Answer: P = 4s
Step-by-step explanation:
P = 4s where s = the length of each side.
Since each side of a square is the same length, the side length is multiplied by 4.
Mr Makgato sells his car for R42 000.00. The total commission is 7.2% of the selling price of which the broker receives 2 thirds and the salesperson receives the rest. How much does the broker receive?
Answer:
2016
Step-by-step explanation:
using USA dollars:
$42000 x .072 (7.2%) = 3024 total commission
3024 x 2/3 = 2016 brokers amount
Cars arrive at a toll booth according to a Poisson process with mean 90 cars per hour. Suppose the attendant makes a phone call. How long, in seconds, can the attendant's phone call last if the probability is at least 0.1 that no cars arrive during the call
Answer:
92.12 seconds
Step-by-step explanation:
According to the poisson probability relation :
P(X =x) = (e^-λ * λ^x) / x!
For no calls to be reveived during the period, x = 0
P(X = 0) = (e^-λ * λ^0) / 0!
P(X = 0) = 0.1
0.1 = (e^-λ * λ^0) / 0!
0.1 = e^-λ
Take the In of both sides
In(0.1) = - λ
-2.303 = - λ
λ = 2.303
The length of call in second, l
l = λ / r ; r = arrival rate
r = 90 per hour ; this means ;
90 / 3600 = 0.025
l = 2.303 / 0.025
l = 92.12 seconds
A study was conducted in order to estimate ?, the mean number of weekly hours that U.S. adults use computers at home. Suppose a random sample of 81 U.S. adults gives a mean weekly computer usage time of 8.5 hours and that from prior studies, the population standard deviation is assumed to be ? = 3.6 hours.
A similar study conducted a year earlier estimated that ?, the mean number of weekly hours that U.S. adults use computers at home, was 8 hours. We would like to test (at the usual significance level of 5%) whether the current study provides significant evidence that this mean has changed since the previous year.
Using a 95% confidence interval of (7.7, 9.3), our conclusion is that:
a. the current study does provide significant evidence that the mean number of weekly hours has changed over the past year, since 8 falls outside the confidence interval.
b. the current study does not provide significant evidence that the mean number of weekly hours has changed over the past year, since 8 falls outside the confidence interval.
c. the current study does provide significant evidence that the mean number of weekly hours has changed over the past year, since 8 falls inside the confidence interval.
d. the current study does not provide significant evidence that the mean number of weekly hours has changed over the past year, since 8 falls inside the confidence interval.
e. None of the above. The only way to reach a conclusion is by finding the p-value of the test.
Answer:
d. the current study does not provide significant evidence that the mean number of weekly hours has changed over the past year, since 8 falls inside the confidence interval.
Step-by-step explanation:
Mean was of 8 hours, test if it has changed:
At the null hypothesis, we test if it has not changed, that is, the mean is still of 8, so:
[tex]H_0: \mu = 8[/tex]
At the alternative hypothesis, we test if it has changed, that is, the mean is different of 8, so:
[tex]H_1: \mu \neq 8[/tex]
Using a 95% confidence interval of (7.7, 9.3), our conclusion is that:
8 is part of the confidence interval, which means that the study does not provide evidence that the mean has changed, and the correct answer is given by option d.
Help needed! Thank you!
Which of the following is correct based on this picture?
A. sinD=3124
B. cosK=3124
C. tanK=3124
D. tanD=3124
Answer:
C but see below.
Step-by-step explanation:
If I'm reading this correctly, you mean 31/24. It really can't be much else. The sine and cosine are both incorrect because both involve the hypotenuse which must be calculated in order for them to be considered. In addition 31/24 is greater than one which is impossible for both the Sine and the Cosine.
That leaves K and D
Tan(D) = 24/31 which is not an option.
That leaves C.
tan(K) = 31/24 which is what you have to choose. If your choice is not written this way, then there is no answer.
Answer:
The answer to this problem is C. tanK=3124
A company's prime costs total $4,572,000 and its conversion costs total $5,580,000. If direct materials costs are $2,088,000, calculate the overhead costs
Answer:
dont know
Step-by-step explanation:
The three-dimensional shape that this net represents is a _?
The surface area of the figure is _?
square centimeters.
Answer:
Step-by-step explanation:
It’s a cube with edge length of 12 cm.
The cube has six faces, and the are ma if each face is 144 cm²
Total surface area = 6×144 = 864 cm²
Answer:
cube 864
Step-by-step explanation:
Robert owns two dogs. Each day, one dog eats
1/6 of a scoop of dog food and the other dog eats br
1/6 of a scoop. Together, how much dog food do
the two dogs eat each day? Write in simplest
form.
Answer:
2/3 scoop
Step-by-step explanation:
1/6 + 1/6 = 2/6 = 1/3
Answer: 2/3 scoop
A study was performed to determine the percentage of people who wear life vests while out on the water. A researcher believed that the percentage was different for those who rode jet skis compared to those who were in boats. Out of 400 randomly selected people who rode a jet ski, 86.5% wore life vests. Out of 250 randomly selected boaters, 92.8% wore life vests. Using a 0.10 level of significance, test the claim that the proportion of people who wear life vests while riding a jet ski is not the same as the proportion of people who wear life vests while riding in a boat. Let jet skiers be Population 1 and let boaters be Population 2.
Step 2 of 3:
Step 1 of 3:
State the null and alternative hypotheses for the test. Fill in the blank below.
H0Ha: p1=p2: p1⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯p2H0: p1=p2Ha: p1_p2
Step 3 of 3:
Draw a conclusion and interpret the decision.
Compute the value of the test statistic. Round your answer to two decimal places.
From the test the person wants, and the sample data, we build the test hypothesis, find the test statistic, and use this to reach a conclusion.
This is a two-sample test, thus, it is needed to understand the central limit theorem and subtraction of normal variables.
Doing this:
The null hypothesis is [tex]H_0: p_1 - p_2 = 0 \rightarrow p_1 = p_2[/tex]The alternative hypothesis is [tex]H_1: p_1 - p_2 \neq 0 \rightarrow p_1 \neq p_2[/tex]The value of the test statistic is z = -2.67.The p-value of the test is 0.0076 < 0.05(standard significance level), which means that there is enough evidence to conclude that the proportion of people who wear life vests while riding a jet ski is not the same as the proportion of people who wear life vests while riding in a boat.-------------------
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
-------------------------------------
Proportion 1: Jet-ski users
86.5% out of 400, thus:
[tex]p_1 = 0.865[/tex]
[tex]s_1 = \sqrt{\frac{0.865*0.135}{400}} = 0.0171[/tex]
Proportion 2: boaters
92.8% out of 250, so:
[tex]p_2 = 0.928[/tex]
[tex]s_2 = \sqrt{\frac{0.928*0.072}{250}} = 0.0163[/tex]
------------------------------------------------
Hypothesis:
Test the claim that the proportion of people who wear life vests while riding a jet ski is not the same as the proportion of people who wear life vests while riding in a boat.
At the null hypothesis, it is tested that the proportions are the same, that is, the subtraction is 0. So
[tex]H_0: p_1 - p_2 = 0 \rightarrow p_1 = p_2[/tex]
At the alternative hypothesis, it is tested that the proportions are different, that is, the subtraction is different of 0. So
[tex]H_1: p_1 - p_2 \neq 0 \rightarrow p_1 \neq p_2[/tex]
------------------------------------------------------
Test statistic:
The test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error.
0 is tested at the null hypothesis.
This means that [tex]\mu = 0[/tex]
From the samples:
[tex]X = p_1 - p_2 = 0.865 - 0.928 = -0.063[/tex]
[tex]s = \sqrt{s_1^2 + s_2^2} = \sqrt{0.0171^2 + 0.0163^2} = 0.0236[/tex]
The value of the test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
[tex]z = \frac{-0.063 - 0}{0.0236}[/tex]
[tex]z = -2.67[/tex]
The value of the test statistic is z = -2.67.
---------------------------------------------
p-value of the test and decision:
The p-value of the test is the probability that the proportion differs by at at least 0.063, which is P(|z| > 2.67), given by 2 multiplied by the p-value of z = -2.67.
Looking at the z-table, z = -2.67 has a p-value of 0.0038.
2*0.0038 = 0.0076.
The p-value of the test is 0.0076 < 0.05(standard significance level), which means that there is enough evidence to conclude that the proportion of people who wear life vests while riding a jet ski is not the same as the proportion of people who wear life vests while riding in a boat.
A similar question is found at https://brainly.com/question/24250158
Which of the following is a geometric sequence? a. 5,-25,125,-625 b.2,4,16,48 c. 13,16,19,22 d. 100,50,0,-50
Answer:
a
Step-by-step explanation:
B isn't a geometric sequence as it's last term doesn't follow the rule
C is an arithmetic sequence
D is an arithmetic sequence too
Desde cierto paradero se transportan 300 pasajeros en
4 microbuses. ¿Cuántos micros se deben aumentar para
que por cada 3 micros se transporten 90 pasajeros?
Se necesitan 10 micros si queremos que cada 3 micros transporten 90 pasajeros.
En principio, sabemos que 300 pasajeros pueden transportarse en 4 microbuses.
Entonces, el numero de pasajeros que va por cada micro será el cociente entre el numero de pasajeros y el numero de micros:
N = 300/4 = 75
Queremos responder:
¿Cuántos micros se deben aumentar para que por cada 3 micros se transporten 90 pasajeros?
Definamos X como el numero de grupos de 3 micros que tendriamos en esta situación.
Entonces 300 sobre X, debe ser igual a 90 (el numero de pasajeros que va en cada grupo de 3 micros)
300/X = 90
300 = 90*X
300/90 = X = 3.33...
Notar que el número total de micros sera 3 veces X:
3*X = 3*3.33.... = 10
Se necesitan 10 micros.
Si queres leer más sobre el tema, podes ver.
https://brainly.com/question/23854869
I need help on this 20 points
Answer:
4^15
Step-by-step explanation:
We know a^b^c = a^(b*c)
4^3^5
4^(3*5)
4^15
The 100 members of an extracurricular club at a nearby college are subdivided into 6
groups based on ethnic identification. Since 40% of the club is Caucasian, the
researcher ensures that 40% of his sample is also Caucasian. The researcher is using_____sampling
sampling.
A.random
B.cluster
C.stratified
D.systematic
Explanation:
Stratified sampling involves breaking a population of people into separate groups, where there isn't any overlap.
An example would be having a high school with freshmen, sophomores, juniors and seniors. A person can only belong to one group (so we can't have someone whos a freshman and a sophomore at the same time for instance). In that example, each group or strata is a different grade level.
As for this particular problem, each strata is a different ethnicity, and there are 6 strata total.
The researcher is using stratified sampling. The correct option is C.
What is stratified sampling?A method of sampling from a population that can be divided into subpopulations is known as stratified sampling in statistics. When subpopulations within a larger population differ, it may be desirable to sample each subpopulation separately in statistical surveys.
Stratified sampling involves breaking a population of people into separate groups, where there isn't any overlap.
An example would be having a high school with freshmen, sophomores, juniors, and seniors. A person can only belong to one group (so we can't have someone whos a freshman and a sophomore at the same time for instance). In that example, each group or strata is a different grade level.
As for this particular problem, each stratum is different ethnicity, and there is 6 strata total.
To know more about stratified sampling follow
https://brainly.com/question/1954758
#SPJ5
what is the volume of the solid?
9514 1404 393
Answer:
(9√3 -3π/2) ft^3 ≈ 10.88 ft^3
Step-by-step explanation:
The area of the hexagon is given by the formula ...
A = (3/2)√3·s^2 . . . . for side length s
The area of the hexagonal face of this solid is ...
A = (3/2)√3·(2 ft)^2 = 6√3 ft^2
__
The area of the circular hole in the hexagonal face is ...
A = πr^2
The radius is half the diameter, so is r = (2 ft)/2 = 1 ft.
A = π(1 ft)^2 = π ft^2
Then the area of the "solid" part of the face of the figure is ...
A = (6√3 -π) ft^2
__
The volume is ...
V = Bh . . . . . where B is the area of the base of the prism, and h is its height
V = ((6√3 -π) ft^2)(3/2 ft) = (9√3 -3π/2) ft^3 ≈ 10.88 ft^3
The graph shown is the solution set for which of the following inequalities?
Answer:
b is your answer hope it is helpful
Answer:
b is the correct answer
Step-by-step explanation:
the answer is b
.80 to the 8th power
Answer:
0.16777216
Step-by-step explanation:
(. 8)^8=0.16777216
Can some help with the answer please it’s very much needed and apprIeciated
Answer:
A
Step-by-step explanation:
The degree of the Polynomial is 3
A farmer's silo is the shape of a cylinder with a hemisphere as the roof. If the height of the silo is 101 feet and the radius of the hemisphere is r feet. Express the volume of the silo as a function of r.
Answer:
[tex]V(r) =101\pi r^2 + \frac{2}{3}\pi r^3[/tex]
Step-by-step explanation:
Given
Shapes: cylinder and hemisphere
[tex]h = 101[/tex] --- height of cylinder
Required
The volume of the silo
The volume is calculated as:
Volume (V) = Volume of cylinder (V1) + Volume of hemisphere (V2)
So, we have:
[tex]V_1 = \pi r^2h[/tex]
[tex]V_1 = \pi r^2 * 101[/tex]
[tex]V_1 = 101\pi r^2[/tex] --- cylinder
[tex]V_2 = \frac{2}{3}\pi r^3[/tex] ---- hemisphere
So, the volume of the silo is:
[tex]V =V_1 + V_2[/tex]
[tex]V =101\pi r^2 + \frac{2}{3}\pi r^3[/tex]
Write as a function
[tex]V(r) =101\pi r^2 + \frac{2}{3}\pi r^3[/tex]
Where: [tex]\pi = \frac{22}{7}[/tex]
caron makes $6 every 30 minutes. using the double number line diagram below, how much money would she make if she worked 80 minutes at the same rate?
Answer:
$16
Step-by-step explanation:
Both lines start at 0 and at 30 mins it is $6. It displays a ratio so that means every 10 mins they earn $2
Find the volume of the prism.
4 m
5 m
19 m
Answer:
19×5×4=380
answer: 380 m³
[tex]\boxed{\sf Volume=2(LB+BH+LH)}[/tex]
[tex]\\ \sf\longmapsto Volume=2(5\times 4+4\times 19+5\times 19)[/tex]
[tex]\\ \sf\longmapsto Volume=2(20+76+95)[/tex]
[tex]\\ \sf\longmapsto Volume=2(191)[/tex]
[tex]\\ \sf\longmapsto Volume=382m^3[/tex]
What is the more formal name used for describing the corporate-finance decision concerning which projects to invest in?
Answer:
i hope it will help you
Step-by-step explanation:
Working capital management is how companies are able to manage finances and continue operations.
9. What is m JKM? A 28° C 90° B 58.5° D 117°
Step-by-step explanation:
her it Go i think it is helpful for u
Find the nominal rate jm equivalent to the annual effective rate j, if (a) j= 6%, m = 2; (b) j = 9%, m = 4; (c) j = 10%, m = 12; (d) j = 17%, m = 365; (e)j = 8%, m = 52; j = 11.82%, m = 00. Ans. (a) 5.91%; (b6) 8.71%; (e) 9.57%; (d) 15.70%; (e) 7.70%:
A consumer buys goods worth $1500, paying $500 down and $500 at the end of 6 months. If the store charges interest at j1a = 18% on the final payment will be necessary at the end of one year?
find the value of x, circles and angles
Answer:
x = 50
Step-by-step explanation:
When two secants intersect in the interior of a circle, the angles formed are the average of the arc an angle and its vertical intercept. In this case, our angle, 73, should be the average of x and 96. We can translate this to an equation and solve:
[tex]\frac{x+96}{2} = 73[/tex]
x + 96 = 146
x = 50
which function defins (g-f) (x)
Answer:
(g÷f) (x) (1.8) ³x²+⁷x+2
Step-by-step explanation:
Im glad to help you
Y<3/2•x-4
Match the equation to a graph.
Answer:
Last option
Step-by-step explanation:
The slope 3/2 determines the line (although you can plot points to find (0,-4) and (4,2), connecting them, you'll get the equation of the line, and the area it covers will be to the right side, putting x = 0, y<-4, which is below the line, that's how you determine it.
Answered by GAUTHMATH
Find the value of x.
The slope of the line containing the points (-5, 3) and (-2, 1) is ________.
Answer:
-2/3
Step-by-step explanation:
We can use the slope formula
m = ( y2-y1)/(x2-x1)
= ( 1-3)/(-2 - -5)
= (1-3)/(-2+5)
= -2/3
Amit makes a cuboid having sides 3cm, 2cm & 3cm. How many such cuboids will be required to form a cube.
Start with a volume of a cuboid,
[tex]V=abc=3\cdot2\cdot3=18\mathrm{cm^3}[/tex]
The side of the cube we need equals to the LCM of the cubiod's sides,
[tex]\mathrm{LCM}(a,b,c)=\mathrm{LCM}(3,2,3)=6[/tex]
Now compute the volume of such cube,
[tex]V=\mathrm{LCM}(a,b,c)^3=6^3=216\mathrm{cm^3}[/tex]
Divide the volumes to get how many cubiods are in such cube,
[tex]\dfrac{V_{\mathrm{cube}}}{V_{\mathrm{cubiod}}}=\dfrac{216}{18}=\boxed{12}[/tex]
Hope this helps :)
Answer:
Hi,
Answer: 12
Step-by-step explanation:
lcm(3,2,3)=6
Volume of a cuboid=3*2*3=18 (cm³)
Volume of the cube=6³=216 (cm³)
Number of cuboids=216/18=12.
Dividing integers
7. (-154) ➗ (-14) =
11. (-40) ➗10=
15. 90 ➗ (-15)=
16. 108 ➗ (-9)=
17. (-48) ➗ (-6)=
18. (-105) ➗ 7=
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.here,
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.here,7. (-154) ➗ (-14) =11
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.here,7. (-154) ➗ (-14) =1111. (-40) ➗10=-4
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.here,7. (-154) ➗ (-14) =1111. (-40) ➗10=-415. 90 ➗ (-15)=-6
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.here,7. (-154) ➗ (-14) =1111. (-40) ➗10=-415. 90 ➗ (-15)=-616. 108 ➗ (-9)=-12
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.here,7. (-154) ➗ (-14) =1111. (-40) ➗10=-415. 90 ➗ (-15)=-616. 108 ➗ (-9)=-1217. (-48) ➗ (-6)=8
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.here,7. (-154) ➗ (-14) =1111. (-40) ➗10=-415. 90 ➗ (-15)=-616. 108 ➗ (-9)=-1217. (-48) ➗ (-6)=818. (-105) ➗ 7=-15
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.here,7. (-154) ➗ (-14) =1111. (-40) ➗10=-415. 90 ➗ (-15)=-616. 108 ➗ (-9)=-1217. (-48) ➗ (-6)=818. (-105) ➗ 7=-15hope it helps you...........
I need help answering this question thank guys