the direction of applied force has to be_____ to the distance in order to say work is done
Answer:
Explanation:
The direction of the applied force has to be parallel to the distance an object moved in order to say that work has been done.
Why is a flower not a good blackbody radiator?
Answer:
A flower emits only visible light
A flower reflects much of the light that hits it
HELP ASAP
A. 1.09 A
B. 1.20 A
C.0.910 A
D. 0.830 A
Answer:
The answer should be: 1.20 A
Explanation:
Which of the following is evidence for continental drift?
Convertir 25 km/h a m/s
Answer:
6.9 m/s
Explanation:
1000m = 1km
3600s = 1hr
25000m/3600s
6.9m/s
Which wave has the smallest amplitude?
Answer:
C. C
Explanation:
A wave can be defined as a disturbance in a medium that progressively transports energy from a source location to another location without the transportation of matter.
In Science, there are two (2) types of wave and these include;
I. Electromagnetic waves: it doesn't require a medium for its propagation and as such can travel through an empty space or vacuum. An example of an electromagnetic wave is light.
II. Mechanical waves: it requires a medium for its propagation and as such can't travel through an empty space or vacuum. An example of a mechanical wave is sound.
A crest can be defined as the highest (vertically) point on a waveform.
On a related note, a trough is the lowest (vertically) on a waveform.
An amplitude can be defined as a waveform that's measured from the center line (its origin or equilibrium position) to the bottom of a trough or top of a crest. Thus, the vertical axis (y-axis) is the amplitude of a waveform i.e it's measured vertically.
In this scenario, waveform C which is represented by a blue curvy line has the smallest amplitude in comparison with the other waveforms because it has the minimum height when measured from the origin.
In contrast, waveform A represented by a purple line has the highest amplitude because it has the maximum height when measured from the origin.
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.A is the amplitude.ω is the angular frequency measured in rad/s.t is the time period measured in seconds.ϕ is the phase angle.Answer:
The answer is indeed D as the comment above suggests.
Explanation:
Simply put, wave D's highest point is closer to the line than all of the other high points of A, B and C
The engine starter and a headlight of a car are connected in parallel to the 12.0-V car battery. In this situation, the headlight operates at 38 W and the engine starter operates at 2.40 kW. If the headlight and starter were then rewired to be in series with each other, what total power would they consume when connected to the 12.0-V battery
Answer:
The total power they will consume in series is approximately 2.257 W
Explanation:
The connection arrangement of the headlight and the engine starter = Parallel to the battery
The voltage of the battery, V = 12.0 V
The power at which the headlight operates in parallel, [tex]P_{headlight}[/tex] = 38 W
The power at which the kick starter operates in parallel, [tex]P_{kick \ starter}[/tex] = 2.40 kW
We have;
P = V²/R
Where;
R = The resistance
V = The voltage = 12 V (The voltage is the same in parallel circuit)
For the headlight, we have;
R₁ = V²/[tex]P_{headlight}[/tex] = 12²/38 = 72/19
R₁ = 72/19 Ω
For the kick starter, we have;
R₂ = V²/[tex]P_{kick \ starter}[/tex] = 12²/2.4 = 60
R₂ = 60 Ω
When the headlight and kick starter are rewired to be in series, we have;
Total resistance, R = R₁ + R₂
Therefore;
R = ((72/19) + 60) Ω = (1212/19) Ω
The current flowing, I = V/R
∴ I = 12 V/(1212/19) Ω = (19/101) A
We note that power, P = I²R
In the series connection, we have;
[tex]P_{headlight}[/tex] = I² × R₁
∴ [tex]P_{headlight}[/tex] = ((19/101) A)² × 72/19 Ω = 1368/10201 W ≈ 0.134 W
The power at which the headlight operates in series, [tex]P_{headlight, S}[/tex] ≈ 0.134 W
[tex]P_{kick \ starter}[/tex] = ((19/101) A)² × 60 Ω = 21660/10201 W ≈ 2.123 W
The power at which the kick starter operates in series, [tex]P_{kick \ starter, S}[/tex] ≈ 2.123 W
The total power they will consume, [tex]P_{Total}[/tex] = [tex]P_{headlight, S}[/tex] + [tex]P_{kick \ starter, S}[/tex]
Therefore;
[tex]P_{Total}[/tex] ≈ 0.134 W + 2.123 W = 2.257 W
if the pelican in item 3 was traveling at the same speed but was only 2.7m above the water, how far would the fish travel horizontally before hitting the water?
Answer:
5.66 m
Explanation:
From online sources, the speed in item 3 being referred to was discovered to be 7.62 m/s
Now, let's get the time of flight from one of Newton's equation of motion;
S = ut + ½gt²
Considering the vertical component, we have u = 0 m/s.
Thus;.
S = ½gt²
Plugging in the relevant values;
2.7 = ½ × 9.8 × t²
t² = 2.7/4.9
t = √(2.7/4.9)
t = 0.7423 s
Now, when we consider the horizontal component of the motion, we have;
S = vt
Where;
S is the distance the fish will travel horizontally before hitting the water.
v = 7.62 m/s
t = 0.7423
Thus
s = 7.62 × 0.7423
s ≈ 5.66 m
Cuánto demorará un cuerpo en alcanzar su máxima altura, sabiendo que fue lanzado, verticalmente hacia arriba, con una velocidad cuyo valor fue de 90 m/s?
Answer:
The maximum height reached is 413.27 m.
Explanation:
How long will it take for a body to reach its maximum height, knowing that it was thrown, vertically upwards, with a velocity whose value was 90 m / s?
initial velocity , u = 90 m/s
gravity, g = 9.8 m/s^2
Let the maximum height is h.
At maximum height the velocity v = 0
Use third equation of motion
[tex]v^2 = u^2 - 2 gh\\\\0 = 90\times 90 - 2 \times 9.8 \times h\\\\h = 413.27 m[/tex]