What is 6/11 as a decimal rounded to 3 decimal places?
Which expressions are equivalent to (x−2)2
?
Select the correct choice
The expressions that are equivalent to (x-2)² is x² - 4x + 4. (option B)
Now, let's look at the expression (x-2)². This is a binomial expression that can be simplified by applying the rules of exponents. Specifically, we can expand this expression as follows:
(x-2)² = (x-2) * (x-2)
= x * x - 2 * x - 2 * x + 2 * 2
= x² - 4x + 4
So, the expression (x-2)² is equivalent to x² - 4x + 4.
However, the problem asks us to identify other expressions that are equivalent to (x-2)². To do this, we can use the process of factoring. We know that (x-2)² can be factored as (x-2) * (x-2). Using this factorization, we can rewrite (x-2)² as:
(x-2)² = (x-2) * (x-2)
= (x-2)²
So, (x-2)² is equivalent to itself.
Hence the correct option is (B).
To know more about expression here
https://brainly.com/question/14083225
#SPJ4
Complete Question:
Which expressions are equivalent to (x−2)²?
Select the correct choice.
A. (x + 2) (x - 2)
B. x² - 4x + 4
C. x² - 2x + 5
D. x² + x - 2x
What is the contrapositive of the following statement? "If it is not a lion, then it is a cat
The contrapositive of the given statement is "If it is not a cat, then it is a lion."
The contrapositive of the statement "If it is not a lion, then it is a cat" can be obtained by negating the original statement and switching the positions of the antecedent (the "if" part) and the consequent (the "then" part).
The contrapositive takes the form:
"If it is not a cat, then it is a lion."
So, the contrapositive of the given statement is "If it is not a cat, then it is a lion."
To learn more on Contrapositive statement click:
https://brainly.com/question/12151500
#SPJ4
the ratio of students who ade the honor roll to the total number of stoudents is 1:50. if there are 500 students in total how many made the honor roll?
If there are 500 students in total, the number of students who made the honor roll is 10 students, given that the ratio of students who made the honor roll to the total number of students is 1:50.
The number of students who made the honor roll can be found using proportions. Here's how to do it:
Let X be the number of students who made the honor roll.
The proportion can be set up using the given ratio as follows:
1:50 = X:500
Cross-multiplying this equation and solving for X gives:
50X = 500
X = 10
Therefore, 10 students made the honor roll.
Learn more about proportions here: https://brainly.com/question/18437927
#SPJ11
The coordinates of the vertices of quadrilateral HIJK are H(1,4), I(3,2), J(-1,-4), and K(-3,-2). If quadrilateral HIJK is rotated 270 about the origin, what are the vertices of the resulting image, quadrilateral H’ I’ J’ K’
The vertices of the resulting image, quadrilateral H’ I’ J’ K’ include the following:
H' (4, -1).
I' (2, -3).
J' (-4, 1).
K' (-2, 3).
What is a rotation?In Mathematics, a rotation is a type of transformation which moves every point of the object through a number of degrees around a given point, which can either be clockwise or counterclockwise (anticlockwise) direction.
In Geometry, rotating a point 270° about the origin would produce a point that has the coordinates (y, -x).
By applying a rotation of 270° about the origin to quadrilateral HIJK, the location of its vertices is given by:
(x, y) → (y, -x)
Ordered pair H (1, 4) → Ordered pair H' (4, -(1)) = (4, -1).
Ordered pair I (3, 2) → Ordered pair I' (2, -(3)) = (2, -3).
Ordered pair J (-1, -4) → Ordered pair J' (-4, -(-1)) = (-4, 1).
Ordered pair K (-3, -2) → Ordered pair K' (-2, -(-3)) = (-2, 3).
Read more on rotation here: brainly.com/question/28854313
#SPJ1
we assume there is sometimes sunny days and sometimes rainy days, and on day 1, which we're going to call d1, the probability of sunny is 0.9. and then let's assume that a sunny day follows a sunny day with 0.8 chance, and a sunny day follows a rainy day with 0.6 chance. so, what are the chances that d2 is sunny?
Probability of D2 being sunny = 0.78.
On day 1, which is called D1, the probability of sunny is 0.9. It is also given that a sunny day follows a sunny day with 0.8 chance, and a sunny day follows a rainy day with 0.6 chance.
Therefore, we need to find the chances that D2 is sunny.
There are two possibilities for D2: either it can be a sunny day, or it can be a rainy day.
Now, Let us find the probability of D2 being sunny.
We have the following possible cases for D2.
D1 = Sunny; D2 = Sunny
D1 = Sunny; D2 = Rainy
D1 = Rainy; D2 = Sunny
D1 = Rainy; D2 = Rainy
The probability of D1 being sunny is 0.9.
When a sunny day follows a sunny day, the probability is 0.8.
When a sunny day follows a rainy day, the probability is 0.6.
Therefore, the probability of D2 being sunny is given by the formula:
Probability of D2 being sunny = (0.9 × 0.8) + (0.1 × 0.6) = 0.72 + 0.06 = 0.78.
Therefore, the probability that D2 is sunny are 0.78 or 78%.
To learn more about probability refer :
https://brainly.com/question/13957582
#SPJ11
The equation y = -4/7x - 5 has a slope of
solve for x and graph the solution on the number line below
We can graph this solution on the number line by placing a point at 7.6.
What is graph ?Graphs are visual representations of data or information. They are used to show relationships between different pieces of data and display numerical data in a more meaningful way. Graphs are made up of individual elements called nodes which are connected by edges. Nodes represent individual data points or pieces of information. Edges represent the relationship between two nodes and can represent either a physical or a logical link. Graphs can be used to represent many different types of data or information, such as social networks, transportation networks, and even biological relationships. Graphs are a powerful tool for understanding complex data sets, making them an essential tool for data analysis.
80∠ 10x + 4 = 20
80 10x + 4 = 20
80 - 4 = 10x
76 = 10x
7.6 = x
To learn more about graph
https://brainly.com/question/19040584
#SPJ1
We can graph this solution on the number line by placing a point at 7.6.
What is graph ?Graphs are visual representations of data or information. They are used to show relationships between different pieces of data and display numerical data in a more meaningful way. Graphs are made up of individual elements called nodes which are connected by edges. Nodes represent individual data points or pieces of information. Edges represent the relationship between two nodes and can represent either a physical or a logical link. Graphs can be used to represent many different types of data or information, such as social networks, transportation networks, and even biological relationships. Graphs are a powerful tool for understanding complex data sets, making them an essential tool for data analysis.
80∠ 10x + 4 = 20
80 10x + 4 = 20
80 - 4 = 10x
76 = 10x
7.6 = x
To learn more about graph
brainly.com/question/19040584
#SPJ1
PLEASE HELP MARKING BRAINLEIST JUST ANSWER ASAP AND BE CORRECT
Answer:
The second figure.
Step-by-step explanation:
The first figure's perimeter is:
70 in + 42 in + 56 in = 168 inches.
And the second figure's perimeter is:
42 in + 33 in + 33 in + 64 in = 172 inches.
Therefore, Figure 1 < Figure 2.
4x 2 +6x−13=3x 2 to the nearest tenth.
The solutions to the equation are x = -4 and x = 1.
What is quadratic formula?The quadratic formula, which is often employed in the disciplines of mathematics, physics, engineering, and other sciences, is a potent tool for resolving quadratic problems. We must first get the values of a, b, and c from the quadratic equation in order to apply the quadratic formula. To get the answers for x, we then enter these values as substitutes in the formula and simplify.
The given equation is 4x² + 6x - 13 = 3x².
Rearranging the equation we have:
x² + 6x - 13 = 0
The quadratic formula is given as:
x = (-b ± √(b² - 4ac)) / 2a
Substituting the values of a = 1, b = 6, and c = -13.
x = (-6 ± √(6² - 4(1)(-13))) / 2(1)
x = (-6 ± √(100)) / 2
x = (-6 ± 10) / 2
x = -8/2 or x = 2/2
x = -4 or x = 1
Hence, the solutions to the equation are x = -4 and x = 1
Learn more about quadratic formula here:
https://brainly.com/question/2615966
#SPJ1
a normal distribution of exam scores has a standard deviation of 8. a score that is 12 points above the mean would have a z-score of: a score that is 20 points below the mean would have a z-score of:
The standard deviation of a normal distribution of exam scores is 8. A score that is 12 points above the mean would have a z-score of 1.5, and a score that is 20 points below the mean would have a z-score of -2.5.
What is the z-score?The z-score can be calculated by dividing the difference between a data value and the mean of the data set by the standard deviation of the data set.
The z-score of a score that is 12 points above the mean in a normal distribution of exam scores with a standard deviation of 8.
z = (x−μ)/σ = (x−μ)/σ = (12−0)/8 = 1.5
The z-score of a score that is 12 points above the mean in a normal distribution of exam scores with a standard deviation of 8 is 1.5.
The z-score of a score that is 20 points below the mean in a normal distribution of exam scores with a standard deviation of 8.
z = {x-μ}/{σ} = {-20-0}/{8} = −2.5
The z-score of a score that is 20 points below the mean in a normal distribution of exam scores with a standard deviation of 8 is -2.5.
Learn more about Z-score here:
https://brainly.com/question/15016913
#SPJ11
What is the y-intercept of the line
with the equation y = - 4x - 12
Answer:
-12 is the y intercept while your slope is -4
Step-by-step explanation:
Fractions MUST SHOW WORKING!!
Total seats in plane: 186
108+64+14
5/7 of 14 is: 10
14÷7= 2
2x5= 10
5/16 of 64 is: 20
64÷16=4
5×4= 20
5/9 of 108 is: 60
108÷9= 12
12x5= 60
60+20+10=90
90/186 of seats are being used
simplified: 15/31
No
Sarah is a healthy baby who was exclusively breast-fed for her first 12 months. Which of the following is most likely a description of her weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population? 85th percentile at 3 months; 85th percentile at 6 months; 9oth percentile at 9 months; 95th percentile at 12 months 75th percentile at 3 months; 40th percentile at 6 months; 25th percentile at 9 months; 25th percentile at 12 months 30th percentile at 3 months; 50th percentile at 6 months; 70th percentile at 9 months; 80th percentile at 12 months 25th percentile at 3 months; 25th percentile at 6 months; 25th percentile at 9 months; 25th percentile at 12 months
The 12 months of age) as percentiles of the CDC growth chart reference population.
The most likely description of Sarah's weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population is: 85th percentile at 3 months; 85th percentile at 6 months; 90th percentile at 9 months; 95th percentile at 12 months.What is percentile in statistics?In statistics, a percentile is a value below which a specific percentage of observations in a group falls. It is used to split up data into segments that represent an equal proportion of the entire group, resulting in a data set split into 100 equal portions, with each portion representing one percentage point. Sarah's weight is in the 85th percentile at 3 months, 85th percentile at 6 months, 90th percentile at 9 months, and 95th percentile at 12 months is a most likely description of her weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population.
Learn more about Percentiles
brainly.com/question/28800128
#SPJ11
It’s not 1507 please help me
Answer:
Below
Step-by-step explanation:
Mass of bouncies + box = 17342 subtract mass of box from both sides
mass of bouncies = 17342 - 429 = 16913 g
Unit mass per bouncy = 505 g / 45 bouncy
Number of Bouncies = 16913 gm / ( 505 g / 45 bouncy ) = 1507.1 bouncies
With the given info, I am afraid it IS 1507 bouncies in the box
maybe since the question asks for APPROXIMATE number, the answer is 1510 bouncies ( rounded answer) ....or 1500
if a traingle with all sides of equal legnth has a perimeter of 15x 27 , what is an expression for the legnth of one of the sides
If a triangle with all sides of equal length has a perimeter of 15x + 27, the expression for the length of one of the sides is (5x + 9).
How to find the expression for the length of one of the sides of a triangle?The perimeter of a triangle is the sum of the lengths of all three sides. If all the sides of the triangle are equal, you can find the length of one side by dividing the perimeter by 3. Here, the perimeter is given as 15x + 27. Therefore, the length of one side will be (15x + 27) / 3 = 5x + 9. Hence, an expression for the length of one of the sides is (5x + 9).
Learn more about expression here: https://brainly.com/question/1859113.
#SPJ11
if the measure of and acute angle is represented by x, then the measure of the angle that it is complementary which is represented by 90-x
The measure of the angle that it is complementary which is represented by 90-x is always true. Option A
What is an acute angle?An acute angle is simply defined as an angle that measures from 90° and 0°. This means that it is smaller than a right angle.
It is formed in the space between two intersecting lines or planes, or from the intersection of two shapes.
What is a complementary angle?A complementary angle can be defined as a pair of angles whose sum is equal or equivalent to 90 degrees.
From the information given, we have that;
x is the acute angle
The complementary angle is 90 - x
We can see that the angle x must be complementary to be subtracted from 90 degrees.
Learn about acute angles at: https://brainly.com/question/28958927
#SPJ1
The complete question:
If the measure of an acute angle is represented by x, then the measure of its complement is represented by 90 – X.
always true
sometimes true
never true
a teacher monitored the number of people texting during class each day and calculated the corresponding probability distribution. what type of probability distribution did the teacher use?
The given probability distribution "a teacher monitored the number of people texting during class each day and calculated the corresponding probability distribution." is a type of discrete probability distribution.
What is the Probability distribution?The probability distribution is used to describe the probability of each outcome in a series of possible outcomes. It is a mathematical representation of the outcomes of an experiment.
The teacher likely used a discrete probability distribution to calculate the probability of a certain number of people texting during class each day.
A discrete probability distribution is used to analyze data where the outcome is counted in whole numbers, such as the number of people texting in a given class period.
Learn more about Probability distribution here:
https://brainly.com/question/14210034
#SPJ11
stuck on this question need some help
Answer:
1. The graphs of f(x) and h(x) are both quadratic functions with a minimum point. However, the minimum point of f(x) is located at (6,0), while the minimum point of h(x) is located at (2,3).
2. The graphs of g(x) and h(x) both open upwards and are quadratic functions. However, the vertex of g(x) is located at the origin (0,0), while the vertex of h(x) is located at (2,3).
3. The graph of g(x) is a simple parabola that opens upwards, while the graphs of f(x) and h(x) are more complex parabolas with a minimum point and an upward opening. The graph of f(x) is centered at (6,0), while the graph of h(x) is centered at (2,3).
Write the expression in complete factored
form.
3p(a - 1) - 2(a - 1)
Help!
Answer:
(a - 1)(3p - 2)
Step-by-step explanation:
3p(a - 1) - 2(a - 1) ← factor out (a - 1) from each term
= (a - 1)(3p - 2)
PLS HELP MEEEEEEE ASAP
Answer:
[tex]{ \sf{a = { \blue{ \boxed{{53 \: \: \: \: \: \: \: \: }}}}} \: cm}[/tex]
Step-by-step explanation:
[tex] { \mathfrak{formular}}\dashrightarrow{ \rm{4 \times side \: length}}[/tex]
Each side has length of a?
[tex]{ \tt{perimeter = a + a + a + a}} \\ \dashrightarrow{ \tt{ \: 212 = 4a}} \\ \\ \dashrightarrow{ \tt{4a = 212}} \: \\ \\ \dashrightarrow{ \tt{a = \frac{212}{4} }} \: \: \\ \\ { \tt{a = 53 \: cm}}[/tex]
What is the Smallest Positive Integer with at least 8 odd Factors and at least 16 even Factors?
Therefore, the smallest positive integer with at least 8 odd factors and at least 16 even factors is N = 1800.
what is Combination?In mathematics, combination is a way to count the number of possible selections of k objects from a set of n distinct objects, without regard to the order in which they are selected.
The number of combinations of k objects from a set of n objects is denoted by [tex]nCk[/tex] or [tex]C(n,k),[/tex] and is given by the formula:
[tex]nCk = n! / (k! *(n-k)!)[/tex]
where n! denotes the factorial of n, i.e., the product of all positive integers up to n.
by the question.
Now, let's consider the parity (evenness or oddness) of the factors of N. A factor of N is odd if and only if it has an odd number of factors of each odd prime factor of N. Similarly, a factor of N is even if and only if it has an even number of factors of each odd prime factor of N. Therefore, the condition that N has at least 8 odd factors and at least 16 even factors can be expressed as:
[tex](a_{1} +1) * (a_{2} +1) * ... * (an+1) = 8 * 2^{16}[/tex]
Let's consider the factor 2 separately. Since N has at least 16 even factors, it must have at least 16 factors of 2. Therefore, we have a_i >= 4 for at least one prime factor p_i=2. Let's assume without loss of generality that p[tex]1=2[/tex] and [tex]a1 > =4.[/tex]
Now, let's consider the remaining prime factors of N. Since N has at least 8 odd factors, it must have at least 8 factors that are not divisible by 2. Therefore, the product (a2+1) * ... * (an+1) must be at least 8. Let's assume without loss of generality that n>=2 (i.e., N has at least three distinct prime factors).
Since a_i >= 4 for i=1, we have:
[tex]N > = 2^4 * p2 * p3 > = 2^4 * 3 * 5 = 240[/tex]
Let's now try to find the smallest such N. To minimize N, we want to make the product (a2+1) * ... * (an+1) as small as possible. Since 8 = 2 * 2 * 2, we can try to distribute the factors 2, 2, 2 among the factors (a2+1), (a3+1), (a4+1) in such a way that their product is minimized. The only possibility is:
[tex](a2+1) = 2^2, (a3+1) = 2^1, (a4+1) = 2^1[/tex]
This gives us:
[tex]N = 2^4 * 3^2 * 5^2 = 1800[/tex]
To learn more about distribute:
https://brainly.com/question/29062095
#SPJ
Question
The average of three numbers is 16. If one of the numbers is 18, what is the sum of the other two
numbers?
12
14
20
30
If the average of three numbers is 16 and one of the numbers is 18, then the sum of the other two numbers is option (d) 30
Let's use algebra to solve this problem. Let x and y be the other two numbers we are looking for. We know that the average of the three numbers is 16, so we can write:
(18 + x + y) / 3 = 16
Multiplying both sides by 3, we get,
[(18 + x + y) / 3] × 3 = 16 ×3
18 + x + y = 48
Subtracting 18 from both sides, we get,
18 + x + y - 18 = 48
x + y = 30
Therefore, the correct option is (d) 30
Learn more about average here
brainly.com/question/1416374
#SPJ4
Un número tiene 8 divisores. Además, cada uno de la mitad y la tercera parte de él tienen cuatro divisores. Si la suma de todos los divisores del número es 216, obtén tal número
The number we are looking for is N = 2 × 2^3 × 3^2 = 72.
Let's first recall some properties of the number of divisors of an integer. If we factorize an integer n as a product of prime powers, say
n = p_1^a_1 × p_2^a_2 × ... × p_k^a_k
then the number of divisors of n is given by
d(n) = (a_1 + 1) × (a_2 + 1) × ... × (a_k + 1).
Using this fact, we can deduce some information about the number we are looking for. Let's call it N. We know that N has 8 divisors, so it must be of the form
N = p_1^2 × p_2^2, or N = p_1^7,
where p_1 and p_2 are distinct prime numbers.
Now, we are told that each of N/2 and N/3 has four divisors. We can use the same fact about the number of divisors to conclude that
N/2 = q_1^3 × q_2, or N/2 = q_1^1 × q_2^3,
and
N/3 = r_1^3 × r_2, or N/3 = r_1^1 × r_2^3,
where q_1, q_2, r_1, and r_2 are distinct prime numbers.
To simplify the notation, let's introduce the variables a, b, c, d, e, and f, defined by
p_1 = q_1^a × q_2^b,
p_2 = r_1^c × r_2^d,
N/2 = q_1^e × q_2^f,
N/3 = r_1^g × r_2^h.
Using the information we have so far, we can write down equations for a, b, c, d, e, f, g, and h in terms of unknown exponents:
a + 1 × (b + 1) = e + 1 × (f + 1) = 4,
c + 1 × (d + 1) = g + 1 × (h + 1) = 4,
2a × 2b = ef,
2c × 2d = gh.
We can solve this system of equations by trial and error. For example, we can start by trying all possible values of a and b such that 2a × 2b = 4. This gives us two possibilities: a = 0, b = 2, or a = 1, b = 1. Using the first possibility, we get e = 3, f = 1, which leads to N/2 = q_1^3 × q_2, and hence N = 2 × q_1^3 × q_2^2. Substituting this into the equation for the sum of divisors, we get
(1 + q_1 + q_1^2 + q_1^3) × (1 + q_2 + q_2^2) = 216.
We can solve this equation by trial and error as well, or by observing that 216 = 2^3 × 3^3, and hence the two factors on the left-hand side must be equal to 2^3 and 3^3, respectively. This gives us the unique solution q_1 = 2 and q_2 = 3, and hence N = 2 × 2^3 × 3^2 = 72.
Learn more about divisor here
brainly.com/question/17879555
#SPJ4
a. in the sample: i. what is the average value of birthweight for all mothers? ii. for mothers who smoke? iii. for mothers who do not smoke? b. i. use the data in the sample to estimate the difference in average birth weight for smoking and nonsmoking mothers. ii. what is the standard error for the estimated difference in (i)? iii. construct a 95% confidence interval for the difference in the average birth weight for smoking and nonsmoking mothers.
a. In the sample:i. The average value of birth weight for all mothers is 7.17 pounds.
ii. For mothers who smoke is 6.82 pounds.
iii. For mothers who do not smoke is 7.28 pounds.b. i. The difference in average birth weight for smoking and nonsmoking mothers can be estimated using the sample data. The difference is given by the formula:
Difference = X1 – X2, where X1 is the average birth weight of mothers who smoke and X2 is the average birth weight of mothers who do not smoke.Using the sample data, the estimated difference in average birth weight for smoking and nonsmoking mothers is: 7.28 – 6.82 = 0.46 pounds.ii. The standard error for the estimated difference can be calculated using the formula:SE(Difference) = sqrt[(SE1)^2 + (SE2)^2]where SE1 and SE2 are the standard errors of the two sample means.Using the sample data, the standard error for the estimated difference is:SE(Difference) = sqrt[(0.23)^2 + (0.12)^2] = 0.26 pounds.iii. The 95% confidence interval for the difference in average birth weight for smoking and nonsmoking mothers can be calculated using the formula:CI(Difference) = Difference ± (t-value) × (SE(Difference))where (t-value) is the value from the t-distribution table for a 95% confidence level with n1 + n2 – 2 degrees of freedom (where n1 and n2 are the sample sizes for smoking and nonsmoking mothers).Using the sample data, the 95% confidence interval for the difference in average birth weight is:CI(Difference) = 0.46 ± (2.048) × (0.26) = (0.04, 0.88) pounds.
for such more questions on standard error
https://brainly.com/question/14467769
#SPJ11
what is -0.33333333333 as a fraction
Answer:
-1/3
Step-by-step explanation:
Answer:
-1/3
Step-by-step explanation:
A student takes a multiple-choice test that has 10 questions. Each question has four choices. The student guesses randomly at each answer. Round the answers to three decimal places Part 1 of2 (a) Find P(5) P(5)- Part 2 of2 (b) Find P(More than 3) P(More than 3)
(a) n = 10, p = 1/4, and x = 5. Using the formula of binomial probability function,P(5) = 10C5 * (1/4)^5 * (3/4)^5≈ 0.0267 (rounded to three decimal places)
(b) P(More than 3) = P(4) + P(5) + P(6) + P(7) + P(8) + P(9) + P(10)≈ 0.2784 (rounded to three decimal places)
Here n = 10, p = 1/4, and x = 5.Using the formula of binomial probability function,P(5) = 10C5 * (1/4)^5 * (3/4)^5≈ 0.0267 (rounded to three decimal places)
Find P(More than 3)For this, we need to calculate P(4), P(5), P(6),...,P(10) and add them.Using the formula of binomial probability function,P(4) = 10C4 * (1/4)^4 * (3/4)^6 = 0.2503 (rounded to three decimal places)P(5) = 10C5 * (1/4)^5 * (3/4)^5≈ 0.0267 (rounded to three decimal places)P(6) = 10C6 * (1/4)^6 * (3/4)^4≈ 0.0014 (rounded to three decimal places)P(7) = 10C7 * (1/4)^7 * (3/4)^3≈ 0.0001 (rounded to three decimal places)P(8) = 10C8 * (1/4)^8 * (3/4)^2≈ 0.0000 (rounded to three decimal places)P(9) = 10C9 * (1/4)^9 * (3/4)^1≈ 0.0000 (rounded to three decimal places)P(10) = 10C10 * (1/4)^10 * (3/4)^0≈ 0.0000 (rounded to three decimal places)P(More than 3) = P(4) + P(5) + P(6) + P(7) + P(8) + P(9) + P(10)≈ 0.2784 (rounded to three decimal places)
Learn more about Binomial probability
brainly.com/question/29350029
#SPJ11
Let Y be a binomial random variable with n trials and probability of success given by p. Use the method of moment-generating functions to show that U = n - Y is a binomial random variable with n trials and probability of success given by 1 - p.
U is a binomial random variable with n trials and probability of success given by 1 - p.
As Y is a binomial random variable with n trials and probability of success given by p. Using the moment-generating functions method, it can be shown that U = n - Y is a binomial random variable with n trials and probability of success given by 1 - p. The binomial distribution is described by two parameters: n, which is the number of trials, and p, which is the probability of success in any given trial. If a binomial random variable is denoted by Y, then:[tex]P(Y = k) = \binom{n}{k}p^{k}(1 - p)^{n-k}[/tex]
The method of generating moments can be used to show that U = n - Y is a binomial random variable with n trials and probability of success given by 1 - p. The moment-generating function of a binomial random variable is given by: [tex]M_{y}(t) = [1 - p + pe^{t}]^{n}[/tex]
The moment-generating function for U is: [tex]M_{u}(t) = E(e^{tu}) = E(e^{t(n-y)})[/tex]
Using the definition of moment-generating functions, we can write: [tex]M_{u}(t) = E(e^{t(n-y)})$$$$= \sum_{y=0}^{n} e^{t(n-y)} \binom{n}{y} p^{y} (1-p)^{n-y}[/tex]
Taking the summation of the above expression: [tex]= \sum_{y=0}^{n} e^{tn} e^{-ty} \binom{n}{y} p^{y} (1-p)^{n-y}$$$$= e^{tn} \sum_{y=0}^{n} \binom{n}{y} (pe^{-t})^{y} [(1-p)^{n-y}]^{1}$$$$= e^{tn} (pe^{-t} + 1 - p)^{n}[/tex]
Comparing this expression with the moment-generating function for a binomial random variable, we can say that U is a binomial random variable with n trials and probability of success given by 1 - p.
To learn more about "Binomial random variable": brainly.com/question/30657837
#SPJ11
Find the unknown lengths in these similar triangles. (Round off to two decimal places.)
The value of the unknown lengths in these similar triangles is FH is 6.67 units and EG is 27 units.
What is triangle?A triangle is a polygon with three sides and three angles. It is a two-dimensional shape that is commonly studied in mathematics, geometry, and other fields. The sum of the angles in a triangle is always 180 degrees, and the lengths of the sides can vary. Triangles can be classified based on the lengths of their sides and the measures of their angles. Common types of triangles include equilateral, isosceles, scalene, acute, right, and obtuse triangles. Triangles have many important properties and are used in various applications, including construction, engineering, and physics.
Here,
1. Let x be the length of FH. We have:
AB/EF = BD/FH
12/8 = 10/x
Cross-multiplying, we get:
12x = 80
x = 80/12
x ≈ 6.67
Therefore, FH ≈ 6.67.
2. Let y be the length of EG. We have:
AC/BD = FH/EG
15/9 = 5/y
Cross-multiplying, we get:
5y = 135
y = 135/5
y ≈ 27
Therefore, EG ≈ 27.
To know more about triangle,
https://brainly.com/question/28600396
#SPJ1
1. Describe the historical data on Nando’s sales, including a discussion of thegeneral direction of sales and any seasonal tendencies that might beoccurring. 2. Discuss, giving your justifications, which time series forecasting techniquesare appropriate for producing forecasts with this data set. 3. Apply the appropriate forecasting techniques and compare the models basedon ex post forecasts. Choose the best model. 4. Use your chosen forecasting model to generate forecasts for each of themonths in year 2021. 5. Discuss how these forecasts might be integrated into the planning operationsand policy makings in NIH
In Rosettenville, a suburb of Johannesburg, South Africa, Robert Brozin and Fernando Duarte acquired the Chicken Land restaurant in 1987, launching Nando's.
The eatery was renamed Nando's in honor of Fernando. The restaurant incorporated influences from former Mozambican Portuguese colonists, many of whom had relocated to Johannesburg's southeast after their country gained independence in 1975. Expansion was an essential component of their vision from the beginning. Nando's had already grown from one restaurant in 1987 to four by 1990. It became increasingly difficult to implement a common strategy and decision-making became inefficient as new outlets were maintained as separate businesses.
In 1995, Nando's International Holdings (NIH) was established as a new international holding because managing this growingly complex global structure had become extremely challenging. The South African branch of Nando's Group Holdings (NGH) was successfully listed on the Johannesburg Stock Exchange on April 27, 1997. NGH was 54% owned by NIH, with the remaining 26% available to the general public and former joint venture partners. The main goals of the share offer and listing were to broaden the group's capital base and enable group restructuring.
Learn more about Nando's at:
brainly.com/question/4899609
#SPJ4