Part 1: You can simplify [tex]a_n[/tex] to
[tex]\dfrac{3n+1}{3n}-\dfrac{3n}{3n+1} = \dfrac1{3n}+\dfrac1{3n+1}[/tex]
Presumably, the sequence starts at n = 1. It's easy to see that the sequence is strictly decreasing, since larger values of n make either fraction smaller.
(a) So, the sequence is bounded above by its first value,
[tex]|a_n| \le a_1 = \dfrac13+\dfrac14 = \boxed{\dfrac7{12}}[/tex]
(b) And because both fractions in [tex]a_n[/tex] converge to 0, while remaining positive for any natural number n, the sequence is bounded below by 0,
[tex]|a_n| \ge \boxed{0}[/tex]
(c) Finally, [tex]a_n[/tex] is bounded above and below, so it is a bounded sequence.
Part 2: Yes, [tex]a_n[/tex] is monotonic and strictly decreasing.
Part 3:
(a) I assume the choices are between convergent and divergent. Any monotonic and bounded sequence is convergent.
(b) Since [tex]a_n[/tex] is decreasing and bounded below by 0, its limit as n goes to infinity is 0.
Part 4:
(a) We have
[tex]\displaystyle \lim_{n\to\infty} \frac{10n^2+1}{n^2+n} = \lim_{n\to\infty}10+\frac1{n^2}}{1+\frac1n} = 10[/tex]
and the (-1)ⁿ makes this limit alternate between -10 and 10. So the sequence is bounded but clearly not monotonic, and hence divergent.
(b) Taking the limit gives
[tex]\displaystyle\lim_{n\to\infty}\frac{10n^3+1}{n^2+n} = \lim_{n\to\infty}\frac{10+\frac1{n^3}}{\frac1n+\frac1{n^2}} = \infty[/tex]
so the sequence is unbounded and divergent. It should also be easy to see or establish that the sequence is strictly increasing and thus monotonic.
For the next three, I'm guessing the options here are something to the effect of "does", "may", or "does not".
(c) may : the sequence in (a) demonstrates that a bounded sequence need not converge
(d) does not : a monotonic sequence has to be bounded in order to converge, otherwise it grows to ± infinity.
(e) does : this is true and is known as the monotone convergence theorem.
Critical Thinking: Empirical/Quantitative Skills
United flight 15 from New York's JFK to San Francisco uses a Boeing 757-200 with 180 seats. Because some
people with tickets don't show up. United will overbook by selling more than 180 tickets. If the flight is not
overbooked, the airline will lose revenue due to empty seats, but if too many tickets are sold and some
passengers are denied seats, the airline loses money from the compensation that must be given to bumped
passengers. Assume that there is a 0.905 probability that a passenger with a ticket will show up for the
flight. Also assume that the airline sells 200 tickets for the 180 seats that are available.
1. When 200 tickets are sold, calculate the probability that exactly 180 passengers show up for the flight.
Show your calculation (i.e. what you put in the calculator) and round to 4 decimals.
2. When 200 tickets are sold, calculate the probability that at most 180 passengers show up for the flight.
Show your calculation (ie. what you put in the calculator) and round to 4 decimals.
3. When 200 tickets are sold, calculate the probability that more than 180 passengers show up for the flight.
Show your calculation (i.e. what you put in the calculator) and round to 4 decimals.
Answer:
1. 0.0910 = 9.10% probability that exactly 180 passengers show up for the flight.
2. 0.4522 = 45.22% probability that at most 180 passengers show up for the flight.
3. 0.5478 = 54.78% probability that more than 180 passengers show up for the flight.
Step-by-step explanation:
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
Assume that there is a 0.905 probability that a passenger with a ticket will show up for the flight.
This means that [tex]p = 0.905[/tex]
Also assume that the airline sells 200 tickets
This means that [tex]n = 200[/tex]
Question 1:
Exactly, so we can use the P(X = x) formula, to find P(X = 180).
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 180) = C_{200,180}.(0.905)^{180}.(0.095)^{20} = 0.0910[/tex]
0.0910 = 9.10% probability that exactly 180 passengers show up for the flight.
2. When 200 tickets are sold, calculate the probability that at most 180 passengers show up for the flight.
Now we have to use the approximation.
Mean and standard deviation:
[tex]\mu = E(X) = np = 200*0.905 = 181[/tex]
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{200*0.905*0.095} = 4.15[/tex]
Using continuity correction, this is [tex]P(X \leq 180 + 0.5) = P(X \leq 180.5)[/tex], which is the p-value of Z when X = 180.5. Thus
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{180.5 - 181}{4.15}[/tex]
[tex]Z = -0.12[/tex]
[tex]Z = -0.12[/tex] has a p-value of 0.4522.
0.4522 = 45.22% probability that at most 180 passengers show up for the flight.
3. When 200 tickets are sold, calculate the probability that more than 180 passengers show up for the flight.
Complementary event with at most 180 passengers showing up, which means that the sum of these probabilities is 1. So
[tex]p + 0.4522 = 1[/tex]
[tex]p = 1 - 0.4522 = 0.5478[/tex]
0.5478 = 54.78% probability that more than 180 passengers show up for the flight.
4 people take 3 hours to paint a fence assume that all people paint at the same rate How long would it take one of these people to paint the same fence?
Answer:
12
Step-by-step explanation:
Which expression is equivalent to this polynomial? 9x^2 + 4
A. (3x+2i)(3x-2i)
B. (3x+2)(3x-2)
C. (3x+2i)^2
D. (3x+2)^2
Is the answer right?
Answer:
one solution.. your answer is correct
Step-by-step explanation:
discriminate = 900 - (4*9*25) = 0
thus only one solution
What is the length of Line segment A C? Round to the nearest tenth.
Triangle A B C is shown. Angle A C B is 90 degrees and angle B A C is 55 degrees. The length of C B is 15 meters.
10.5 m
12.3 m
18.3 m
21.4 m
Answer:
10.5
Step-by-step explanation:
In the picture if you think about it, it has to be a number less than 15 since CB is 15. I picked 12.3 and got it wrong therefore it has to be 10.5.
Answer:
A) 10.5
Step-by-step explanation:
Find the intersection of the line and the circle given below
2x+y=-5
x^2+y^2=10
Answer:
There are two intersections.
(-3,1) and (-1,-3)
Step-by-step explanation:
Answer:
They intersect at (-3,1), and also (-1,-3)
Step-by-step explanation:
Graph:
Alonzo finish history assignment and 5/8 hours then he completed his math assignment and 1/3 hours what was the total amount of time allowed to spend doing these two assignments
Step-by-step explanation:
The answer is 5/8 + 1/3
Answer = 5*3 /(8*3) +8/24 =23/24
Answer = 23/24
Lost-time accidents occur in a company at a mean rate of 0.8 per day. What is the probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2
Answer:
0.01375 = 1.375% probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2.
Step-by-step explanation:
We have the mean during the interval, which means that the Poisson distribution is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Lost-time accidents occur in a company at a mean rate of 0.8 per day.
This means that [tex]\mu = 0.8n[/tex], in which n is the number of days.
10 days:
This means that [tex]n = 10, \mu = 0.8(10) = 8[/tex]
What is the probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2?
This is:
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-8}*8^{0}}{(0)!} = 0.00034[/tex]
[tex]P(X = 1) = \frac{e^{-8}*8^{1}}{(1)!} = 0.00268[/tex]
[tex]P(X = 2) = \frac{e^{-8}*8^{2}}{(2)!} = 0.01073[/tex]
So
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.00034 + 0.00268 + 0.01073 = 0.01375[/tex]
0.01375 = 1.375% probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2.
Can someone help please
9514 1404 393
Answer:
(b) f(x) = (-x)^(1/2)
Step-by-step explanation:
The square root is only defined for argument values that are non-negative. Hence the domain of ...
f(x) = (-x)^(1/2)
is all values of x less than or equal to zero. This is not "all values of x."
The population, P(t), in millions, of a country, in year t, is given by the formula P(t) = 24 + 0.4t. What are the values of the population for t = 10, 20,
and 30?
Answer:
B. 28, 32, 36 millions
Step-by-step explanation:
Given:
P(t) = 24 + 0.4t
Where,
P(t) = population in millions
t = number of years
✔️Value of the population when t = 10:
Plug in t = 10 into P(t) = 24 + 0.4t
P(t) = 24 + 0.4(10)
P(t) = 24 + 4
P(t) = 28 million
✔️Value of the population when t = 20:
Plug in t = 20 into P(t) = 24 + 0.4t
P(t) = 24 + 0.4(20)
P(t) = 24 + 8
P(t) = 32 million
✔️Value of the population when t = 30:
Plug in t = 30 into P(t) = 24 + 0.4t
P(t) = 24 + 0.4(30)
P(t) = 24 + 12
P(t) = 36 million
What is the cardinal number of the set {-1,3,7,52,36,19,-6}
Answer:
can you please send me another one
Consider the following data representing the price of refrigerators (in dollars).14051405, 11211121, 13391339, 10961096, 12991299, 14011401, 11381138, 11491149, 12231223, 10711071, 13991399, 14001400, 12421242, 13181318, 11011101, 10651065, 14281428, 12251225, 13501350, 13581358, 13121312Copy DataPrice of Refrigerators (in Dollars)Class Frequency Class Boundaries Midpoint Relative Frequency Cumulative Frequency1049–1118 1119–1188 1189–1258 1259–1328 1329–1398 1399–1468 Step 2 of 7 : Determine the frequency of the fifth class.
Answer:
3
Step-by-step explanation:
Given the data:
1405, 1121, 1339, 1096, 1299, 1401, 1138, 1149, 1223, 1071, 1399, 1400, 1242, 1318, 1101, 1065, 1428, 1225, 1350, 1358, 1312
Using the intervals:
Class interval ___ Frequency
1049–1118 ________ 4
1119–1188 ________ 3
1189–1258 ________3
1259–1328 _______ 3
1329–1398 _______ 3
1399–1468 _______ 5
From the table ; the fifth class is the interval :
1329 - 1398 and it has a frequency of 3
f(x)=-2x^2+x-5 find f(5)
f(5) = -50
Hope it helps you...
How do I figure this question out
Answer:
Orthocenter would be in the middle of the shape.
Step-by-step explanation:
B.
A scientist has acid solutions with concentrations of 4% and 15%. He wants to mix some of each solution to get 44 milliliters of solution with a 12% concentration. How many milliliters of each solution does he need to mix together?
Let x and y be the amounts (in mL) of the 4% and 15% solutions, respectively, that the scientist needs to use.
He wants to end up with a 44 mL solution, so
x + y = 44 mL
Each milliliter of 4% solution contains 0.04 mL of acid, while each mL of 15% contains 0.15 mL of acid. The resulting solution should have a concentration of 12%, so that each mL of it contains 0.12 mL of acid. Then the solution will contain
0.04x + 0.15y = 0.12 × (44 mL) = 5.28 mL
of acid.
Solve for x and y. In the first equation, we have y = 44 mL - x, and substituting into the second equation gives
0.04x + 0.15 (44 mL - x) = 5.28 mL
0.04x + 6.6 mL - 0.15x = 5.28 mL
1.32 mL = 0.19x
x ≈ 6.95 mL
==> y ≈ 37.05 mL
A manager records the repair cost for 14 randomly selected dryers. A sample mean of $88.34 and standard deviation of $19.22 are subsequently computed. Determine the 90% confidence interval for the mean repair cost for the dryers. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
Answer:
Hence the 90% confidence interval estimate of the population mean is [tex](79.24 , 97.44)[/tex]
Step-by-step explanation:
Given that,
Point estimate = sample mean = [tex]\bar x[/tex] = 88.34
sample standard deviation = s = 19.22
sample size = n = 14
Degrees of freedom = df = n - 1 = 13
Critical value =[tex]t\alpha /2,[/tex] df = 1.771
Margin of error
[tex]E = t\alpha/2,df \times (\frac{s}{\sqrt{n} } )\\= 1.771 \times (19.22 / \sqrt 14)[/tex]
Margin of error = E = 9.10
The 90% confidence interval estimate of the population mean is,
[tex]\bar x - E < \mu < \bar x + E\\\\88.34 - 9.10 < \mu < 88.34 + 9.10\\\\79.24 < \mu < 97.44\\(79.24 , 97.44)[/tex]
Solve for x and y…….
The shapes are the same size. Match the sides.
3x -1 = 17
Add 1 to both sides:
3x = 18
Divide both sides by 3:
X = 6
2y = 16
Divide both sides by 2
Y = 8
Answer: x = 6, y = 8
Write the point-slope form of an equation of the line through the points (-2, 6) and (3,-2).
Answer:
[tex]y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x+2)[/tex]
OR
[tex]y+2=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)[/tex]
Step-by-step explanation:
Hi there!
Point-slope form: [tex]y-y_1=m(x-x_1)[/tex] where [tex](x_1,y_1)[/tex] is a point and [tex]m[/tex] is the slope
1) Determine the slope
[tex]m=\frac{\displaystyle y_2-y_1}{\displaystyle x_2-x_2}[/tex] where two given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
Plug in the given points (-2, 6) and (3,-2):
[tex]m=\frac{\displaystyle -2-6}{\displaystyle 3-(-2)}\\\\m=\frac{\displaystyle -8}{\displaystyle 3+2}\\\\m=-\frac{\displaystyle 8}{\displaystyle 5}[/tex]
Therefore, the slope of the line is [tex]-\frac{\displaystyle 8}{\displaystyle 5}[/tex]. Plug this into [tex]y-y_1=m(x-x_1)[/tex]:
[tex]y-y_1=-\frac{\displaystyle 8}{\displaystyle 5}(x-x_1)[/tex]
2) Plug in a point [tex](x_1,y_1)[/tex]
[tex]y-y_1=-\frac{\displaystyle 8}{\displaystyle 5}(x-x_1)[/tex]
We're given two points, (-2, 6) and (3,-2), so there are two ways we can write this equation:
[tex]y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x-(-2))\\\\y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x+2)[/tex]
OR
[tex]y-(-2)=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)\\y+2=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)[/tex]
I hope this helps!
Which one is greater 4.5% or 0.045
Answer:
They are equal
Step-by-step explanation:
4.5% is 0.045 in decimal form
Answer: They are equal
Step-by-step explanation:
I always remember by taking the two o's in percent and moving them two spots to the left and vise versa if you want to make a decimal into a percent (move it two spots to the right).
I’m in summer school can y’all plz help me
Answer: Choice A. [tex]-x^2+2x+8[/tex]
Work Shown:
[tex](f - g)(x) = f(x) - g(x)\\\\(f - g)(x) = (2x+1) - (x^2-7)\\\\(f - g)(x) = 2x+1 - x^2+7\\\\(f - g)(x) = -x^2+2x+(1+7)\\\\(f - g)(x) = -x^2+2x+8\\\\[/tex]
which shows the answer is choice A.
Side note: be sure to distribute the negative to every term inside the second set of parenthesis. So you wouldn't say -(x^2-7) = -x^2-7. If you did this error, then you'd get to the wrong answer choice C.
Answer:
hope it helps u plz mark me brainliest mate
Step-by-step explanation:
(f-g)(x)=2x+1-(x^2-7)
(f-g)(x)=2x+1-x^2+7
(f-g)(x)= -x^2+2x+8
this is the correct answer
HELP ME PLS!!!!!
Which of the following is | 5-12i |?
A) -√119
B) √119
C) −13
D)13
Answer:
D) 13
[tex]\sqrt{169} = 13[/tex]
Step-by-step explanation:
Simplify
x * x^5 / x^2 * x
The triangles are similar.
What is the value of x?
Enter your answer in the box.
x =
Answer:
x=12
Step-by-step explanation:
each side of the smaller triangle, we can multiply by 4 to get the side of the larger triangle
ex: 8*4=32 and 17*4=68
so we can assume that 15*4= 4x+12
60=4x+12
48=4x
x=12
Answer:
x = 12
Step-by-step explanation:
The triangles are similar so we can use ratios
4x+12 32
------- = ------------
15 8
Using cross products
(4x+12) *8 = 15 * 32
(4x+12) *8 = 480
Divide each side by 8
(4x+12) *8/8 = 480/8
4x+12 = 60
Subtract 12 from each side
4x+12 -12 = 60-12
4x = 48
Divide by 4
4x/4 = 48/4
x = 12
Describe the system of equations
How many solutions does this system have.
Answer:
Step-by-step explanation:
One solution, at the point of intersection, (3,3)
Round each of the following numbers to four significant figures and express the result in standard exponential notation: (a) 102.53070, (b) 656.980, (c) 0.008543210, (d) 0.000257870, (e) -0.0357202
Answer:
Kindly check explanation
Step-by-step explanation:
Rounding each number to 4 significant figures and expressing in standard notation :
(a) 102.53070,
Since the number starts with a non-zero, the 4 digits are counted from the left ;
102.53070 = 102.5 (4 significant figures) = 1.025 * 10^2
(b) 656.980,
Since the number starts with a non-zero, the 4 digits are counted from the left ; the value after the 4th significant value is greater than 5, it is rounded to 1 and added to the significant figure.
656.980 = 657.0 (4 significant figures) = 6.57 * 10^2
(c) 0.008543210,
Since number starts at 0 ; the first significant figure is the first non - zero digit ;
0.008543210 = 0.008543 (4 significant figures) = 8.543 * 10^-3
(d) 0.000257870,
Since number starts at 0 ; the first significant figure is the first non - zero digit ;
0.000257870 = 0.0002579 (4 significant figures) = 2.579 * 10^-4
(e) -0.0357202,
Since number starts at 0 ; the first significant figure is the first non - zero digit ;
-0.0357202 = - 0.03572 (4 significant figures) = - 3.572* 10^-2
Solve 8x + c = k for x
Answer:
x = 1/8(k-c)
Step-by-step explanation:
8x + c = k
Subtract c from each side
8x +c-c = k-c
8x = k-c
Divide each side by 8
8x/8 = (k-c)/8
x = 1/8(k-c)
Answer:
x-1/8(k-c)
Step-by-step explanation:
Riley wants to make 100ml of 25% saline but only has access to 12% and 38% saline mixtures. x= 12% y=38%
Answer:
x = 50
y = 50
Step-by-step explanation:
[tex]\begin{bmatrix}x+y=100\\ 0.12x+0.38y=25\end{bmatrix}[/tex]
.12(100-y) + .38y = 25
x = 50
y = 50
What is 10+2
Please I need help
Answer: 12
Step-by-step explanation:
Answer:
12
Step-by-step explanation:
Check the picture below
A graph of 2 functions is shown below. graph of function f of x equals negative 11 by 3 multiplied by x plus 11 by 3 and graph of function g of x equals x cubed plus 2 multiplied by x squared minus x minus 2 Which of the following is a solution for f(x) = g(x)? (2 points) x = −2 x = 1 x = 0 x = −1
9514 1404 393
Answer:
(b) x = 1
Step-by-step explanation:
A graph shows the solution to f(x) = g(x) is x = 1.
__
We want to solve ...
g(x) -f(x) = 0
x^3 +2x^2 -x -2 -(-11/3x +11/3) = 0
x^2(x +2) -1(x +2) +11/3(x -1) = 0 . . . . . factor first terms by grouping
(x^2 -1)(x +2) +11/3(x -1) = 0 . . . . . . the difference of squares can be factored
(x -1)(x +1)(x +2) +(x -1)(11/3) = 0 . . . . we see (x-1) is a common factor
(x -1)(x^2 +3x +2 +11/3) = 0
The zero product rule tells us this will be true when x-1 = 0, or x = 1.
__
The discriminant of the quadratic factor is ...
b^2 -4ac = 3^2 -4(1)(17/3) = 9 -68/3 = -41/3
This is less than zero, so any other solutions are complex.
If 4 gallons of gasoline cost $13.76, how much will 11 gallons of gasoline cost?
Answer:
x=37.84
Step-by-step explanation:
We can write a ratio to solve
4 gallons 11 gallons
--------------- = ----------------
13.76 x dollars
Using cross products
4x = 11*13.76
4x=151.36
Divide by 4
4x/4 = 151.36/4
x=37.84