a + b = 300 pls help i cant find out the answer
Answer:
a= 250
b= 50
250 + 50 = 300
Step-by-step explanation:
There's many solutions but this was the first one I could come up with.
Answer:
my opinion is seince a+b=300 then the sqaure of 300= 17.3?
Step-by-step explanation:
The difference of sample means of two populations is 55.4, and the standard deviation of the difference of sample means is 28.1. Which
statement is true if we are testing the null hypothesis at the 95% confidence level?
—ANSWER OPTIONS—
A The difference of the two means is significant, so the null hypothesis must be rejected.
B
The difference of the two means is significant, so the null hypothesis must be accepted.
C
The difference of the two means is not significant, so the null hypothesis must be rejected.
D
The difference of the two means is not significant, so the null hypothesis must be accepted.
Answer:
C. The difference of the two means is not significant, so the null hypothesis must be rejected
Step-by-step explanation:
According to the Question,
Given, The difference of sample means of two populations is 55.4, and the standard deviation of the difference of sample means is 28.1 .
Now, if we are testing the null hypothesis at the 95% confidence level .
Thus, the difference of the two means is not significant at the 95% confidence level, so the null hypothesis must be rejected .A restaurant wants to study how well its salads sell. The circle graph shows the sales over the past few days. If 35 of the salads sold were Caesar salads, how many total salads did the restaurant sell?
Answer:
50
Step-by-step explanation:
From the circle graph :
Salad sold :
Caesar = 70%
Garden = 16%
Taco = 14%
If 35 of the salad sold were Caesar ;
Then ; this means
70% = 35
Total salad sold %= (70+16+14)% = 100%
Let total sales = x
70% = 35
100% = x
Cross multiply :
70% * x = 100% * 35
0.7x = 35
x = 35 / 0.7
x = 50
A plumber and his assistant work together to replace the pipes in an old house. The plumber charges $30 an hour for his own labor and $20 an hour for his assistant's labor. The plumber works twice as long as his assistant on this job, and the labor charge on the final bill is $2000. How long did the plumber and his assistant work on this job
Answer:
The plumber worked 50 hours, and his assistant worked 25 hours.
Step-by-step explanation:
Since a plumber and his assistant work together to replace the pipes in an old house, and the plumber charges $ 30 an hour for his own labor and $ 20 an hour for his assistant's labor, and the plumber works twice as long as his assistant on this job, and the labor charge on the final bill is $ 2000, to determine how long did the plumber and his assistant work on this job the following calculation must be performed:
40 x 30 + 20 x 20 = 1200 + 400 = 1600
50 x 30 + 25 x 20 = 1500 + 500 = 2000
Therefore, the plumber worked 50 hours, and his assistant worked 25 hours.
PLEASE HELP WITH THIS. WILL GIVE BRAINLEIST FOR AN ACTUAL ANSWER
Determine the distance from (-5,-6) to (3,1).
Simply the following ratio 1000:540:780
−8x − 6y = 24
Find the x−and y−intercepts.
Answer:
y = − 4 + 4 x 3
x = − 3 − 3 y 4
Question attached please answer brainliest to best answer
Answer:
B
Step-by-step explanation:
Have a nice day :)
5/6+3/9 in the simplest form
HELP PLSS
Answer:
1 1/6
Step-by-step explanation:
5/6 + 3/9
Simplify 3/9 by dividing the top and bottom by 3
5/6 + 1/3
Get a common denominator of 6
5/6 + 1/3 *2/2
5/6 + 2/6
7/6
Rewriting
6/6 +1/6
1 1/6
HELP PLSS I WILL GIVE BRAINLYEST
I SUCK AT MATH
Answer:
W=11
Step-by-step explanation:
Just trust me with this one :3
I need help comment please
Answer:
41
Step-by-step explanation:
The angle were looking for is on the other side of the figure. It is also on the inside so we would divide 82 in half giving us 41.
what is the value of x to the nearest tenth
Answer:
tan90°=p/b
or,1/0=10/x
therefore x=0
what's the easiest way to answer how I know the answer pls?
The formula to find the area of a rectangle is: area = length x width.
Mason put a garden in his yard in the shape of a rectangle.
The garden is 7 feet long and 15 feet wide.
What is the area of the garden?
A. 22 square feet
B. 44 square feet
C. 75 square feet
D. 95 square feet
E. 105 square feet
Write three solutions for the inequality 13 - 8X < -11
Answer:
x > 3
-x < -3
3 < x
-3 > -x
Step-by-step explanation:
-8x < -24
x > 3
-x<-3
If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple are written in increasing order but are not necessarily distinct
This question is incomplete, the complete question is;
If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple are written in increasing order but are not necessarily distinct.
In other words, how many 5-tuples of integers ( h, i , j , m ), are there with n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1 ?
Answer:
the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120
Step-by-step explanation:
Given the data in the question;
Any quintuple ( h, i , j , m ), with n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1
this can be represented as a string of ( n-1 ) vertical bars and 5 crosses.
So the positions of the crosses will indicate which 5 integers from 1 to n are indicated in the n-tuple'
Hence, the number of such quintuple is the same as the number of strings of ( n-1 ) vertical bars and 5 crosses such as;
[tex]\left[\begin{array}{ccccc}5&+&n&-&1\\&&5\\\end{array}\right] = \left[\begin{array}{ccc}n&+&4\\&5&\\\end{array}\right][/tex]
= [( n + 4 )! ] / [ 5!( n + 4 - 5 )! ]
= [( n + 4 )!] / [ 5!( n-1 )! ]
= [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120
Therefore, the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120
how many terms are in the following expression 9c+2d-8
The rectangular ground floor of a building has a perimeter of 780 ft. The length is 200 ft more than the width. Find the length and the width.
The length is ___ and the width is ___
Answer:
perimeter of the rectangular ground floor
=2(length+width)
length=X+200
width=X
=2(X+200+X)
=4x+400
4x+400 =780
4x =780-400
4x =380
x =95
width=95 feet
length=95+200
=295 feet
What is the difference between a bar chart and a histogram?
Answer:
In simple terms, a bar chart is used in summarizing categorical data, where a histogram uses a bar of different heights, it is similar to the bar chart in many terms but the histogram groups the numbers into the ranges while representing the data.
bar chart is a graph in the form of boxes of different heights, with each box representing a different value or category of data, and the heights representing frequencies.
but,
Histogram is graphical display of numerical data in the form of upright bars, with the area of each bar representing frequency.
help please! no links :)
Answer:
The answer is D-27.00 because you are rounding off to the nearest 100 I hope this helps you
Answer:
C. 26.75
Step-by-step explanation:
26.745 is rounded to 26.75
What is the volume of a rectangular prism
8 inches long, 3 inches wide, and 5 inches high?
A
120 cubic inches
B
220 cubic inches
16 cubic inches
158 cubic inches
Answer:
A; 120 cubic inches
Step-by-step explanation:
Let us start with the formula of the volume of a rectangular prism,[tex]V=l*w*h[/tex], where l represents the length of the prism, w represents the width of the prism, and h represents the height of the prism. It is given to us that h =5 inches, w =3 inches, and l =8 inches. Let's plug the values in:
[tex]V= 8*3*5\\V=120[/tex]
A. The volume of the rectangular prism is 120 cubic inches.
I hope this helps! Let me know if you have any questions :)
The nth term of a sequence is 5n.
Work out the 10th term of this sequence.
Answer:
The 10th term is 50
Step-by-step explanation:
5(10) = 50
Calculate the arithmetic mean 24, 36, 52, 48, 64, 40.
Answer:
Mean: 44
Step-by-step explanation:
1. 24 + 36 + 52 + 48 + 64 + 40 = 264
2. 264 divided by 6 = 44
(I divided it by 6 because there are 6 numbers (data points).)
I don’t know the answer help! ?
Answer:
m∠8=120°
Step-by-step explanation:
Given that lines L and M are parallel to each other, keep in mind that ∠1 and ∠8 are opposite exterior angles, so they will be congruent to each other. Therefore, m∠8=120°.
Question 7
Find the volume.
Answer:
A: 686π≈2,156
Step-by-step explanation:
First, you need to find the area of the circle then times that by 14.
π[tex]r^{2}[/tex] Formula for the area of a circle
π[tex]7^{2}[/tex] r stands for radius, so you divide the diameter by 2 and get 7.
π49 This is the area of the circle
π49×14 Now multiply by 14
=686π This is your answer.
=2155.13256 When you times it by pi this is what you get
=2156 This is your answer if you want it rounded up
A roundabout is a one-way circular intersection.
About how many feet would a car travel if it drove
once around the roundabout? Round to the
nearest foot.
Answer:
[tex]471\:\mathrm{ft}[/tex]
Step-by-step explanation:
In one full rotation around the roundabout, the car is travelling a distance equal to the circumference, or the perimeter, of the circle. The circumference of a circle with radius [tex]r[/tex] is given by [tex]C=2r\pi[/tex]. In the diagram, the diameter is labelled 150 feet. By definition, the radius of a circle is exactly half of the diameter of the circle. Therefore, the radius must be [tex]\frac{150}{2}=75[/tex] feet. Thus, the car would travel [tex]2\cdot 75\cdot \pi=471.238898038=\boxed{471\:\mathrm{ft}}[/tex]
I need help please asp !!!!
A person draws a card from a hat. Each card is one color, with the following probabilities of being drawn: 1/10 for blue, 1/20 for black, 1/15 for pink, and 1/5 for yellow. What is the probability of pulling a blue or yellow card, written as a reduced fraction?
Answer:
3/10
Step-by-step explanation:
1/10 + 1/5 = need to get common denominators to add.
1/10 + 2/10 = 3/10
We want to construct a box with a square base and we currently only have 10m2 of material to use in construction of the box. Assuming that all material is used in the construction process, determine the maximum volume that the box can have.
Answer:
The maximum volume of the box is:
[tex]V =\frac{5}{3}\sqrt{\frac{5}{3}}[/tex]
Step-by-step explanation:
Given
[tex]Surface\ Area = 10m^2[/tex]
Required
The maximum volume of the box
Let
[tex]a \to base\ dimension[/tex]
[tex]b \to height[/tex]
The surface area of the box is:
[tex]Surface\ Area = 2(a*a + a*b + a*b)[/tex]
[tex]Surface\ Area = 2(a^2 + ab + ab)[/tex]
[tex]Surface\ Area = 2(a^2 + 2ab)[/tex]
So, we have:
[tex]2(a^2 + 2ab) = 10[/tex]
Divide both sides by 2
[tex]a^2 + 2ab = 5[/tex]
Make b the subject
[tex]2ab = 5 -a^2[/tex]
[tex]b = \frac{5 -a^2}{2a}[/tex]
The volume of the box is:
[tex]V = a*a*b[/tex]
[tex]V = a^2b[/tex]
Substitute: [tex]b = \frac{5 -a^2}{2a}[/tex]
[tex]V = a^2*\frac{5 - a^2}{2a}[/tex]
[tex]V = a*\frac{5 - a^2}{2}[/tex]
[tex]V = \frac{5a - a^3}{2}[/tex]
Spit
[tex]V = \frac{5a}{2} - \frac{a^3}{2}[/tex]
Differentiate V with respect to a
[tex]V' = \frac{5}{2} -3 * \frac{a^2}{2}[/tex]
[tex]V' = \frac{5}{2} -\frac{3a^2}{2}[/tex]
Set [tex]V' =0[/tex] to calculate a
[tex]0 = \frac{5}{2} -\frac{3a^2}{2}[/tex]
Collect like terms
[tex]\frac{3a^2}{2} = \frac{5}{2}[/tex]
Multiply both sides by 2
[tex]3a^2= 5[/tex]
Solve for a
[tex]a^2= \frac{5}{3}[/tex]
[tex]a= \sqrt{\frac{5}{3}}[/tex]
Recall that:
[tex]b = \frac{5 -a^2}{2a}[/tex]
[tex]b = \frac{5 -(\sqrt{\frac{5}{3}})^2}{2*\sqrt{\frac{5}{3}}}[/tex]
[tex]b = \frac{5 -\frac{5}{3}}{2*\sqrt{\frac{5}{3}}}[/tex]
[tex]b = \frac{\frac{15 - 5}{3}}{2*\sqrt{\frac{5}{3}}}[/tex]
[tex]b = \frac{\frac{10}{3}}{2*\sqrt{\frac{5}{3}}}[/tex]
[tex]b = \frac{\frac{5}{3}}{\sqrt{\frac{5}{3}}}[/tex]
Apply law of indices
[tex]b = (\frac{5}{3})^{1 - \frac{1}{2}}[/tex]
[tex]b = (\frac{5}{3})^{\frac{1}{2}}[/tex]
[tex]b = \sqrt{\frac{5}{3}}[/tex]
So:
[tex]V = a^2b[/tex]
[tex]V =\sqrt{(\frac{5}{3})^2} * \sqrt{\frac{5}{3}}[/tex]
[tex]V =\frac{5}{3} * \sqrt{\frac{5}{3}}[/tex]
[tex]V =\frac{5}{3}\sqrt{\frac{5}{3}}[/tex]
The maximum volume of the box which has a 10 m² surface area is given below.
[tex]\rm V_{max} = \dfrac{5}{3} *\sqrt{\dfrac{5}{2}}[/tex]
What is differentiation?The rate of change of a function with respect to the variable is called differentiation. It can be increasing or decreasing.
We want to construct a box with a square base and we currently only have 10 m² of material to use in the construction of the box.
The surface area = 10 m²
Let a be the base length and b be the height of the box.
Surface area = 2(a² + 2ab)
2(a² + 2ab) = 10
a² + 2ab = 5
Then the value of b will be
[tex]\rm b = \dfrac{5-a^2}{2a}[/tex]
The volume of the box is given as
V = a²b
Then we have
[tex]\rm V = \dfrac{5-a^2 }{2a}* a^2\\\\V = \dfrac{5a - a^3}{2}\\\\V = \dfrac{5a}{2} - \dfrac{a^3}{2}[/tex]
Differentiate the equation with respect to a, and put it equal to zero for the volume to be maximum.
[tex]\begin{aligned} \dfrac{dV}{da} &= \dfrac{d}{da} ( \dfrac{5a}{2} - \dfrac{a^3}{2} ) \\\\\dfrac{dV}{da} &= 0 \\\\\dfrac{5}{2} - \dfrac{3a^2 }{2} &= 0\\\\a &= \sqrt{\dfrac{5}{2}} \end{aligned}[/tex]
Then the value of b will be
[tex]b = \dfrac{5-\sqrt{\dfrac{5}{2}} }{2*\sqrt{\dfrac{5}{2}} }\\\\\\b = \sqrt{\dfrac{5}{2}}[/tex]
Then the volume will be
[tex]\rm V = (\sqrt{\dfrac{5}{2}} )^2*\sqrt{\dfrac{5}{2}} \\\\V = \dfrac{5}{3} *\sqrt{\dfrac{5}{2}}[/tex]
More about the differentiation link is given below.
https://brainly.com/question/24062595
Please help, show work! Limits and functions! 85 points!
Answer:
Ok I might misunderstand this but this is what I got ( in order )