If P(A)=35, P(B)=13, and P(A∩B)=18, are A and B independent?
Select the option that provides both the correct answer and the correct reason.
No, because 35(13)≠18.
Yes, because 35(13)=18.
Yes, because 35+13=18.
No, because 35÷13≠18.
No, because 35+13≠18.
Answer:
P(A) x P(B) = 35 x 13 = 455
P(A∩B) = 18
=> P(A) x P(B) ≠ P(A∩B).
=> A and B are not independent.
=> Option A (No, because 35(13)≠18) is correct.
Hope this helps!
:)
A and B are not independent because 35(13)≠18), the correct option is A
What is the independent probability?Independent events and probability can be defined as those occurrences that are not dependent on any specific event.
P(A)=35, P(B)=13, and P(A∩B)=18, are A and B independent.
It is to note here that A and B are the odd number outcome and multiples of 3 respectively. So, P (A ∩ B) = 18
P(D│E) = P (D ∩ E)/ P(B)
P(D│E) = 18/13
Here P(D) = P(D│E) = 18/13, which entails that the occurrence of event E will not be affected by the probability of event D’s occurrence.
Taking A and B as independent events, then P(D│E) = P(D).
Here, A and B are not independent because 35(13)≠18), the correct option is A.
Learn more about probability here;
https://brainly.com/question/11234923
#SPJ2
what is m if 9/7m= 1/7
Answer: [tex]m=\frac{1}{9}[/tex]
Step-by-step explanation:
[tex]\frac{9}{7}m=\frac{1}{7}[/tex]
Multiply by the reciprocal to isolate m.
[tex](\frac{7}{9} )\frac{9}{7}m=\frac{1}{7}(\frac{7}{9} )[/tex]
[tex]m=\frac{1}{9}[/tex]
Please help asap! Will give brainliest! Please answer correctly! No guessing. Check all that apply.
Answer:F
Step-by-step explanation:
Answer:
i honestly think that its A, C, D, F.
Step-by-step explanation:
for the A i think that you need to write down the facts so you dont forget and you remember when someone asks you a question.
For C you should gather your resources so you can do the experiment again if your not satisfied with the first result.
For D you should draw a diagram so you can keep track of your information that you used to get the final solution.
For F, you should always make sure that you didn't mess up and that you can redo it to double check.
y = 2 - 2
y = 3x +4
Is (4, 2) a solution of the system?
Choose 1 answer:
А)
Yes
B
No
Answer:
B. No
Step-by-step explanation:
In order to see if (4, 2) is a solution, we have to plug 4 in for x and 2 in for y in the equations. If it's a true statement, then we know that the point is a solution.
One of the equations is y = 3x + 4. Plug in 4 for x and 2 for y:
y =? 3x + 4
2 =? 3 * 4 + 4
2 =? 12 + 4
2 ≠ 16
Thus, we know that (4, 2) is not a solution and the answer is B.
~ an aesthetics lover
what is exponential decay
Answer:
Exponential decay is the decrease in a quantity according to the law. (1) for a parameter and constant (known as the decay constant), where is the exponential function and is the initial value.
Answer:
When a population or group of something is declining, and the amount that decreases is proportional to the size of the population, it's called exponential decay. In exponential decay, the total value decreases but the proportion that leaves remains constant over time.
Step-by-step explanation:
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Answer:
8
Step-by-step explanation:
7*4=28
2*4=8
Answer:
c=8
Step-by-step explanation:
Using cross. multiplication
multiply 2 by 28 2x28=56
Multiple c by 7 cx7=7c
divide both sides by 7
c=8
plzzzzzzzzzzzzzaaaaaa
Answer:
C
Step-by-step explanation:
[tex]y^2+4y-32=0\\(y+8)(y-4)=0\\y=4,-8[/tex]
Therefore, the answer is C. Hope this helps!
Solve the equation for x, and enter your answer below.
10x - 15x + 5= -45 + 40
Answer: x = 2
Step-by-step explanation:
[tex]10x - 15x + 5= -45 + 40[/tex]
subtract 5
[tex]10x - 15x= -45 + 40-5[/tex]
Combine like terms;
[tex]-5x=-10[/tex]
Divide by -5
[tex]x=\frac{-10}{-5}\\ x=2[/tex]
Answer:
[tex]x = 2[/tex]
Step-by-step explanation:
[tex]10x - 15x + 5 = - 45 + 40 \\ 10x - 15x = - 5 - 45 + 40 \\ - 5x = - 10 \\ \frac{ - 5x}{ - 5} = \frac{ - 10}{ - 5} \\ x = 2[/tex]
A shelf at a grocery store contains 500 packages of corn and flour tortillas. If 22% of the packages are flour tortillas how many packages are corn tortillas
I cant fail please help
I don’t understand this question. Can anyone help? I need answers ASAP. Thanks for all the help
There's some unknown (but derivable) system of equations being modeled by the two lines in the given graph. (But we don't care what equations make up these lines.)
There's no solution to this particular system because the two lines are parallel.
How do we know they're parallel? Parallel lines have the same slope, and we can easily calculate the slope of these lines.
The line on the left passes through the points (-1, 0) and (0, -2), so it has slope
(-2 - 0)/(0 - (-1)) = -2/1 = -2
The line on the right passes through (0, 2) and (1, 0), so its slope is
(0 - 2)/(1 - 0) = -2/1 = -2
The slopes are equal, so the lines are parallel.
Why does this mean there is no solution? Graphically, a solution to the system is represented by an intersection of the lines. Parallel lines never intersect, so there is no solution.
A ski run is 1000 yards long with a vertical drop of 208 yards. Find the angle of depression from the top of the ski run to the bottom.
Answer:
angle of depression = -12 degrees
Step-by-step explanation:
Sin = opposite/hypotenuse
sin = -208/1000
inv sin 0.208 = -12
To solve this problem, we just need to use trigonometric ratio and use the ratio that best fits this problem. The angle of depression is equal to 76.23 degrees.
Trigonometric RatioUsing SOHCAHTOA, we can easily solve this problem, but we need to first know which ratio to use
Data;
opposite (ski run) = 1000 yardsadjacent (vertical drop) = 208 yardssince we have the value of opposite and adjacent, we can solve this using the tangent of the angle
[tex]tan\theta = \frac{opposite}{adjacent} \\tan \theta = \frac{1000}{208} \\tan\theta = 4.807\\\theta = sin^-^1 (4.0807)\\\theta = 76.23^0[/tex]
From the calculation above, the angle of depression is equal to 76.23 degrees.
Learn more on angle of depression here;
https://brainly.com/question/15580615
#SPJ2
A hockey team has a 75% chance of winning against the opposing team in each game of a playoff series. To win the series, the team must be the first to win 4 games.
A) Design a simulation for this event,
B) what counts as a successful outcome?
C) Estimate the probability using your simulation.
Can anyone help me? I’m kind of confused on this problem
Answer:
C. Estimate the probability using your simulation.
Step-by-step explanation:
-189=4x-3(-4x+15) help me i need help badly
Answer:
Step-by-step explanation:
−189=4x−3(−4x+15)
−189=16x−45
16x−45=−189
16x−45+45=−189+45
16x=−144
16x /16
= −144 /16
x=−9
Good luck honey !!
Answer:
x=-9
Step-by-step explanation:
-3×-4= 12x -3×15=-45
4x+12x-45=-189
4x+12x=16x
16x-45=-189
16x=-144
x=-9
Find the percent of all values in a normal distribution for which z ≤ 1.00, to the nearest tenth of percent.
Answer:
84.1% of all values in a normal distribution have z ≤ 1.00.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:
The percent of all values in a normal distribution for which z ≤ 1.00.
This is the pvalue of Z = 1.
Z = 1 has a pvalue of 0.8413.
Converting to percentage, to the nearest tenth.
84.1% of all values in a normal distribution have z ≤ 1.00.
Describe the process for calculating the volume of a cylinder.
Answer:
the formulae for the volume of a cylinder= πr²h
so we then put the figures at their respective positions. and for the pie we put either 22/7 or 3.143 or 3.14
The parallelogram does not have right angles. Its area is
less than ab.
equal to ab.
greater than ab.
Answer:
equal to ab
Step-by-step explanation:
The area of a parallelogram is Area = ab
therefore, the area is ab
Answer:
Less than ab
Step-by-step explanation:
What is the equation of the following line? Be sure to scroll down first to see all answer options.
A. y = 3x
B. y = x
C. y = 2x
D. y = -1/3x
E. y = -3x
F. y = 1/3x
Tan θ =
[tex] \sqrt{13} \div \sqrt{2} [/tex]
Answer:
Step-by-step explanation:
Tan θ = [tex]\sqrt{13} \div \sqrt{2}[/tex] = 2.5495
Therefore θ = [tex]Tan^{-1}[/tex] (2.5495) =68.5832°
Answer:
Tan θ = 2.5495097...
SA police department used a radar gun to measure the speed of a sample of cars on the highway.
Assume that the distribution of speeds is approximately Normal with a mean of 71 mph and a
standard deviation of 8 mph.
Using this distribution what is the z-score of a 65-mph speed limit? *
Answer:
The z score of the 65-mph speed limit is -0.75
Step-by-step explanation:
The z score is given by the relation;
[tex]z = \frac{x- \mu}{\sigma}[/tex]
Where:
Z = Normal (Standard) or z score
x = Observed speed score
μ = Mean, expected speed
σ = Standard deviation
Where we plug in the values for x = 65-mph, σ = 8 mph and μ = 71 mph, into the z-score equation, we get;
[tex]z = \frac{65-71}{8}= \frac{-6}{8} = -\frac{3}{4}[/tex]
Hence the z score of the 65-mph speed limit =-3/4 or -0.75.
-4x = -1/2(10x + 18)
Answer:
x = -9
Step-by-step explanation:
-4x = -1/2(10x + 18)
Distribute
-4x= - 5x -9
Add 5x to each side
-4x+5x = -5x+5x -9
x = -9
hi!! <3 i attached a picture of a easy trigonometry question can you please help if you don’t mind <33
Answer:
Side AB has a length of 4, and side BC has a length of 11.7
7. How many Cones will it take to fill a Cylinder with the same height and radius?
O 6 cones
O 3 cones
O 1 cone
O 2 cones
Answer:
3 cones
Step-by-step explanation:
This is why the formula for the volume of a cone is 1/3 (π×r^2)× h, while the volume for a cylinder is (π× r^2)× h, respectively.
Answer:
C) 3 Cones.
Explanation:
Hope this helps! :)
The length of the line segment containing the points (1,7) and (5,5)
is 4.47 units
A, True
B. False
Answer:
True
Step-by-step explanation:
Let A denotes the point (1,7)
Let B denotes the point (5,5)
We are supposed to find The length of the line segment containing the points
Formula : [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex](x_1,y_1)=(1,7)\\(x_2,y_2)=(5,5)\\ d = \sqrt{(5-1)^2+(5-7)^2}\\ d = \sqrt{4^2+(-2)^2}\\ d = \sqrt{4^2+(-2)^2}\\d=4.47[/tex]
So,The length of the line segment containing the points (1,7) and (5,5) is 4.47 units is true.
Hence Option A is true
Frank measured 56 cm. The actual length was 61 cm. Which expression shows his percent error?
Answer: 8.54701% difference
Step-by-step explanation: (61-56)/[(61+56)/2] x 100= 8.55%
3a/4+2a/3-a/12
a. a/3
b. 4/3
c. (4a)/3
Answer: C
Step-by-step explanation:
[tex]\frac{3a}{4}+\frac{2a}{3}-\frac{a}{12}[/tex]
Find the least common denominator of 4, 3, and 12.
4-3-12 | 3
4-1-4 | 4
1-1-1 |-------- 12
The first fractions needs to be multiplied by 3, and the second fraction, by 4
[tex](\frac{(3a)*3}{(4)*3})+(\frac{(2a)*4}{(3)*4})-\frac{a}{12}[/tex]
Solve;
[tex]\frac{9a}{12}+\frac{8a}{12}-\frac{a}{12}[/tex]
Add the fractions with positive signs and subtract the one with negative sign.
[tex]\frac{(9a+8a)-a}{12}[/tex]
Solve;
[tex]\frac{17a-a}{12}=\frac{16a}{12}[/tex]
Simplify by 4;
16/4=4
12/4=3
[tex]\frac{4a}{3}[/tex]
Answer:
(4a)/3
Step-by-step explanation:
3a/4+2a/3-a/12
find L.C.M
9a+8a-1a/12=16a/12
16a/12=(4a)/3
Find the surface area.
Any help will be appreciated thank you
Answer:
Find the area of the shape
First the two triangles
3 x 4 = 12 so the area of both triangles is twelve
Now it is only 1 big rectangle left
The side lengths can be added 3 + 4 + 5 = 12
12 x 11 = 132
132+12=144
144 is the surface area/area
If you have any questions please ask
Step-by-step explanation:
Given the fractions 8/15 and 18/35, find the largest number that these fractions can be divided by, so that the quotient will be a whole number.
Answer:
Therefore the largest number that these fractions can be divided by to give them a whole number is
a) 8/15 = The largest number is 8/15
b) 18/35 = The largest number is 18/35
Step-by-step explanation:
A quotient is the result obtained by dividing two numbers.
So that the quotient obtained is a whole number we have to find out, what number they can be divided by to give them that.
Let's assume the whole number is 1
a. 8/15
8/15 ÷ x = 1
8/15 × 1/x = 1
8/15x = 1
We would cross multiply
8 = 15x
We would divide both sides by 15
8/ 15 = x
Hence the largest number that would divide 8/15 and give it a whole number = 8/15
b) 18/35
18/35÷ x = 1
18/35 × 1/x = 1
18/35x = 1
We would cross multiply
18 = 35x
We would divide both sides by 35
18/ 315 = x
Hence the largest number that would divide 18/35 and give it a whole number = 18/35
Answer:
The answer is 2/105
Step-by-step explanation:
first we have to find the LCM of both denominators. IN this case, the LCM of 15 and 35 is 105. Then we have to find the GCF of these numerators. IN this case, the GCF of 8 and 18 is 2.
Now, put the GCF you found over the LCM.
ANSWER: 2/105
This fraction is the largest number you can divide both numbers by to get a whole number.
Researchers once surveyed students on which superpower they would most like to have. The following two-way table displays data for the sample of students who responded to the survey.
What percent of students in the sample were male?
Round your answer to the nearest percent.
Answer:
14/50 or 28%
Step-by-step explanation:
THERE ARE 14 MALES WHO CHOSE INVISIBILITY AND 50 MALES IN TOTAL.
EZPZ
There is a unique positive real number x such that the three numbers
log82x, log4x and log2x, in that order, form a geometric progression with a positive common ratio.
The number x can be written as m/n, where m and n are relatively prime positive integers.
Find m+n.
Step-by-step explanation:
If the log82x, log4x and log2x, in that order, form a geometric progression with a positive common ratio.
Let a = log82x, b = log4x and c = log2x
If a = log8 2x; 8^a = 2x... (1)
If b = log4 x; 4^b = x ... (2)
If c = log2 x; 2^c = x...(3)
Since a, b c are in GP, then b/a = c/b
Cross multiplying:
b² = ac ...(4)
From eqn 1, x = 8^a/2
x = 2^3a/2
x = 2^(3a-1)
From eqn 2; x = 4^b
x = 2^2b
From eqn 3: x = 2^c
Equating all the values of x, we have;
2^(3a-1) = 2^2b = 2^c
3a-1 = 2b = c
3a-1 = c and 2b = c
a = c+1/3 and b = c/2
Substituting the value of a = c+1/3 and b = c/2 into equation 4 we have;
(c/2)² = c+1/3×c
c²/4 = c(c+1)/3
c/4 = c+1/3
Cross multiplying;
3c = 4(c+1)
3c = 4c+4
3c-4c = 4
-c = 4
c = -4
Substituting c = -4 into equation 3 to get the value of x we have;
2^c = x
2^-4 = x
x = 1/2^4
x = 1/16
Since the number x can be written as m/n, then x = 1/16 = m/n
This shows that m = 1, n = 16
m+n = 1+16
m+n = 17
The required answer is 17.
The value of m+n in which m and n are relatively prime positive integers is 17.
What is geometric sequence?Geometric sequence is the sequence in which the next term is obtained by multiplying the previous term with the same number for the whole series.
There is a unique positive real number x such that the three numbers log82x, log4x and log2x, in that order, form a geometric progression with a positive common ratio. The progression is,
[tex]\log_82 x,\log_4x, \log_2x[/tex]
The above numbers are in geometric progression. Thus, the ratio of first two terms will be equal to the ratio of next two terms as,
[tex]\dfrac{\log_4x}{\log_82x}=\dfrac{\log_2x}{\log_4x}\\(\log_4x)^2={\log_2x}\times{\log_82x}\\[/tex]
Using the base rule of logarithmic function,
[tex]\left(\dfrac{\log x}{\log 4}\right)^2=\dfrac{\log x}{\log2}\times\dfrac{\log2x}{\log8}\\\left(\dfrac{\log x}{\log 2^2}\right)^2=\dfrac{\log x}{\log2}\times\dfrac{\log2x}{\log2^3}[/tex]
Using the Power rule of logarithmic function,
[tex]\left(\dfrac{\log x}{2\log 2}\right)^2=\dfrac{\log x}{\log2}\times\dfrac{\log2x}{3\log2}\\\dfrac{\log x}{4}=\dfrac{\log 2+\log x}{3}\\3\log x=4(\log2x)\\\log x^3=\log(2x)^4\\x^3=16x^4\\x=\dfrac{1}{16}[/tex]
The number x can be written as
[tex]\dfrac{m}{n}[/tex]
Here, m and n are relatively prime positive integers. Thus, the value of m+n is,
[tex]m+n=1+16=17[/tex]
Hence, the value of m+n in which m and n are relatively prime positive integers is 17.
Learn more about the geometric sequence here;
https://brainly.com/question/1509142