Answer:
Interquartile range is the distance between the first and third of a data.
Step-by-step explanation:
Hope it will help you :)
Evaluate 2/3 + 1/3 + 1/6 + … THIS IS CONTINUOUS. It is NOT as simple as 2/3 + 1/3 + 1/6.
[tex]a=\dfrac{2}{3}\\r=\dfrac{1}{2}[/tex]
The sum exists if [tex]|r|<1[/tex]
[tex]\left|\dfrac{1}{2}\right|<1[/tex] therefore the sum exists
[tex]\displaystyle\\\sum_{k=0}^{\infty}ar^k=\dfrac{a}{1-r}[/tex]
[tex]\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\ldots=\dfrac{\dfrac{2}{3}}{1-\dfrac{1}{2}}=\dfrac{\dfrac{2}{3}}{\dfrac{1}{2}}=\dfrac{2}{3}\cdot 2=\dfrac{4}{3}[/tex]
A researcher at the University of Washington medical school believes that energy drink consumption may increase heart rate. Suppose it is known that heart rate (in beats per minute) is normally distributed with an average of 70 bpm for adults. A random sample of 25 adults was selected and it was found that their average heartbeat was 73 bpm after energy drink consumption, with a standard deviation of 7 bpm. In order to test belief at the 10% significance level, determine P-value for the test.
Answer:
Step-by-step explanation:
Given that:
mean μ = 70
sample size = 25
sample mean = 73
standard deviation = 7
level of significance = 0.10
The null hypothesis and the alternative hypothesis can be computed as follows:
[tex]\mathtt{H_o : \mu = 70} \\ \\ \mathtt{H_1 : \mu > 70 }[/tex]
The z score for this statistics can be calculated by using the formula:
[tex]z = \dfrac{X- \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \dfrac{73- 70}{\dfrac{7}{\sqrt{25}}}[/tex]
[tex]z = \dfrac{3}{\dfrac{7}{5}}[/tex]
[tex]z = \dfrac{3 \times 5}{{7}{}}[/tex]
z = 2.143
At level of significance of 0.10
degree of freedom = n -1
degree of freedom = 25 - 1
degree of freedom = 24
The p - value from the z score at level of significance of 0.10 and degree of freedom of 24 is:
P - value = 1 - (Z < 2.143)
P - value = 1 - 0.9839
P - value = 0.0161
Decision Rule: since P value is lesser than the level of significance, we reject the null hypothesis.
Conclusion: We conclude that energy drink consumption increases heart rate.
When comparing more than two treatment means, why should you use an analysis of variance instead of using several t tests?
Answer:
Because it increases the risk of Type 1 error
Step-by-step explanation:
ANOVA is the analysis of the variance .
When comparing more than two treatment means we use ANOVA because a t test increases the risk of type 1 error .
For example if we wish to compare 4 population means there will be 4C2 = 6 separate pairs and to test the null hypothesis that all four population means are equal would require six two sample t test. Similarly to test 10 population mean would require 45 separate two sample t test.
This has two disadvantages .
First the procedure is too lengthy and tediuos.
Second the overall level of significance greatly increases as the number of t- tests increases.
The analysis of the variance compares two different estimates of variance using the F distributionto determine whether the population means are equal.
Allied Corporation is trying to sell its new machines to Ajax. Allied claims that the machine will pay for itself since the time it takes to produce the product using the new machine is significantly less than the production time using the old machine. To test the claim, independent random samples were taken from both machines. You are given the following results.
New Machine Old Machine
Sample Mean 25 23
Sample Variance 27 7.56
Sample Size 45 36
As the statistical advisor to Ajax, would you recommend purchasing Allied's machine? Explain.
Answer:
z(s) is in the acceptance region. We accept H₀ we did not find a significantly difference in the performance of the two machines therefore we suggest not to buy a new machine
Step-by-step explanation:
We must evaluate the differences of the means of the two machines, to do so, we will assume a CI of 95%, and as the interest is to find out if the new machine has better performance ( machine has a bigger efficiency or the new machine produces more units per unit of time than the old one) the test will be a one tail-test (to the left).
New machine
Sample mean x₁ = 25
Sample variance s₁ = 27
Sample size n₁ = 45
Old machine
Sample mean x₂ = 23
Sample variance s₂ = 7,56
Sample size n₂ = 36
Test Hypothesis:
Null hypothesis H₀ x₂ - x₁ = d = 0
Alternative hypothesis Hₐ x₂ - x₁ < 0
CI = 90 % ⇒ α = 10 % α = 0,1 z(c) = - 1,28
To calculate z(s)
z(s) = ( x₂ - x₁ ) / √s₁² / n₁ + s₂² / n₂
s₁ = 27 ⇒ s₁² = 729
n₁ = 45 ⇒ s₁² / n₁ = 16,2
s₂ = 7,56 ⇒ s₂² = 57,15
n₂ = 36 ⇒ s₂² / n₂ = 1,5876
√s₁² / n₁ + s₂² / n₂ = √ 16,2 + 1.5876 = 4,2175
z(s) = (23 - 25 )/4,2175
z(s) = - 0,4742
Comparing z(s) and z(c)
|z(s)| < | z(c)|
z(s) is in the acceptance region. We accept H₀ we did not find a significantly difference in the performance of the two machines therefore we suggest not to buy a new machine
The very hight dispersion of values s₁ = 27 is evidence of frecuent values quite far from the mean
George's height is 1.75 meters and Martha's height is 160 centimeters. How much taller is George than Martha in millimeters?
George should be 150 mm taller than Martha.
Calculation of the height in millimeters:
Since George's height is 1.75 meters and Martha's height is 160 centimeters.
So here we convert the meters to mm
So,
[tex]= 1.75\times 100\\\[/tex]
= 1750 mm
Now 160 cm to mm
So,
[tex]= 160\times 10[/tex]
= 1,600 mm
So, the difference should be
= 1,750 - 1,600
= 150 mm
Therefore, George should be 150 mm taller than Martha.
Learn more about height here: https://brainly.com/question/15810288
HELP PLEASE PLEASE :(
Answer:
16
Step-by-step explanation:
It’s a ratio.
x/12=21/28
21x=12*28
21x=336
x=336/21
x=16
Question
Consider this expression.
4/2² - 6²
Type the correct answer in the box. Use numerals instead of words. For help, see this worked example e.
When a =
-5 and b = 3, the value of the expression is
Submit
Answer:
16
Step-by-step explanation:
4 * sqrt( a^2 - b^2)
Let a = -5 and b =3
4 * sqrt( (-5)^2 - 3^2)
Do the squaring first
4 * sqrt( 25 - 9)
Subtract inside the square root
4 * sqrt( 16)
Take the square root
4 * 4
Multiply 16
Answer:
[tex]\Large \boxed{16}[/tex]
Step-by-step explanation:
[tex]4\sqrt{a^2-b^2 }[/tex]
[tex]\sf Plug \ in \ the \ values \ for \ a \ and \ b.[/tex]
[tex]4\sqrt{-5^2-3^2 }[/tex]
[tex]4\sqrt{25-9 }[/tex]
[tex]4\sqrt{16}[/tex]
[tex]4 \times 4=16[/tex]
15+9=? (5+3) What number is missing from the expression?
Answer:
[tex] \boxed{ \boxed{ \bold{ \mathsf{3}}}}[/tex]Step-by-step explanation:
Let the missing number be 'x'
⇒[tex] \mathsf{15 + 9 = x(5 + 3)}[/tex]
Distribute x through the parentheses
⇒[tex] \mathsf{15 + 9 = 5x + 3x}[/tex]
Swap the sides of the equation
⇒[tex] \mathsf{5x + 3x = 15 + 9}[/tex]
Add the numbers
⇒[tex] \mathsf{5x + 3x = 24}[/tex]
Collect like terms
⇒[tex] \mathsf{8x = 24}[/tex]
Divide both sides of the equation by 8
⇒[tex] \mathsf{ \frac{8x}{8} = \frac{24}{8} }[/tex]
Calculate
⇒[tex] \mathsf{x = 3}[/tex]
Hope I helped!
Best regards!
algebra and trigonometry difference
Answer:
Algebra deals with knowing the value of unknown variables and functional relationships, while trigonometry touches on triangles, sides and angles and the relationship between them.
Algebra is more on polynomial equations, x and y while trigonometry more on sine, cosine, tangent, and degrees.
Trigonometry is much more complicated than algebra but algebra has its uses in our daily lives, be it calculating distance from point to another or determining the volume of milk in a milk container.
Step-by-step explanation:
Answer:
Although both Algebra II and Trigonometry involve solving mathematical problems, Algebra II focuses on solving equations and inequalities while Trigonometry is the study of triangles and how sides are connected to angles.
hope this answer helps u
pls mark as brainliest .-.
y - 4= -2(x + 3)
Complete the missing value in
the solution to the equation.
(-3, _ )
Answer:
4
Step-by-step explanation:
i distributed the -2 to what's in the parentheses. that equal 0. I then moved the 4 to the zero so that it becomes positive. I just assumed that you were ask for Y
Step-by-step explanation:
y-4=-2(x+3)....eq(1)
y- 4= -2x-6
y=-2x-2...eq(2)
subtituting equation 2 in equation 1
(-2x-2)-4=-2x-6
-2x-6=-2x-6
=0
The Rogers family drove 220 miles in 5.5 hours. How many miles would they drive at this same rate in 4 hours? A. 88 mi B. 147 mi C. 160 mi D. 179 mi Please show ALL work! <3
Answer:
160 miles
Step-by-step explanation:
We can use a ratio to solve
220 miles x miles
--------------- = ----------------------
5.5 hours 4 hours
Using cross products
220 *4 = 5.5x
880 = 5.5x
Divide each side by 5.5
880/5.5 = x
160 miles
Answer:
[tex]\large \boxed{\mathrm{C. \ 160 \ miles}}[/tex]
Step-by-step explanation:
We can solve this problem by ratios.
Let x be the missing value.
[tex]\displaystyle \frac{220}{5.5} =\frac{x}{4}[/tex]
Cross multiply.
[tex]5.5 \times x = 220 \times 4[/tex]
[tex]5.5x=880[/tex]
Divide both sides by 5.5.
[tex]\displaystyle \frac{5.5x}{5.5} =\frac{880}{5.5}[/tex]
[tex]x=160[/tex]
(-1, 4) and (-2, 2).
Answer:
Slope : 2
slope-intercept: y = 2x + 6
Point-slope (as asked): y - 4 = 2 (times) (x + 1)
standered: 2x - y = -6
Step-by-step explanation:
Use the model to show to help find the sum 0.34 plus 0.49
Answer/Step-by-step explanation:
The idea to use in solving this problem using the model, is to express the number of shaded boxes in fraction form.
Thus, the blue red shaded boxes has 34 boxes shaded out of 100 boxes. This represents [tex] \frac{34}{100} [/tex]. This will give us 0.34.
The other shaded boxes represents [tex] \frac{49}{100} = 0.49 [/tex].
Using the model, we can solve 0.34 + 0.49.
Add both fractions together.
[tex] \frac{34}{100} + \frac{49}{100} = \frac{34+49}{100} [/tex]
[tex] \frac{83}{100} = 0.83 [/tex]
Use DeMoivre's Theorem to find the indicated power of the complex number. Write the answer in rectangular form.
2(cos20∘+isin20∘))3=__________
Answer:
After solving the power:
[tex]\bold{2(cos60^\circ+isin60^\circ)}[/tex]
Rectangular form:
[tex]\bold{1+i\sqrt3}[/tex]
Step-by-step explanation:
Given the complex number:
[tex]2(cos20^\circ+isin20^\circ)^3[/tex]
To find:
The indicated power by using De Moivre's theorem.
The complex number in rectangular form.
Rectangular form of a complex number is given as [tex]a+ib[/tex] where a and b are real numbers.
Solution:
First of all, let us have a look at the De Moivre's theorem:
[tex](cos\theta+isin\theta )^n=cos(n\theta)+isin(n\theta )[/tex]
First of all, let us solve:
[tex](cos20^\circ+isin20^\circ)^3[/tex]
Let us apply the De Moivre's Theorem:
Here, n = 3
[tex](cos20^\circ+isin20^\circ)^3 = cos(3 \times 20)^\circ+isin(3 \times 20)^\circ\\\Rightarrow cos60^\circ+isin60^\circ[/tex]
Now, the given complex number becomes:
[tex]2(cos60^\circ+isin60^\circ)[/tex]
Let us put the values of [tex]cos60^\circ = \frac{1}{2}[/tex] and [tex]sin60^\circ = \frac{\sqrt3}{2}[/tex]
[tex]2(\dfrac{1}{2}+i\dfrac{\sqrt3}2)\\\Rightarrow (2 \times \dfrac{1}{2}+i\dfrac{\sqrt3}2\times 2)\\\Rightarrow \bold{1 +i\sqrt3 }[/tex]
So, the rectangular form of the given complex number is:
[tex]\bold{1+i\sqrt3}[/tex]
1 rabbit saw 9 elephants while going to the river. Every elephant saw 3 monkeys going to the river. Each monkey had 1 tortoise in each hand.
How many animals were going to the river?
Answer:
91 animals
Step-by-step explanation:
Because every elephant saw 3 monkeys, there were 9 * 3 = 27 monkeys and because every monkey had 1 tortoise in each hand and we know that monkeys have 2 hands, there were 27 * 2 = 54 tortoises. To find the total number of animals that were going to the river, we can calculate 1 + 9 + 27 + 54 = 91 animals.
Answer:
10
Step-by-step explanation:
Only the rabbit and the 3 monkeys are described as going to the river. The tortoises seem to be going to the river by virtue of being taken there by the monkeys. Those on the path to the river were ...
1 rabbit
3 monkeys
6 tortoises
A total of 10 animals.
If 2( a^2 +b^2 ) = ( a+b)^2 , then
a. a+b =0
b. a =b
c. 2a =b
d. ab =0
Answer:
the answer is a=b
Step-by-step explanation:
Suppose the following data show the prices of 4 cars with similar characteristics that sold at a recent auction (in thousands of dollars): 6.6, 5, 10.7, 7.3. Calculate the standard deviation of the sample of selling prices. (please express your answer using 2 decimal places)
Answer: 2.40
Step-by-step explanation:
Given: The prices of 4 cars with similar characteristics that sold at a recent auction (in thousands of dollars): 6.6, 5, 10.7, 7.3.
Let x: 6.6, 5, 10.7, 7.3.
n= 4
Mean : [tex]\overline{x}=\dfrac{\sum x}{n}[/tex]
[tex]\Rightarrow\ \overline{x}=\dfrac{6.6+5+10.7+7.3}{4}\\\\=\dfrac{29.6}{4}\\\\=7.4[/tex]
Now , standard deviation = [tex]\sqrt{\dfrac{\sum(x-\overline{x})^2}{n-1}}[/tex]
[tex]=\sqrt{\dfrac{(6.6-7.4)^2+( 5-7.4)^2+( 10.7-7.4)^2+( 7.3-7.4)^2}{4-1}}\\\\=\sqrt{\dfrac{0.64+5.76+10.89+0.01}{3}}\\\\=\sqrt{\dfrac{17.3}{3}}\approx2.40[/tex]
Hence, the standard deviation of the sample of selling prices = 2.40
Find the missing probability. P(A)=7/20,P(A∪B)=191/400,P(A∩B)=49/400 ,P(B)=? A. 7/8 B. 1/4 C. 117/400 D. 19/40
Answer:
B
Step-by-step explanation:
P(AUB)=P(A)+P(B)-P(A∩B)
191/400=7/20+P(B)-49/400
P(B)=191/400+49/400-7/20=240/400-7/20=12/20-7/20=5/20=1/4
The value of P(B) is 1/4.
What is probability?The probability is defined as the possibility of an event is equal to the ratio of the number of favorable outcomes and the total number of outcomes.
For an experiment having q number of outcomes, the number of favorable outcomes can be denoted by p. The formula to calculate the probability of an event is as follows:
Probability(Event) = Favorable Outcomes/Total Outcomes = p/q
Given data as :
P(A) = 7/20,
P(A∪B) = 191/400,
P(A∩B) = 49/400 ,
P(AUB) = P(A) + P(B) - P(A∩B)
Substitute the values of P(A), P(A∪B) and P(A∩B) in formula,
191/400 = 7/20 + P(B) - 49/400
Rearrange the terms in the equation,
P(B) = 191/400 + 49/400 - 7/20
P(B) = 240/400 - 7/20
P(B) = 12/20 - 7/20
P(B) = 5/20
P(B) = 1/4
Hence, the value of P(B) is 1/4.
Learn more about probability here :
brainly.com/question/11234923
#SPJ5
The average salary of all assembly-line employees at a certain car manufacturer is $42,000 is it a sample or population
Answer:
Population parameters
Step-by-step explanation:
Population parameters usually find from the average values, in a simple way we can say that finding the average value comes in the Population Parameters.
In the given question, car manufacturing companies provide sample of average.
So, given scenario is a type of "Population parameters".
Solve x/10 = -7 A. x = 3 B. x = -0.7 C. x = -17 D. x = -70
Answer:
x = -70
Step-by-step explanation:
x/10 = -7
Multiply each side by 10
x/10*10 = -7*10
x = -70
Choose the inequality that represents the following graph.
Answer:
option a
Step-by-step explanation:
give person above brainliest :)
State whether each ratio forms a proportion.
1) 6:3, 18:9 2) 3:4, 30:40 3) 14/18,28/36 4) 2/5,5/2
Answer: Please Give Me Brainliest, Thank You!
#1, #2, #3 do, but #4 doesn't
Step-by-step explanation:
#1
18/9=2
6/3=2
#2
30/3=10
40/4=10
#3
28/14=2
36/18=2
The grade appeal process at a university requires that a jury be structured by selecting individuals randomly from a pool of students and faculty. (a) What is the probability of selecting a jury of all students? (b) What is the probability of selecting a jury of all faculty? (c) What is the probability of selecting a jury of students and faculty
Correct question is ;
The grade appeal process at a university requires that a jury be structured by selecting eight individuals randomly from a pool of nine students and eleven faculty. (a) What is the probability of selecting a jury of all students? (b) What is the probability of selecting a jury of all faculty? (c) What is the probability of selecting a jury of six students and two faculty?
Answer:
A) 7.144 × 10^(-5)
B) 0.00131
C) 0.0367
Step-by-step explanation:
We are given;
Number of students = 9
Number of faculty members = 11
A) Now, the number of ways we can select eight students from 9 =
C(9, 8) = 9!/(8! × 1!) = 9
Also, number of ways of selecting 8 individuals out of the total of 20 = C(20,8) = 20!/(8! × 12!) = 125970
Thus, probability of selecting a jury of all students = 9/125970 = 7.144 × 10^(-5)
B) P(selecting a jury of all faculty) = (number of ways to choose 8 faculty out of 11 faculty)/(Total number of ways to choose 8 individuals out of 20 individuals) = [C(11,8)]/[C(20,8)] = (11!/(8! × 3!))/125970 = 0.00131
C) P(selecting a jury of six students and two faculty) = ((number of ways to choose 6 students out of 9 students) × (number of ways to choose 2 faculty out of 11 faculty))/(Total number of ways to choose 8 individuals out of 20 individuals) = [(C(9,6) × C(11,2)]/125970
This gives;
(84 × 55)/125970 = 0.0367
Please answer this correctly without making mistakes
Step-by-step explanation:
Option A and B are the correct answer because it equal to 688.5 and 688.05
Answer:
it is 1377/2 and 688 1/17 thats the answer
Step-by-step explanation:
I need help please, m bda =
And m bca =
Step-by-step explanation:
Exterior angle BOA = 250°
Interior angle BOA = 360°- 250° = 110°
Now,
(A) BDA = interior angle BOA / 2 = 55°( Property of circles)
(B) From the figure, we observe that AOBC is a cyclic quadrilateral (i.e. sum of opposite angles is 180°).
Therefore, BCA + BOA = 180°
BCA = 180° - 110° = 70°
What is the probability that a student who has no chores has a curfew ?
Answer:
15/22
Step-by-step explanation:
Of the 66 students who have no chores, 45 have a curfew. So the probability is 45/66 = 15/22.
A Markov chain has 3 possible states: A, B, and C. Every hour, it makes a transition to a different state. From state A, transitions to states B and C are equally likely. From state B, transitions to states A and C are equally likely. From state C, it always makes a transition to state A.
(a) If the initial distribution for states A, B, and C is P0 = ( 1/3 , 1/3 , 1/3 ), find the distribution of X2
(b) Find the steady state distribution by solving πP = π.
Answer:
A) distribution of x2 = ( 0.4167 0.25 0.3333 )
B) steady state distribution = [tex]\pi a \frac{4}{9} , \pi b \frac{2}{9} , \pi c \frac{3}{9}[/tex]
Step-by-step explanation:
Hello attached is the detailed solution for problems A and B
A) distribution states for A ,B, C:
Po = ( 1/3, 1/3, 1/3 ) we have to find the distribution of x2 as attached below
after solving the distribution
x 2 = ( 0.4167, 0.25, 0.3333 )
B ) finding the steady state distribution solving
[tex]\pi p = \pi[/tex]
below is the detailed solution and answers
What is the rise over run for the slope -11/9
Answer: 11 down and 9 right
Step-by-step explanation:
Slope IS rise over run where the top number of the fraction (numerator) determines the vertical distance --> positive is up, negative is down
and the bottom number of the fraction (denominator) determines the horizontal distance --> positive is right, negative is left.
Given slope = -11/9
the numerator is -11 so the "rise" is DOWN 11 units
the denominator is 9 so the "run" is RIGHT 9 units
Find the product of the roots of the equation
xl-5x - 36 = 0
Answer:
Step-by-step explanation:
Hello, I assume that you mean
[tex]x^2-5x-36[/tex]
The product is -36.
[tex]x_1 \text{ and } x_2 \text{ are the two roots, we can write}\\\\(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1\cdot x_2[/tex]
So in this example, it means that the sum is 5 and the product is -36.
Thank you
The U.S. National Whitewater Center in Charlotte uses a pump station to provide the flow of water necessary to operate the rapids. The pump station contains 7 pumps, each with a capacity to deliver 80,000 gallons per minute (gpm). The water channels and ponds in the facility contain 13 million gallons of water. If the pump station is operating 5 pumps simultaneously, assuming ideal conditions how long will it take to completely pump the volume of the system through the pump station
Answer:
t = 32,5 minutes
Step-by-step explanation:
Volume to fill = 13000000 Gal
5 pumps delivering 80000 gal/min
5 * 80000 = 400000 gal/min
If we divide the total volume by the amount of water delivered for the 5 pumps, we get the required time to fill the volume, then
t = 13000000/ 400000
t = 32,5 minutes