Answer:
6
Step-by-step explanation:
The constant of variation is the slope
k = (y2-y1)/(x2-x1)
= (30-18)/(5-3)
=12/2
= 6
The value of constant of variation, k, is,
⇒ k = 6
What is Equation of line?
The equation of line in point-slope form passing through the points
(x₁ , y₁) and (x₂, y₂) with slope m is defined as;
⇒ y - y₁ = m (x - x₁)
Where, m = (y₂ - y₁) / (x₂ - x₁)
Here, the constant of variation, k, of the line y = kx through (3,18) and (5,30)
Since, The constant of variation is the slope,
Hence, We get;
k = (y₂ - y₁)/(x₂ - x₁)
= (30 - 18)/(5 - 3)
= 12/2
= 6
Thus, the value of constant of variation, k, is,
⇒ k = 6
Learn more about the equation of line visit:
https://brainly.com/question/18831322
#SPJ7
A projectile is fired vertically upward from a height of 300
300
feet above the ground, with an initial velocity of 900
900
ft/sec. Recall that projectiles are modeled by the function h(t)=−16t2+v0t+y0
h
(
t
)
=
−
16
t
2
+
v
0
t
+
y
0
. Write a quadratic equation to model the projectile's height h(t)
h
(
t
)
in feet above the ground after t seconds.
Step-by-step explanation:
It is given that, a projectile is fired vertically upward from a height of 300 feet above the ground, with an initial velocity of 900 ft/s.
The general equation with which a projectile are modled by the function is given by :
[tex]h(t)=-16t^2+v_ot+y_o[/tex]
y₀ is the initial height above the ground
v₀ = initial velocity
So,
[tex]h(t)=-16t^2+900t+300[/tex]
This is the quadratic equation that models the projectile height in feet above the ground after t seconds.
Each corner of a rectangular prism is cut off. Two (of the eight) cuts are shown. How many edges does the new figure have? Assume that the planes cutting the prism do not intersect anywhere in or on the prism. EXPLAIN PLS
Answer:
36
Step-by-step explanation:
Each cut creates a triangular face where the corner used to be. That face adds three edges to the figure. The 8 cuts add a total of 8×3 = 24 edges to the 12 edges the prism already had.
The new figure has 12+24 = 36 edges.
These girts stasts jogging from the same point around
acircular track and they complete one round in 24
Seconds 36 seconds and 48 seconds respectively,
After.
how much time will they meet atone point?
Answer:
2hrs 24mins
Step-by-step explanation:
Very simple the time they will meet again at the point will be the LCM of their various time taken to complete a cycle.
Ans LCM(24, 36, 48) = 144 mins
= 2hrs 24mins
Answer:
The answer is 2 hours and 24 minutes
Step-by-step explanation:
Hope you get this right:)
What is the solution to the system of equations? -2x-3y+z=-6, z=6, 3x-y+z=13
Answer:
B is the correct answer.
Step-by-step explanation:
-2x+3y+z=-6
z=6
-2x+3y+6=-6
-2x+3y=-12
-2(3)+3(2)
-6+6=0 A is incorrect
-2(3)+3(-2)=-12
-6-6=-12
B is the correct answer.
I am not going to show C or D, because you have the right answer. Hope this helps you. Thank you.
For a given confidence level, t ? df is larger than z ? . Explain how t ∗ df being slightly larger than z ∗ affects the width of the confidence interval.
Answer:
Answer is below
Step-by-step explanation:
The width of the CI is directly proportional to critical value. When t* is greater than z value, the t value would then cause the margin of error to be larger and this will in turn cause the width of the confidence interval to be larger.
Greater t*df than z* gives us a bigger margin of error. This would in turn give bigger width of confidence interval. t distribution has greater width confidence interval compared to z distribution.
The width of confidence interval is a function of the margin of error. If the critical value of t(t*) is slightly larger than the critical value of z(z*), then the width of the confidence interval will be larger.
The margin of error is the product of the critical value and the standard error. Therefore, given the same standard error value, the value of the margin of error will increases based on the value of the critical value.
Since, t* is slightly larger than z*, then the confidence interval, t will be wider.
Learn more : https://brainly.com/question/18405415
Answer two questions about Equations A and B: A.5x=20 \ B.x=4 1) How can we get Equation B from Equation A? Choose 1 answer: (Choice A) Multiply/divide both sides by the same non-zero constant (Choice B,) Multiply/divide both sides by the same variable expression (Choice C) Add/subtract the same quantity to/from both sides (Choice D) Add/subtract a quantity to/from only one side
Answer:
Multiply/divide both sides by the same non-zero constant
Step-by-step explanation:
5x = 20
Divide each side by 5
5x/5 = 20/5
x = 4
To obtain (B) from (A) "Multiply/divide both sides by the same non-zero constant"
Given the equations :
5x = 20 ___ (A)x = 4 _____ (B)To obtain the value ; x = 4 from A
We multiply (A) by the same non-zero constantHere, the constant value which can be used is 5 in other to isolate 'x'
5x/5 = 20/5
x = 4
Therefore, to obtain (B) from (A) "Multiply/divide both sides by the same non-zero constant"
Learn more on equations :https://brainly.com/question/2972832
#SPJ6
If xy = 1 what is the arithmetic mean of x and y in terms of y? Please show work as detailed as possible
Answer:
(1+y^2) /2y
Step-by-step explanation:
arithmetic mean is the average of x and y
(x+y)/2
Using the equation
xy = 1
and solving for x
x = 1/y
Replacing x in the first equation
(1/y + y) /2
Multiply by y/y
(1/y + y) /2 * y/y
(1/y + y)*y /2y
(1+y^2) /2y
There are 2229 students in a school district. Among a sample of 452 students from this school district, 163 have mathematics scores below grade level. Based on this sample, estimate the number of students in this school district with mathematics scores below grade level.
a. 804
b. 844
c. 884
d. 0.36
Answer:
A. 804Step-by-step explanation:
Given the total number of students in the school to be 2229 students. If among a sample of 452 students from this school district, 163 have mathematics scores below grade level, then we can determine the number of students in this school district with mathematics scores below grade level based on the sample scores using ratio.
Let the number of students in this school district with mathematics scores below grade level be x. The ratio of the students with math score below grade level to total population will be x:2229
Also, the ratio of the sample students with math score below grade level to sample population will be 163:452
On equating both ratios, we will have;
x:2229 = 163:452
[tex]\dfrac{x}{2229} = \dfrac{163}{452}\\ \\cross\ multiplying;\\\\\\452*x = 2229*163\\\\x = \dfrac{2229*163}{452}\\ \\x = \frac{363,327}{452}\\ \\x = 803.8\\\\x \approx 804[/tex]
Hence the estimate of the number of students in this school district with mathematics scores below grade level based on the sample is 804
What is the area of the house (including the drawing room, TV room, balcony, hallway, kitchen, and bedroom)?
Answer:
A
Step-by-step explanation:
the temp fell 3 degrees every hour for 5 hours what's the change in temperature
Answer:
-15
Step-by-step explanation:
If it fell 3 deg every hour for 5 hours so the equation is 3*5 plus a - sign because it dropped degrees
Suppose that 80% of all registered California voters favor banning the release of information from exit polls in presidential elections until after the polls in California close. A random sample of 25 registered California voters is selected.
Required:
a. Calculate the mean and standard deviation of the number of voters who favor the ban.
b. What is the probability that exactly 20 voters favor the ban?
Answer:
a. Mean = 20
Sd = 4
b. Probability of X = 20 = 0.1960
Step-by-step explanation:
we have
n = 25
p = 80% = 0.8
mean = np
= 0.8 * 25
= 20
standard deviation = √np(1-p)
= √25*0.8(1-0.8)
=√4
= 2
probability that exactly 20 favours ban
it follows a binomial distribution
= 25C20 × 0.8²⁰ × 0.2⁵
= 53130 × 0.01153 × 0.00032
= 0.1960
Probability of X = 20 = 0.1960
Many stores run "secret sales": Shoppers receive cards that determine how large a discount they get, but the percentage is revealed by scratching off that black stuff only after the purchase has been totaled at the cash register. The store is required to reveal (in the fine print) the distribution of discounts available. Determine whether the following probability assignment is legitimate?
10% off 20% off 30% off 50% off
a. 0.2 0.2 0.2 0.2
b. 0.5 0.3 0.2 0.1
c. 0.8 0.1 0.05 0.05
d. 0.75 0.25 0.25 -0.25
e. 1 0 0 0
Answer:
b
Step-by-step explanation:
it makes the most senses the lower the discount the higher the chance
The graph of g(x) = x – 8 is a transformation of the graph of f(x) = x. Which of
the following describes the transformation?
(A) translation 8 units down
(B) translation 8 units up
(C) translation 8 units right
(D) translation 8 units left
Translate the statements into a confidence interval for p. Approximate the level of confidence. In a survey of 8451 U.S. adults, 31.4% said they were taking vitamin E as a supplement. The survey's margin of error is plus or minus 1%.
Answer:
The confidence interval is [tex]0.304 < p < 0.324[/tex]
Step-by-step explanation:
From the question we are told
The sample proportion [tex]\r p = 0.314[/tex]
The margin of error is [tex]E = 0.01[/tex]
The confidence interval for p is mathematically represented as
[tex]\r p - E < p < \r p + E[/tex]
=> [tex]0.314 - 0.01 < p < 0.314 + 0.01[/tex]
=> [tex]0.304 < p < 0.324[/tex]
A potato chip company makes potato chips in two flavors, Regular and Salt & Vinegar. Riley is a production manager for the company who is trying to ensure that each bag contains about the same number of chips, regardless of flavor. He collects two random samples of 10 bags of chips of each flavor and counts the number of chips in each bag. Assume that the population variances of the number of chips per bag for both flavors are equal and that the number of chips per bag for both flavors are normally distributed. Let the Regular chips be the first sample, and let the Salt & Vinegar chips be the second sample. Riley conducts a two-mean hypothesis test at the 0.05 level of significance, to test if there is evidence that both flavors have the same number of chips in each bag. (a) H0:μ1=μ2; Ha:μ1≠μ2, which is a two-tailed test. (b) t≈1.44 , p-value is approximately 0.167 (c) Which of the following are appropriate conclusions for this hypothesis test?
A. There is insufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag.B. There is sufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag.C. Reject H0.D. Fail to reject H0.
Answer:
A. There is insufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag.
D. Fail to reject H0.
Step-by-step explanation:
From the summary of the given test statistics.
The null and the alternative hypothesis are:
[tex]H_0:\mu_1=\mu_2 \\ \\ Ha:\mu_1 \neq \mu_2[/tex]
This test is also a two tailed test.
Similarly, the t value for the test statistics = 1.44
The p- value - 0.167
The level of significance ∝ = 0.05
The objective we are meant to achieve here is to determine which of the following from the given options are appropriate conclusions for this hypothesis test.
From what we have above:
Decision Rule: We fail to reject the null hypothesis since the p-value is greater than the level of significance at 0.05
CONCLUSION: Therefore, we can conclude that there is insufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag as we fail to reject H0.
Question 1 (Multiple Choice Worth 4 points)
(08.01) Looking at the spread of your data best fits which step of the statistical process?
Answer:
The answer is "Analysis the information by chart and number processes".
Step-by-step explanation:
They already have articulated a query and also gathered information unless you are searching only at the distribution of your results. Those who are ready to analyze your results for all are there.
qaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Answer:
32.8 miles
Step-by-step explanation:
Amy is driving to Seattle. Suppose that the remaining distance to drive (in miles) is a linear function of her driving time (in minutes). When graphed, the function gives a line with a slope of -0.95. See the figure below. Amy has 48 miles remaining after 31 minutes of driving. How many miles will be remaining after 47 minutes of driving?
Answer: The general equation of a line is given as y = mx + c, where m is the slope of the line and c is the intercept on the y axis. Given that the slope is -0.95, substituting in the general equation :
y = -0.95x + c
Amy has 48 miles remaining after 31 minutes of driving, to find c, we substitute y = 48 and x = 31. Therefore:
48 = -0.95(31) + c
c = 48 + 0.95(31)
c = 48 + 29.45
c = 77.45
The equation of the line is
y = -0.95x + 77.45
After 47 minutes of driving, the miles remaining can be gotten by substituting x = 47 and finding y.
y = -0.95(47) + 77.45
y = -44.65 + 77.45
y = 32.8 miles
An operator wants to determine the standard deviation for a machine relative to its ability to produce windshield wipers conforming within their specifications. To do this, she wants to create a p-chart. Over a month's time, she tests 100 units every day and records the number of manufacturing defects. The average proportion of non-conforming windshield wipers is found to be 0.042. What is the standard deviation of this sample
Answer:
the standard deviation of the sample is less than 0.1
Step-by-step explanation:
Given that :
The sample size n = 100 units
The average proportion of non-conforming windshield wipers is found to be 0.042 which is the defective rate P-bar
The standard deviation of the machine([tex]S_p[/tex]) can be calculated by using the formula:
[tex]S_p =\dfrac{ \sqrt{ \overline P \times (1 - \overline P)} }{n}[/tex]
[tex]S_p =\dfrac{ \sqrt{0.042 \times (1 -0.042)} }{100}[/tex]
[tex]S_p =\dfrac{ \sqrt{0.042 \times (0.958)} }{100}[/tex]
[tex]S_p =\dfrac{ \sqrt{0.040236} }{100}[/tex]
[tex]S_p =\dfrac{ 0.2005891323 }{100}[/tex]
[tex]S_p =0.002[/tex]
Thus , the standard deviation of the sample is less than 0.1
The average daily volume of a computer stock in 2011 was ų=35.1 million shares, according to a reliable source. A stock analyst believes that the stock volume in 2014 is different from the 2011 level. Based on a random sample of 30 trading days in 2014, he finds the sample mean to be 32.7 million shares, with a standard deviation of s=14.6 million shares. Test the hypothesis by constructing a 95% confidence interval. Complete a and b A. State the hypothesis B. Construct a 95% confidence interval about the sample mean of stocks traded in 2014.
Answer:
a
The null hypothesis is [tex]H_o : \mu = 35 .1 \ million \ shares[/tex]
The alternative hypothesis [tex]H_a : \mu \ne 35.1\ million \ shares[/tex]
b
The 95% confidence interval is [tex]27.475 < \mu < 37.925[/tex]
Step-by-step explanation:
From the question the we are told that
The population mean is [tex]\mu = 35.1 \ million \ shares[/tex]
The sample size is n = 30
The sample mean is [tex]\= x = 32.7 \ million\ shares[/tex]
The standard deviation is [tex]\sigma = 14.6 \ million\ shares[/tex]
Given that the confidence level is [tex]95\%[/tex] then the level of significance is mathematically represented as
[tex]\alpha = 100-95[/tex]
[tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table
The value is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{ \sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 1.96 * \frac{ 14.6 }{\sqrt{30} }[/tex]
[tex]E = 5.225[/tex]
The 95% confidence interval confidence interval is mathematically represented as
[tex]\= x -E < \mu < \= x +E[/tex]
substituting values
[tex]32.7 - 5.225 < \mu < 32.7 + 5.225[/tex]
[tex]27.475 < \mu < 37.925[/tex]
Bob cycles 5.4 km every morning.how many feet are in 5.4 km, given that 1 mile=1.609 km and 1 mile=5,280 feet?
Answer:
17,720 ft
Step-by-step explanation:
5.4 km * (1 mile)/(1.609 km) * (5280 ft)/(1 mile) = 17,720 ft
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.)
an = (−3^n)/(4n!)
Answer:
[tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex] converges.
Step-by-step explanation:
The convergence analysis of this sequence is done by Ratio Test. That is to say:
[tex]r = \frac{a_{n+1}}{a_{n}}[/tex], where sequence converges if and only if [tex]|r| < 1[/tex].
Let be [tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex], the ratio for the expression is:
[tex]r =-\frac{3}{n+1}[/tex]
[tex]|r| = \frac{3}{n+1}[/tex]
Inasmuch [tex]n[/tex] becomes bigger, then [tex]r \longrightarrow 0[/tex]. Hence, [tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex] converges.
Given a population with a mean of µ = 100 and a variance of σ2 = 1600, the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 50 is obtained. • What are the mean and variance of the sampling distribution for the sample means? • What is the probability that ¯X > 110?
Answer:
The probability that the sample mean is more than 110 is 0.0384.
Step-by-step explanation:
According to the Central Limit Theorem if we have an unknown population with mean μ and standard deviation σ and appropriately huge random samples (n > 30) are selected from the population with replacement, then the sampling distribution of the sample mean will be approximately normally distributed.
Then, the mean of the sampling distribution of sample mean is given by:
[tex]\mu_{\bar x}=\mu[/tex]
And the variance of the sampling distribution of sample mean is given by:
[tex]\sigma^{2}_{\bar x}=\frac{\sigma^{2}}{n}[/tex]
The information provided is:
[tex]n=50\\\\\mu=100\\\\\sigma^{2}=1600[/tex]
Since n = 50 > 30, the central limit theorem can be applied to approximate the sampling distribution of sample mean by the normal distribution.
The mean variance of the sampling distribution for the sample mean are:
[tex]\mu_{\bar x}=\mu=100\\\\\sigma^{2}_{\bar x}=\frac{\sigma^{2}}{n}=\frac{1600}{50}=32[/tex]
That is, [tex]\bar X\sim N(100, 32)[/tex].
Compute the probability that the sample mean is more than 110 as follows:
[tex]P(\bar X>110)=P(\frac{\bar X-\mu_{\bar x}}{\sigma_{\bar x}}>\frac{110-100}{\sqrt{32}})[/tex]
[tex]=P(Z>1.77)\\=1-P(Z<1.77)\\=1-0.96164\\=0.03836\\\approx 0.0384[/tex]
*Use a z-table.
Thus, the probability that the sample mean is more than 110 is 0.0384.
Factor.
x2 + 11x
x2 + 11x
x(x + 11)
11(x + 11)
0(x2 + 11x)
Answer:
x(x + 11)
Step-by-step explanation:
x^2 + 11x when factored gives a result of x(x + 11)
Answer:
x(x+11)
Step-by-step explanation:
We are given the expression:
[tex]x^2+11x[/tex]
This can be factored using the Greatest Common Factor (GCF).
The GCF of x^2 and 11x is x.
Factor out an x.
[tex]x(x+11)[/tex]
x^2+11x factored is: x(x+11).
one of these marbles is picked at random. what is the probability that a blue marble is picked?
A.1/3
B.2/5
C.1/2
D.1/4
Answer:
1/3
Step-by-step explanation:
there are twelve marbles total. there are 4 blue marbles.
4/12 = 1/3
A number is chosen at random from 1 to 50. Find
the probability of selecting multiples of 10.
Step by step.
Answer:
1/10
Step-by-step explanation:
There are 5 numbers in the range that are multiples of 10: 10, 20, 30, 40, 50. The probability of choosing one of those at random from the set of 50 numbers is ...
5/50 = 1/10
Oregon State University is interested in determining the average amount of paper, in sheets, that is recycled each month. In previous years, the average number of sheets recycled per bin was 59.3 sheets, but they believe this number may have increase with the greater awareness of recycling around campus. They count through 79 randomly selected bins from the many recycle paper bins that are emptied every month and find that the average number of sheets of paper in the bins is 62.4 sheets. They also find that the standard deviation of their sample is 9.86 sheets. What is the value of the test-statistic for this scenario
Answer:
The test statistic is [tex]t = 2.79[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 59.3[/tex]
The sample size is [tex]n = 79[/tex]
The sample mean is [tex]\= x = 62.4[/tex]
The standard deviation is [tex]\sigma = 9.86[/tex]
Generally the test statistics is mathematically represented as
[tex]t = \frac{\= x - \mu }{ \frac{ \sigma}{ \sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 62.2 - 59.3 }{ \frac{ 9.86}{ \sqrt{ 79} } }[/tex]
[tex]t = 2.79[/tex]
State whether the data described below are discrete or continuous, and explain why.
The widths (in centimeters) of different paintings in an art museum
nothing
Choose the correct answer below.
A. The data are continuous because the data can only take on specific values.
B. The data are discrete because the data can only take on specific values.
C. The data are discrete because the data can take on any value in an interval.
D. The data are continuous because the data can take on any value in an interval.
Based on the dot plots shown in the images, which of the following is a true statement? A. Set B has the greater mode. B. Set A has more items than set B. C. Set A is more symmetric than set B. D. Set B has the greater range.
What is the slope of the line that passes through (2, 12) and (4, 20)?On the graph of the equation 3x + 2y = 18, what is the value of the y-intercept?
Answer: The slope of the line that passes through (2, 12) and (4, 20) is 4.
The value of the y-intercept is 9.
Step-by-step explanation:
Slope of line passing through (a,b) and (c,d) = [tex]\dfrac{d-b}{c-a}[/tex]
Then, the slope of the line that passes through (2, 12) and (4, 20) = [tex]\dfrac{20-12}{4-2}[/tex]
[tex]=\dfrac{8}{2}=4[/tex]
So, the slope of the line that passes through (2, 12) and (4, 20) is 4.
To find the y-intercept of 3x + 2y = 18, first write in slope intercept form y=mx+c ( where c= y-intercept ).
[tex]2y=-3x+18\\\\\Rightarrow\ y=-\dfrac{3}{2}x+9[/tex]
By comparison, c= 9
Hence, the value of the y-intercept is 9.
Suppose that you are standing 150 feet from a building and the angle of elevation to the top of the building is 42°. What is the building's height?
Answer:
135.06 feet
Step-by-step explanation:
Since the side of the building makes a right triangle with the ground and you know one side length and the degree angle between you and the top of the building we can use trigonometric function to find the height of the building. So since we know one side other than the hypotenuse we can use tangent to solve. Tangent is the opposite side over the adjacent side of the known angle.
opposite side = x
adjacent side = 150 feet
angle = 42°
tan(42°) = x/150 feet
150 feet * tan(42°) = x
x = 135.06 feet