Answer:
18m squared
Step-by-step explanation:
4m x 4.5m = ?
A waste management company is designing a rectangular construction dumpster that will be twice as long as it is wide and must hold 10 yd3 of debris. Find the dimensions of the dumpster that will minimize its surface area.
Answer:
The dimensions are:
l = 2*1.96 = 3.92 yd
h = 5/(1.96)² = 1.30 yd
w = 1.96 yd
Step-by-step explanation:
The volume is given by:
[tex]V=l*w*h[/tex]
Where:
l is the longw the wide h the heightWe know that l = 2w, so we have:
[tex]V=2w^{2}*h[/tex]
[tex]10=2w^{2}*h[/tex]
[tex]5=w^{2}*h[/tex] (2)
Now, the surface of this parallelepiped is:
[tex]S=2wh+2lh+lw[/tex]
Using l = 2w:
[tex]S=2wh+4wh+2w^{2}[/tex]
Using (2) we obtain the surface equation in terms of w.
[tex]S=2w\frac{5}{w^{2}}+4w\frac{5}{w^{2}}+2w^{2}[/tex]
[tex]S=2\frac{5}{w}+4\frac{5}{w}+2w^{2}[/tex]
We need to take the derivative with respect to w to minimize the surface area.
[tex]S=2\frac{5}{w}+4\frac{5}{w}+2w^{2}[/tex]
[tex]S=\frac{30}{w}+2w^{2}[/tex]
[tex]\frac{dS}{dw}=-\frac{30}{w^{2}}+4w[/tex]
Now, let's equal it to zero.
[tex]0=-\frac{30}{w^{2}}+4w[/tex]
[tex]\frac{30}{w^{2}}=4w[/tex]
[tex]w^{3}=\frac{30}{4}[/tex]
[tex]w=1.96\: yd[/tex]
So, l = 2*1.96 = 3.92 yd and h = 5/(1.96)² = 1.30 yd
Therefore, the dimensions are:
l = 2*1.96 = 3.92 yd
h = 5/(1.96)² = 1.30 yd
w = 1.96 yd
I hope it helps you!
Describe how to write the null and alternative hypotheses based on a claim. Provide at least one example to clarify your explanation.
Answer:
Step-by-step explanation:
The null and alternative hypothesis are usually used in hypothesis testing to present the claim being tested as give in terms of the mean or proportion :
Given that the mean score of high school students is 10 ; using a sample of 50 students, a mean of 8 was obtained ; we could want to test the claim that the mean score is less than 10.
Here; population mean, μ = 10 ; the claim is now that, μ < 10 based on what was observed about the sample.
H0 : μ = 10
H0 : μ < 10
If we wanted to test If the mean was greater than 10 ; then the sign is reversed
H0 : μ = 10
H0 : μ > 10
If we wanted to test If the score is just different from the mean score stated ; (it may be less than or greater than)
H0 : μ = 10
H0 : μ ≠ 10
The circumference of a
square orchard is 1600
meters. How many square
meters does the orchard
cover? How many hectares?
Answer:
A square is 4 even sides.
the circumference around the square area is 1600 meters. This means that each side is 400 meters.
Square meters is the area of the square.
400 x 400 = 160000 m^2
To get to Hectares, you divide the squared measurement by 10,000.
Answer:
160000m^2 = 16ha
Step-by-step explanation:
Bit of a nit pick first the word is perimeter not circumference circumference only applies to circles. 1600/4=400 (divide by 4 because a square has 4 sides) 400^2=160000 (A=L*H the length and height are the same so you square it) 160000/10000=16 (1 hectare = 10000m^2), Hope this helps. :)
I really need help please
Answer:
Step-by-step explanation:
We have two sides; the Adjacent and the Hypotnuse
Meaning we will use Cos
Cos = A/H
Cos X = 16/19
Use the inverse of Cos to find the angle
X = cos-1 (16/19)
X = 0.45499141546
X = 0.45
Find the linear function with the following properties.
f(0) = -10
Slope off = -5
Answer:
y = -5x -10
Step-by-step explanation:
plug the given values into the line equation: y = mx + b
where m is the slope and b is the y-intercept.
f(0) is the y-intercept (the point on the graph where x = 0)
The linear function with the properties f(0) = -10, Slope of -5 is f(X)=-5x-10.
To find the linear function with the given properties, we need to use the slope-intercept form of a linear function, which is:
y = mx + b
where:
y is the output (the value of the function)
x is the input (the independent variable)
m is the slope of the line
b is the y-intercept (the value of the function when x = 0)
We are given that f(0) = -10, which means when x is 0, the function value (y) is -10. This gives us the y-intercept (b = -10).
We are also given that the slope (m) is -5.
So, the linear function is f(x) = -5x - 10.
Hence, the linear function is f(x) = -5x - 10.
To learn more on slope intercept form click:
https://brainly.com/question/9682526
#SPJ6
state the hundred thousands place for 7,832,906,215
Answer:
Step-by-step explanation:
6 is the thousands place
0 (right next to it) is the 10 thousands place
9 is the hundred thousands place. There is only 1 nine present so the answer is unique.
a river generates a spring flood about 40% of the time. Based on these records, what is the chance that it will flood for at least three years in a row sometime during the next five years
Explain why a + b = d.
B
lbº
aº
dº
A
С C
Can you please solve these equations by elimination? -10x -10y=20 , -7x -7y=14.
Answer:
-10x -10y=20
-10x - 20=10y
-10x - 20/10=y
-10x - 2=y
y=-10x-2
-7x -7y=14
-7x - 14 = 7y
-7x - 14/7=y
-7x - 2=y
y=-7x-2
Find all the zeros of f(x).
f(x) = 2x3 + 7x2 - 28x + 12
Arrange your answers from smallest to largest. If
there is a double root, list it twice.
Plz help!
Answer:
The zeroes are -6, 1/2 and 2.
Step-by-step explanation:
f(x) = 2x3 + 7x2 - 28x + 12 = 0
From the first and last coefficient 2 and 12, one guess for a zero is x = 2.
So substituting x = 2:
f(2) = 16+ 28 - 56 + 12 = 0
So x = 2 is a zero and x - 2 is a factor of f(x)
Performing long division:
x - 2)2x3 + 7x2 - 28x + 12( 2x2 + 11x - 6 <------- Quotient
2x3 - 4x2
11x2 - 28x
11x2 - 22x
- 6x + 12
-6x + 12
.............
Now we solve
2x2 + 11x - 6 = 0
(2x - 1)(x + 6) = 0
2x - 1 = 0 or x + 6 = 0, so:
x = 1/2, x = -6.
Answer: -6, 1/2, 2.
Step-by-step explanation:
{(x) = 2x3 + 7x2 - 28x + 12 = 0
From the first and last coefficient 2 and 12, one
guess for a zero is x=2.
So substituting x=2:
{(2) = 16+ 28 - 56 + 12 = 0
So x = 2 is a zero and x - 2 is a factor of f(x)
Performing long division:
X - 2)2x3 + 7x2 - 28x + 12(2x2 + 11x - 6 <
Quotient
One angle measures 27° more than 2 times another. If the two angles are complementary, find the measures of the angles.
A. 21°; 69°
B. 26°; 64°
C. 31°; 59°
D. 23°; 67°
Answer:
A. 21°, 69°
Step-by-step explanation:
If you work by process of elimination all you have to do is take 27 away from the bigger degree of the two and see if it is 2x as much as the smaller degree.
Ex.
1. 69°-27°= 42°, which is 2x as many as 21°.
he solutions to the inequality y > −3x + 2 are shaded on the graph. Which point is a solution? (0, 2) (2, 0) (1, −2) (−2, 1)
Answer:
The Answer Is Point B (2,0)
Step-by-step explanation:
Find the missing side. Round your answer to the nearest tenth
Answer:
x = 24.8
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
Sin theta = opp / hypotenuse
sin 75 = 24 /x
x sin 75 = 24
x = 24/ sin 75
x=24.84662
Rounding to the nearest tenth
x = 24.8
Edgar accumulated $5,000 in credit card debt. If the interest rate is 10% per year and he does not make any payments for 3 years, how much will he owe on this debt in 3 years by compounding continuously?
the discrete compounding formula is f = p * (1 + r) ^ n
f is the future value
p is the present value
r is the interest rate per time period
n is then number of time periods
in your problem, you are given:
f = what you want to find
p = 5000
r = 30% per year / 100 = .3 per year (percent / 100 = rate).
n = 3 years
if you compound annually, the formula becomes:
f = 5000 * (1 + .3) ^ 3 = 10985
if you compound quarterly, the formula becomes:
f = 5000 * (1 + .3 / 4) ^ (3 * 4) = 11908.898
if you compound monthly, the formula becomes:
f = 5000 * (1 + .3 / 12) ^ (3 * 12) = 12162.67658
if you compound continuously, a different formula is used.
that formula is f = p * e ^ (r * n)
f is the future value
p is the present value
e is the scientific constant of 2.718281828.......
r is the interest rate per time period
n is the number of time periods.
with this formula, you leave the time periods in terms of years.
it will make no difference what time periods and compounding periods you use, the answer will be the same.
most of the time you will just give it the interest rate per year and the number of years.
the reason is as follows:
r * n = .3 * 3 = .9 when giving it rate and time in terms of years.
r * n = .3 / 4 * 3 * 4 = .9 when giving it rate and time in terms of quarters.
r * n = .3 / 12 * 3 * 12 = .9 when giving it rate and time in terms of months.
in your problem, the formula becomes f = 5000 * e ^ (.3 * 3) = 12298.01556.
the more compounding periods per year, the higher the future value.
the highest is when you compound continuously.
this is apparent from the data.
The dual of the equation x(y + 1) is?
Answer:
x (y+1)
xy+1x
xy+x is theanswer.
I hope this will help you.
stay safe
A baker is making 41/8 batches of cookies. If each batch requires 3/4 of a stick of butter, how much butter will her need for all 41/8 batches? Please explain/show ur work.
Answer:
Step-by-step explanation:
I assume that you mean 4⅛ batches, not 41/8 batches.
4⅛ batches × (¾ stick)/batch = 33/8 batches × (¾ stick)/batch
= 99/32 sticks
= 3 and 3/32 sticks
1+sin2a/1-sin2a=(1+tana/1-tana)^2
[tex] \Large \mathbb{SOLUTION:} [/tex]
[tex] \begin{array}{l} \dfrac{1 + \sin 2A}{1 - \sin 2A} = \dfrac{(1 + \tan A)^2}{(1 - \tan A)^2} \\ \\ \dfrac{1 + 2\sin A\cos A}{1 - 2\sin A\cos A} = \dfrac{(1 + \tan A)^2}{(1 - \tan A)^2} \\ \\ \because \sin 2A = 2\sin A\cos A\ (\text{Double Angle Identity}) \\ \\ \text{Divide both numerator and denominator of} \\ \text{LHS by }\cos^2 A. \\ \\ \dfrac{\frac{1 + 2\sin A\cos A}{\cos^2 A}}{\frac{1 - 2\sin A\cos A}{\cos^2 A}} = \dfrac{(1 + \tan A)^2}{(1 - \tan A)^2} \\ \\ \dfrac{\frac{1}{\cos^2 A} + \frac{2\sin A\cos A}{\cos^2 A}}{\frac{1}{\cos^2 A} - \frac{2\sin A\cos A}{\cos^2 A}} = \dfrac{(1 + \tan A)^2}{(1 - \tan A)^2}\\ \\ \dfrac{\sec^2 A + 2\tan A} {\sec^2 A- 2\tan A} = \dfrac{(1 + \tan A)^2}{(1 - \tan A)^2} \\ \\ \dfrac{1 + \tan^2 A + 2\tan A} {1 + \tan^2 A - 2\tan A} = \dfrac{(1 + \tan A)^2}{(1 - \tan A)^2} \\ \\ \because \sec^2 A = 1 + \tan^2 A\ (\text{Pythagorean Identity}) \\ \\ \text{Rearranging, we get} \\ \\ \dfrac{\tan^2 A + 2\tan A + 1} {\tan^2 A - 2\tan A + 1} = \dfrac{(1 + \tan A)^2}{(1 - \tan A)^2} \\ \\ \dfrac{(1 + \tan A)^2}{(1 - \tan A)^2} = \dfrac{(1 + \tan A)^2}{(1 - \tan A)^2}\\ \\ \text{LHS} = \text{RHS}_{\boxed{\:}}\end{array} [/tex]
A dump truck with 1500 gallons of soil arrives on campus to fill in the new planters on the quad. Each planter needs 2 cubic yards of soil. How many planters can be filled?
Answer:
3 planters can be filled, with 288,156 gallons left over.
Step-by-step explanation:
Given that a dump truck with 1500 gallons of soil arrives on campus to fill in the new planters on the quad, and each planter needs 2 cubic yards of soil, to determine how many planters can be filled the following calculation must be performed:
1 cubic yard = 201.974 gallons
2 cubic yards = 403.948 gallons
1500 / 403.948 = X
3.71 = X
1500 - (403.948 x 3) = 288.156
Therefore, 3 planters can be filled, with 288,156 gallons left over.
Please help me out!!!
Answer:
x = 76.9
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp side / adj side
tan 70 = x/28
28 tan 70 = x
x=76.92936
Rounding to the nearest tenth
x = 76.9
Answer:
76.9
Step-by-step explanation:
SOH: Sin(θ) = Opposite / Hypotenuse
CAH: Cos(θ) = Adjacent / Hypotenuse
TOA: Tan(θ) = Opposite / Adjacent
Tan 70 = [tex]\frac{x}{28}[/tex]
(28) tan 70 = x
76.929 = x
Question 5 of 25
Find the common ratio for this geometric sequence.
0.7, 2.1, 6.3, 18.9,...
O A. 1.4
O B. 3
O C.-3
D. 0.33
SUBMIT
Answer:
3
Step-by-step explanation:
common ratio
2.1/0.7=3
6.3/2.1=3
18.9/6.3=3
therefore common ratio is equal to 3
how you could find the shortest distance from A(6, 5) to the line y = 5x – 10?
Answer:
The distance between two points (a, b) and (c, d) is given by:
[tex]d = \sqrt{(a - c)^2 + (b - d)^2}[/tex]
So the distance between the point (6, 5) and the line y = 5x - 10 can be thought as the distance between the point (6, 5) and the point (x, 5x - 10)
Where:
(x, 5x - 10) denotes all the points in the line y = 5x – 10
That distance is given by:
[tex]d = \sqrt{(x - 6)^2 + (5x - 10 - 5)^2} = \sqrt{(x - 6)^2 + (5x - 15)^2}[/tex]
Now we want to minimize this.
Because the distance is a positive quantity, we can try to minimize d^2 insted, so we have:
[tex]d^2 = (\sqrt{(x - 6)^2 + (5x - 15)^2})^2 = (x - 6)^2 + (5x - 15)^2}\\\\d^2 = x^2 - 2*x*6 + 36 + 25*x^2 - 2*15*x + (-15)^2\\\\d^2 = 26*x^2 - 42*x + 261[/tex]
Notice that this is a quadratic equation with a positive leading coefficient, which means that the arms of the graph will open upwards, then the minimum will be at the vertex of the parabola.
Remember that for a parabola:
y = a*x^2 + bx + c
the x-value of the vertex is:
x = -b/2a
Then for our parabola:
d^2 = 26*x^2 - 42*x + 261
The vertex is at:
x = -(-42)/(2*26) = 0.808
Then we just need to evaluate the distance equation in that value of x to get the shortest distance:
[tex]d = \sqrt{(0.808 - 6)^2 + (5*0.808 - 15)^2} = 12.129[/tex]
The shortest distance between the point A and the line is 12.129 units.
Tolong bantuin pakai cara
Answer:
1364
Step-by-step explanation:
1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364
a1+a2 = a3, a2+a3=a4 etcetera..
1+3 =4
3+4 =7
4+7=11
.
.
a13+a14 = a15
521+843 = 1364
so, 1364 is the answer
Sam can mow a lawn in 40 minutes. Melissa can mow the same lawn in 80 minutes. How long does it take for both Sam and Melissa to mow the lawn if they are working together?
Answer:
It will take them both 24 minutes to mow the lawn if they are working together.
Step-by-step explanation:
Given that Sam can mow a lawn in 40 minutes, and Melissa can mow the same lawn in 80 minutes, to determine how long does it take for both Sam and Melissa to mow the lawn if they are working together, the following calculation must be performed:
1/40 + 1/60 = 1 / X
3X + 2X = 120
X = 120/5
X = 24
Thus, it will take them both 24 minutes to mow the lawn if they are working together.
find the coefficient of the third term of (x+2)^5
Answer:
40
Step-by-step explanation:
(x+2)^5 use binomial theorem :
(a+b)^n = (n choose 0)*a^n*b^0 + (n choose 1)*a^(n-1)*b^1 + (n choose 2)*a^(n-2)*b^2) + ... + (n choose (n-1)*a^1*b^(n-1) + ( n choose n)*a^0*b^n
this seems like a lot but to break it down, notice how the exponent on 'a' decreases as the exponent on 'b' gets bigger.
also, the 'choose' formula is :
(n choose r ) = n!/ (n-r)!r!
now plug in your values
(x+2)^5 =
(5 choose 0)*x^5*2^0 + (5choose 1)*x^4*2^1 + (5 choose 2)*x^3*x^2 + (5 choose 3)*x^2*2^3 + (5 choose 4)*x^1*2^4 + (5 choose 5)*x^0*x^5
we only need the third term so we will solve for this :
(5 choose 2)*x^3*x^2
5 choose 2 = 5!/ (5-2)!2! = 5!/ 3!2! = 10
x^3 * 2^2 = 4x^3
10*4x^3 = 40x^3
Divide x2 + 5x + 6 by x + 3.
Answer:
:D 7x+6 / x+3
Answer:
x+2
Step-by-step explanation:
To divide polynomials, one of the methods is to factor.
Take the numerator: x^2 + 5x + 6.
Factoring this numerator gives (x+3)(x+2)
Now, the question becomes (x+3)(x+2) / (x+3)
x+3 cancels out, leaving x+2 as the final answer.
Hope this helps!
(if you have other questions, leave them in the comment, and If I know how to do them, I will answer) :)
find the volume of this the sphere round to the nearest tenth 7in [?]in*3
Answer:
1436.8
Step-by-step explanation:
4/3×π×7³
= 1372π/3
≈ 1436.8
Answered by GAUTHMATH
Answer: 1436
Step-by-step explanation:
A , B, C , D probability
Answer:
your laptop is nice really
Find the value of x from the given equation.
x3 = 125/512
518
Sla
516
815
Answer:
x = 5/8
Step-by-step explanation:
x^3 = 125/512
Take the cube root of each side
x^3 ^1/3 = (125/512)^ 1/3
We know (a/b) ^1/3 = a^ 1/3 / b^1/3
x = (125) ^1/3 / (512)^ 1/3
x = 5/8
100 mice eat 100 cakes. If each big mouse eats 3 cakes, and 3 baby mice eat 1 cake, how many big mice and baby mice are there?
What are the x-intercepts of the graph of the function f(x) = x2 + 5x - 36?
O (-4,0) and (9, 0)
O (4,0) and (-9,0)
O (-3,0) and (12, 0)
O (3,0) and (-12, 0)
Answer: (3,0) and (-12,0)
Step-by-step explanation:
The x-intercepts of the graph of f(x) = x² + 5x - 36 are (-9,0) and (4,0).
Option B is the correct answer.
What is a function?A function has an input and an output.
A function can be one-to-one or onto one.
It simply indicated the relationships between the input and the output.
Example:
f(x) = 2x + 1
f(1) = 2 + 1 = 3
f(2) = 2 x 2 + 1 = 4 + 1 = 5
The outputs of the functions are 3 and 5
The inputs of the function are 1 and 2.
We have,
To find the x-intercepts of the function f(x) = x^2 + 5x - 36,
we need to set y = f(x) to 0 and solve for x.
So, we have:
x² + 5x - 36 = 0
We can factor the left side of the equation:
(x + 9)(x - 4) = 0
Using the zero product property, we get:
x + 9 = 0 or x - 4 = 0
Solving for x, we get:
x = -9 or x = 4
Therefore,
The x-intercepts of the graph of f(x) = x² + 5x - 36 are (-9,0) and (4,0).
Learn more about functions here:
https://brainly.com/question/28533782
#SPJ7