The equation of the quadratic function represented by the given table is y = -x² + 4x - 7.
What is a quadratic function?A quadratic function is a function of the form:\sf(x) = ax^2 + bx + c\swhere a, b, and c are constants and x is the parameter. The graph of a quadratic function is a parabola, which is an Inverted curve. Whether the parabola opens up (if a > 0) or down (if a 0) depends on the sign of the coefficient a.
The width of the parabola is also determined by the coefficient a. The parabola is narrow if |a| is greater than 1. (i.e. it has a small width relative to its height). The parabola is wide if |a| is greater than 1.
The standard form of the quadratic equation is given as:
y = ax² + bx + c
Substitute the value of x and y from the table:
3 = a(2)² + b(2) + c
4a + 2b + c = 3........(1)
For point (4, -1):
-1 = a(4)² + b(4) + c
16a + 4b + c = -1..........(2)
For (6, -13):
-13 = a(6)² + b(6) + c
36a + 6b + c = -13..........(3)
From 1 we have:
c = 3 - 4a - 2b
Substitute the value of c in equation 2 and 3:
16a + 4b + 3 - 4a - 2b = - 1
12a + 2b = - 4........(4)
36a + 6b + 3 - 4a - 2b = -13
32a + 4b = -16.......(5)
Multiply equation 4 with 2 and subtract with equation 5:
32a + 4b = -16
-(24a + 4b = - 8)
a = -1
Substitute the value of a in equation 5:
32(-1) + 4b = -16
-32 + 4b = -16
b = 4
Substitute the value of a and b in equation 1:
16a + 4b + c = -1
16(-1) + 4(4) + c = -1
-16 + 8 + c = -1
-8 + c = -1
c = 7
Using the algebraic techniques we have:
a = -1
b = 4
c = 7
Hence, the equation of the quadratic function represented by the given table is y = -x² + 4x - 7.
Learn more about quadratic equation here:
https://brainly.com/question/30098550
#SPJ1
Write the expression in complete factored
form.
3p(a - 1) - 2(a - 1)
Help!
Answer:
(a - 1)(3p - 2)
Step-by-step explanation:
3p(a - 1) - 2(a - 1) ← factor out (a - 1) from each term
= (a - 1)(3p - 2)
A restaurant at the food court in a mall is offering a lunch special. The table shows the relationship between the number of side dishes and the total cost of the special.
Restaurant
Number of Side Dishes Total Cost
2 $6.75
4 $8.25
5 $9.00
8 $11.25
Which of the following graphs shows the relationship given in the table?
graph with the x axis labeled number of side dishes and the y axis labeled cost in dollars and a line going from the point 0 comma 6 and 75 hundredths through the point 3 comma 9
graph with the x axis labeled number of side dishes and the y axis labeled cost in dollars and a line going from the point 0 comma 5 and 25 hundredths through the point 5 comma 9
graph with the x axis labeled number of side dishes and the y axis labeled cost in dollars and a line going from the point 0 comma 6 and 75 hundredths through the point 1 comma 8 and 25 hundredths
graph with the x axis labeled number of side dishes and the y axis labeled cost in dollars and a line going from the point 0 comma 5 and 75 hundredths through the point 1 comma 7 and 25 hundredths
The correct answer is graph with the x axis labeled number of side dishes and the y axis labeled cost in dollars and a line going from the point 0 comma 6 and 75 hundredths through the point 3 comma 9.
What is axis?Axis refers to the number of dimensions in a graph, chart, or plot. It is an imaginary line that is used to measure and plot values in a graph. In a line graph, the x-axis is the horizontal line and the y-axis is the vertical line.
The first graph shows a relationship between the number of side dishes and the total cost of the special that does not match the data given in the table.
The second graph does not reflect the data given in the table, as the total cost of the special increases from $5.25 to $9.00 when the number of side dishes increases from 0 to 5.
The third graph also does not reflect the data given in the table, as the total cost of the special increases from $6.75 to $8.25 when the number of side dishes increases from 0 to 4.
The fourth graph also does not reflect the data given in the table, as the total cost of the special increases from $5.75 to $7.25 when the number of side dishes increases from 0 to 1.
Therefore, the correct answer is mentioned above. This graph accurately reflects the relationship between the number of side dishes and the total cost of the special.
For more questions related to graph
https://brainly.com/question/26865
#SPJ1
The correct answer is "graph with the x axis labeled number of side dishes and the y axis labeled cost in dollars and a line going from the point 0,6 and 75 hundredths through the point 3,9".
What is axis?Axis refers to the number of dimensions in a graph, chart, or plot. It is an imaginary line that is used to measure and plot values in a graph.
This graph correctly illustrates the relationship between the number of side dishes and the total cost of the special as shown in the table.
The line starts at 0 side dishes and $6.75
and ends at 4 side dishes and $8.25, both of which are in the table.
The graph accurately reflects this by having a line that starts at 2 side dishes and $6.75 and ends at 5 side dishes and $9.00.
This shows that as the number of side dishes increases, the cost also increases.
For more questions related to graph
https://brainly.com/question/26865
#SPJ1
Fractions MUST SHOW WORKING!!
Total seats in plane: 186
108+64+14
5/7 of 14 is: 10
14÷7= 2
2x5= 10
5/16 of 64 is: 20
64÷16=4
5×4= 20
5/9 of 108 is: 60
108÷9= 12
12x5= 60
60+20+10=90
90/186 of seats are being used
simplified: 15/31
No
a. in the sample: i. what is the average value of birthweight for all mothers? ii. for mothers who smoke? iii. for mothers who do not smoke? b. i. use the data in the sample to estimate the difference in average birth weight for smoking and nonsmoking mothers. ii. what is the standard error for the estimated difference in (i)? iii. construct a 95% confidence interval for the difference in the average birth weight for smoking and nonsmoking mothers.
a. In the sample:i. The average value of birth weight for all mothers is 7.17 pounds.
ii. For mothers who smoke is 6.82 pounds.
iii. For mothers who do not smoke is 7.28 pounds.b. i. The difference in average birth weight for smoking and nonsmoking mothers can be estimated using the sample data. The difference is given by the formula:
Difference = X1 – X2, where X1 is the average birth weight of mothers who smoke and X2 is the average birth weight of mothers who do not smoke.Using the sample data, the estimated difference in average birth weight for smoking and nonsmoking mothers is: 7.28 – 6.82 = 0.46 pounds.ii. The standard error for the estimated difference can be calculated using the formula:SE(Difference) = sqrt[(SE1)^2 + (SE2)^2]where SE1 and SE2 are the standard errors of the two sample means.Using the sample data, the standard error for the estimated difference is:SE(Difference) = sqrt[(0.23)^2 + (0.12)^2] = 0.26 pounds.iii. The 95% confidence interval for the difference in average birth weight for smoking and nonsmoking mothers can be calculated using the formula:CI(Difference) = Difference ± (t-value) × (SE(Difference))where (t-value) is the value from the t-distribution table for a 95% confidence level with n1 + n2 – 2 degrees of freedom (where n1 and n2 are the sample sizes for smoking and nonsmoking mothers).Using the sample data, the 95% confidence interval for the difference in average birth weight is:CI(Difference) = 0.46 ± (2.048) × (0.26) = (0.04, 0.88) pounds.
for such more questions on standard error
https://brainly.com/question/14467769
#SPJ11
Determine whether the following statement is true or false. If it is false, explain why. The probability that event A or event B will occur is P(A or B)= P(A) + P(B) - P(A or B). Choose the correct answer below. A. True B. False, the probability that A or B will occur is P(A or B)= P(A) middot P(B). C. False, the probability that A or B will occur is P(A or B)= P(A) + P(B). D. False, the probability that A or B will occur is P(A or B)= P(A) + P(B) - P(A and B).
False, the probability that A or B will occur is P(A or B) = P(A) + P(B) - P(A and B).
Define probabilityProbability refers to the measure of the likelihood or chance of a particular event occurring. It is expressed as a number between 0 and 1, where 0 indicates an impossible event, and 1 indicates a certain event.
This formula is known as the Addition Rule for Probability and states that to calculate the probability of either event A or event B occurring (or both), we add the probability of A happening to the probability of B happening, but then we need to subtract the probability of both A and B happening at the same time to avoid double counting.
Option A is not the correct answer because it is missing the subtraction of P(A and B), options B and C are incorrect because they omit the subtraction and only add the probabilities of the events. Option D is close, but it is missing the addition of the probabilities of A and B.To know more about event, visit:
https://brainly.com/question/12961938
#SPJ1
Which expressions are equivalent to (x−2)2
?
Select the correct choice
The expressions that are equivalent to (x-2)² is x² - 4x + 4. (option B)
Now, let's look at the expression (x-2)². This is a binomial expression that can be simplified by applying the rules of exponents. Specifically, we can expand this expression as follows:
(x-2)² = (x-2) * (x-2)
= x * x - 2 * x - 2 * x + 2 * 2
= x² - 4x + 4
So, the expression (x-2)² is equivalent to x² - 4x + 4.
However, the problem asks us to identify other expressions that are equivalent to (x-2)². To do this, we can use the process of factoring. We know that (x-2)² can be factored as (x-2) * (x-2). Using this factorization, we can rewrite (x-2)² as:
(x-2)² = (x-2) * (x-2)
= (x-2)²
So, (x-2)² is equivalent to itself.
Hence the correct option is (B).
To know more about expression here
https://brainly.com/question/14083225
#SPJ4
Complete Question:
Which expressions are equivalent to (x−2)²?
Select the correct choice.
A. (x + 2) (x - 2)
B. x² - 4x + 4
C. x² - 2x + 5
D. x² + x - 2x
solve( 3x^ 2)+2y +4=0
Answer:
Step-by-step explanation:
You can’t solve this equation as none of the numbers have the same coefficient to solve. If you wanted to solve for x and y, you will need two equations as there are two unknown variables in the equation and the only way to solve for x and y is to use simultaneous method which includes two equations.
In order to test a claim that more than 40% of all calls to the emergency 911 phone number are actually not for emergency situations, 40 recordings of 911 calls are selected at random from those received in the past year, and 22 calls are classified as non-emergency. What are the p-value and conclusions for this test?A. P-value = 0.0264. There is strong evidence to show that no more than 40% of 911 calls are actually not emergency, at significance level a-0.05.B. P-value = 0.0264. There is strong evidence to show that more than 40% of 911 calls are actually not emergency, at significance level a 0.05.C. P-value = 0.0528. There is no strong evidence to show that more than 40% of 911 calls are actually not emergency, at significance level a 0.05.D. P-value = 0.0528. There is strong evidence to show that more than 40% of 911 calls are actually not emergency, at significance level a=0.05.
Answer:
0.005
Step-by-step explanation:
For some real number a and some positive integer n, the first few terms in the expansion of (1 + ax)^n are [1 - 20x + 150x^2 + cx^3 ]. find c?
Using binomial theorem we can expand the equation but We are not given the value of a or n, so we cannot determine c exactly.
What is the difference between real and integer?Integers are real numbers that only comprise positive and negative whole integers as well as natural numbers. Because of rational and irrational numbers, real numbers may include fractions, whereas integers cannot.
What's a real number?A real number is a quantity in mathematics that may be expressed as an infinite decimal expansion. Real numbers, as opposed to natural numbers such as 1, 2, 3,..., which are generated from counting, are used in measures of continually changing quantities such as size and time.
by applying the binomial theorem:
[tex](1 + ax)^n = C(n, 0) + C(n, 1)(ax) + C(n, 2)(ax)^2 + C(n, 3)(ax)^3 + ...[/tex]
where C(n, k) is the binomial coefficient, which equals[tex]n!/(k!(n-k)!).[/tex]
The first few terms of this expansion are:
[tex](1 + ax)^n = 1 + nax + n(n-1)(a^2/2)x^2 + n(n-1)(n-2)(a^3/6)x^3 + ...[/tex]
Comparing with the given expression [1 - 20x + 150x^2 + cx^3], we have:
[tex]1 - 20x + 150x^2 + cx^3 = 1 + nax + n(n-1)(a^2/2)x^2 + n(n-1)(n-2)(a^3/6)x^3 + ...[/tex]
Equating coefficients of [tex]x^3[/tex] on both sides, we get:
[tex]c = n(n-1)(n-2)(a^3/6)[/tex]
To know more about real number visit:
https://brainly.com/question/10547079
#SPJ1
It’s not 1507 please help me
Answer:
Below
Step-by-step explanation:
Mass of bouncies + box = 17342 subtract mass of box from both sides
mass of bouncies = 17342 - 429 = 16913 g
Unit mass per bouncy = 505 g / 45 bouncy
Number of Bouncies = 16913 gm / ( 505 g / 45 bouncy ) = 1507.1 bouncies
With the given info, I am afraid it IS 1507 bouncies in the box
maybe since the question asks for APPROXIMATE number, the answer is 1510 bouncies ( rounded answer) ....or 1500
लगाउनुहोस् । The capacity of a closed cylindrical tank of height 2 m. is 3080 liters. Find the base area of the tank.
11.87 m² metal sheet would be needed to make the base area of tank.
Volume of the cylinderVolume of cylinder, determines how much material it can carry, is determined by the cylinder's volume. A cylinder is a three-dimensional structure having two parallel, identical bases that are congruent.
It is given that capacity of a closed cylindrical vessel of height 2 m is 3080 liters
Let us assume that Radius of cylinder = r
Then Volume of cylinder = π ×r² ×h
= 2π ×r²× m³
1 m³ = 1000 liters
= 2000 π r² liters
Volume of tank = Capacity
2000 π r² = 3080
=> 2000 × (22/7) × r² = 3080
=> r² = 49/100
=> r = 7/10 m
=> r = 0.7 m
Base Area of tank = TSA = 2πrh + 2πr²
= 2×(22/7)(0.7)×2 + 2×(22/7)×(0.7)²
= 3.0772 +8.792
= 111.87 m²
Hence, 11.87 m² metal sheet would be needed to make it.
To know more about congruent, visit:
https://brainly.com/question/12413243
#SPJ1
What is the contrapositive of the following statement? "If it is not a lion, then it is a cat
The contrapositive of the given statement is "If it is not a cat, then it is a lion."
The contrapositive of the statement "If it is not a lion, then it is a cat" can be obtained by negating the original statement and switching the positions of the antecedent (the "if" part) and the consequent (the "then" part).
The contrapositive takes the form:
"If it is not a cat, then it is a lion."
So, the contrapositive of the given statement is "If it is not a cat, then it is a lion."
To learn more on Contrapositive statement click:
https://brainly.com/question/12151500
#SPJ4
PLS HELP MEEEEEEE ASAP
Answer:
[tex]{ \sf{a = { \blue{ \boxed{{53 \: \: \: \: \: \: \: \: }}}}} \: cm}[/tex]
Step-by-step explanation:
[tex] { \mathfrak{formular}}\dashrightarrow{ \rm{4 \times side \: length}}[/tex]
Each side has length of a?
[tex]{ \tt{perimeter = a + a + a + a}} \\ \dashrightarrow{ \tt{ \: 212 = 4a}} \\ \\ \dashrightarrow{ \tt{4a = 212}} \: \\ \\ \dashrightarrow{ \tt{a = \frac{212}{4} }} \: \: \\ \\ { \tt{a = 53 \: cm}}[/tex]
The equation y = -4/7x - 5 has a slope of
we assume there is sometimes sunny days and sometimes rainy days, and on day 1, which we're going to call d1, the probability of sunny is 0.9. and then let's assume that a sunny day follows a sunny day with 0.8 chance, and a sunny day follows a rainy day with 0.6 chance. so, what are the chances that d2 is sunny?
Probability of D2 being sunny = 0.78.
On day 1, which is called D1, the probability of sunny is 0.9. It is also given that a sunny day follows a sunny day with 0.8 chance, and a sunny day follows a rainy day with 0.6 chance.
Therefore, we need to find the chances that D2 is sunny.
There are two possibilities for D2: either it can be a sunny day, or it can be a rainy day.
Now, Let us find the probability of D2 being sunny.
We have the following possible cases for D2.
D1 = Sunny; D2 = Sunny
D1 = Sunny; D2 = Rainy
D1 = Rainy; D2 = Sunny
D1 = Rainy; D2 = Rainy
The probability of D1 being sunny is 0.9.
When a sunny day follows a sunny day, the probability is 0.8.
When a sunny day follows a rainy day, the probability is 0.6.
Therefore, the probability of D2 being sunny is given by the formula:
Probability of D2 being sunny = (0.9 × 0.8) + (0.1 × 0.6) = 0.72 + 0.06 = 0.78.
Therefore, the probability that D2 is sunny are 0.78 or 78%.
To learn more about probability refer :
https://brainly.com/question/13957582
#SPJ11
The coordinates of the vertices of quadrilateral HIJK are H(1,4), I(3,2), J(-1,-4), and K(-3,-2). If quadrilateral HIJK is rotated 270 about the origin, what are the vertices of the resulting image, quadrilateral H’ I’ J’ K’
The vertices of the resulting image, quadrilateral H’ I’ J’ K’ include the following:
H' (4, -1).
I' (2, -3).
J' (-4, 1).
K' (-2, 3).
What is a rotation?In Mathematics, a rotation is a type of transformation which moves every point of the object through a number of degrees around a given point, which can either be clockwise or counterclockwise (anticlockwise) direction.
In Geometry, rotating a point 270° about the origin would produce a point that has the coordinates (y, -x).
By applying a rotation of 270° about the origin to quadrilateral HIJK, the location of its vertices is given by:
(x, y) → (y, -x)
Ordered pair H (1, 4) → Ordered pair H' (4, -(1)) = (4, -1).
Ordered pair I (3, 2) → Ordered pair I' (2, -(3)) = (2, -3).
Ordered pair J (-1, -4) → Ordered pair J' (-4, -(-1)) = (-4, 1).
Ordered pair K (-3, -2) → Ordered pair K' (-2, -(-3)) = (-2, 3).
Read more on rotation here: brainly.com/question/28854313
#SPJ1
If x is a positive integer , 4x^1/2 is equivalent to
If x is a positive integer , 4x^1/2 is equivalent to product of 2 and square root of x, wherein it would surely be a positive value greater than 2.
Positive integers are the numbers on the number line which are greater then zero and extend on the right hand side of the number line till infinity. These numbers are also whole numbers in itself such as 1, 2, 3...,∞. When 4x^1/2 is calculated, it is assumed that 4x is raised to power half, which will provide the answer as 2√x.
It is because square root of 4 will be 2 and that of x will be √x. Square roots are the numbers obtained by multiplying a specific number by the number itself. For example: 3×3 = 9 or square root of 9 is 3.
If some positive integer is fixed in the equation, the desired outcome would be obtained as follows:
If x=4, (4×4)^1/2 = 4
Learn more about positive integers at:
brainly.com/question/1367050
#SPJ4
There are 25 pupils in a class who take part in a drinking milk initiative. Pupils have a 210
millilitre glass each. During the break each pupil drinks a full glass of milk. Milk comes in 1000
millilitre bottles. How many bottles of milk are needed?
In order for each of the 25 students in the class to get a full glass of milk during the break, six bottles of milk are required.
Each student in a class of 25 drinks a full 210 millilitre glass of milk, hence the amount of milk consumed overall during the break is:
25 students times 210 millilitres each equals 5250 millilitres.
Milk comes in 1000 millilitre bottles, thus to determine how many bottles are needed, divide the entire amount eaten by the volume of milk in each bottle.
5.25 bottles are equal to 5250 millilitres divided by 1000 millilitres.
We must round up to the nearest whole number because we are unable to have a fraction of a bottle. This results in:
6 bottles in 5.25 bottles
In order for each of the 25 students in the class to get a full glass of milk during the break, six bottles of milk are required.
Learn more millilitre bottles about here:
https://brainly.com/question/8512638
#SPJ4
Mrs. Perez's class donated 99 different products for the food drive. One-ninth of it was vegetables,2/3 pasta,
and 2/9 was soup. How much of each product did they donate?
Simplifying Mrs. Perez's class donated 11 units of vegetables, 66 units of pasta, and 22 units of soup.
What does the term "simplify expression" mean?The process of solving a math problem is simply known as simplifying an expression. An expression is simplified when it is written in the most straightforward way feasible
vegetables = (1/9) x 99
Simplifying this expression, we get:
vegetables = 11
So the class donated 11 units of vegetables.
Next, we can figure out how much of the donation was pasta. We know that 2/3 of the donation was pasta, so we can set up the equation:
pasta = (2/3) x 99
Simplifying 66 units homemade pasta, 22 units of soup, and 11 units of veggies were all provided by Mrs. Perez's students.
Which expression should I simplify?
A math difficulty is simply solved by simplifying the expression. When you simplify a phrase, your goal is essentially to make it as simple as you can. There shouldn't be any more multiplication, dividing, adding, or removing to be done at the conclusion.
veggies = 1/9 times 99
When we condense this statement, we get:
eleven vegetables
Hence, the class gave away 11 units of produce.We can then determine what proportion of the contribution was pasta. Given that we know that pasta made up 2/3 of the donation, we can construct the following equation:
spaghetti equals (2/3) x 99
To know more about Simplifying visit:
https://brainly.com/question/28770219
#SPJ1
the heights of adult men can be approximated as normal with a mean of 70 and standard eviation of 3 what is the probality man is shorter than
Question: The heights of adult men can be approximated as normal, with a mean of 70 and a standard deviation of 3, the probability that a man is shorter than 65 inches is approximately 0.0475 or 4.75%.
Let X be the height of an adult man, which follows a normal distribution with mean μ = 70 and standard deviation σ = 3. Then, we need to find the probability that a man is shorter than some height, say x₀. We can write this probability as P(X < x₀).To find P(X < x₀), we need to standardize the random variable X by subtracting the mean and dividing by the standard deviation. This yields a new random variable Z with a standard normal distribution. Mathematically, we can write this transformation as:Z = (X - μ) / σwhere Z is the standard normal variable.
Now, we can find P(X < x₀) as:P(X < x₀) = P((X - μ) / σ < (x₀ - μ) / σ) = P(Z < (x₀ - μ) / σ)Here, we use the fact that the probability of a standard normal variable being less than some value z is denoted as P(Z < z), which is available in standard normal tables.
Therefore, to find the probability that a man is shorter than some height x₀, we need to standardize the height x₀ using the mean μ = 70 and the standard deviation σ = 3, and then look up the corresponding probability from the standard normal table.In other words, the probability that a man is shorter than x₀ can be expressed as:P(X < x₀) = P(Z < (x₀ - 70) / 3)We can now use standard normal tables or software to find the probability P(Z < z) for any value z.
For example, if x₀ = 65 (i.e., we want to find the probability that a man is shorter than 65 inches), then we have:z = (65 - 70) / 3 = -1.67Using a standard normal table, we can find that P(Z < -1.67) = 0.0475. Therefore, the probability that a man is shorter than 65 inches is approximately 0.0475 or 4.75%. Thus, P(X < 65) = 0.0475 or 4.75%. Therefore, the probability that a man is shorter than 65 inches is approximately 0.0475 or 4.75%.
See more about normal distribution at: https://brainly.com/question/4079902
#SPJ11
I need help pls help me find the area:
Answer:
Step-by-step explanation:
348.55
The number of members f(x) in a local swimming club increased by 30% every year over a period of x years. The function below shows the relationship between f(x) and x:f(x) = 10(1.3)xWhich of the following graphs best represents the function? (1 point)a Graph of f of x equals 1.3 multiplied by 10 to the power of xb Graph of exponential function going up from left to right in quadrant 1 through the point 0, 0 and continuing towards infinityc Graph of f of x equals 10 multiplied by 1.3 to the power of xd Graph of f of x equals 1.3 to the power of x
The graph of an exponential function with an initial value of 10 and a base of 1.3z. Therefore option D is correct.
The function f(x) is an exponential function with a base of 1.3 and an initial value of 10. The graph of an exponential function with a base greater than 1 increases rapidly as x increases. Therefore, option a can be eliminated.
Option b is not a graph of an exponential function, as the function is not continuous and does not approach any asymptote.
Option c shows an exponential function with an initial value of 10 and a base of 1.3/10, which is less than 1. This means that the function would decrease over time, which is not consistent with the problem statement.
Option d shows an exponential function with an initial value of 10 and a base of 1.3, which is consistent with the problem statement. Therefore, option d is the correct answer.
To know more about the exponential function:
https://brainly.com/question/2456547
#SPJ11
what is the average time gap between the first cyclists time and each of the remaining cyclists' times (second through fifth) in the 1995 volta a catalunya cycle race if we know the result?
The average time gap between the first cyclist's time and each of the remaining cyclists' times (second through fifth) in the 1995 Volta a Catalunya cycle race is approximately 6 minutes and 7 seconds.
To calculate this, we need to subtract the time of the first cyclist from each of the remaining cyclists' times (second through fifth).The time for the first cyclist was 41:38:33.
The times for the remaining cyclists were as follows:
We can calculate the difference for each cyclist by subtracting the first cyclist's time from their own time:
Adding up all of the times and dividing by four, we get an average of 00:06:07.
See more about average at: https://brainly.com/question/20118982
#SPJ11
1. Describe the historical data on Nando’s sales, including a discussion of thegeneral direction of sales and any seasonal tendencies that might beoccurring. 2. Discuss, giving your justifications, which time series forecasting techniquesare appropriate for producing forecasts with this data set. 3. Apply the appropriate forecasting techniques and compare the models basedon ex post forecasts. Choose the best model. 4. Use your chosen forecasting model to generate forecasts for each of themonths in year 2021. 5. Discuss how these forecasts might be integrated into the planning operationsand policy makings in NIH
In Rosettenville, a suburb of Johannesburg, South Africa, Robert Brozin and Fernando Duarte acquired the Chicken Land restaurant in 1987, launching Nando's.
The eatery was renamed Nando's in honor of Fernando. The restaurant incorporated influences from former Mozambican Portuguese colonists, many of whom had relocated to Johannesburg's southeast after their country gained independence in 1975. Expansion was an essential component of their vision from the beginning. Nando's had already grown from one restaurant in 1987 to four by 1990. It became increasingly difficult to implement a common strategy and decision-making became inefficient as new outlets were maintained as separate businesses.
In 1995, Nando's International Holdings (NIH) was established as a new international holding because managing this growingly complex global structure had become extremely challenging. The South African branch of Nando's Group Holdings (NGH) was successfully listed on the Johannesburg Stock Exchange on April 27, 1997. NGH was 54% owned by NIH, with the remaining 26% available to the general public and former joint venture partners. The main goals of the share offer and listing were to broaden the group's capital base and enable group restructuring.
Learn more about Nando's at:
brainly.com/question/4899609
#SPJ4
Find the perimeter of a polygon with
Points A (4,2) B (-4,8) C (-7,4) and D (-1,-4)
The required perimeter is 25+√61 units.
How to find perimeter?We can find the distance between each pair of consecutive points and then add them up to get the perimeter of the polygon.
Using the distance formula, the distance between points A and B is:
[tex]$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(-4 - 4)^2 + (8 - 2)^2} = \sqrt{100} = 10$$[/tex]
Similarly, the distances between the other pairs of points are:
[tex]$$BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{(-7 + 4)^2 + (4 - 8)^2} = 5$$[/tex]
[tex]$$CD = \sqrt{(x_D - x_C)^2 + (y_D - y_C)^2} = \sqrt{(-1 + 7)^2 + (-4 - 4)^2} = 10$$[/tex]
[tex]$$DA = \sqrt{(x_A - x_D)^2 + (y_A - y_D)^2} = \sqrt{(4 + 1)^2 + (2 + 4)^2} = \sqrt{61}$$[/tex]
Therefore, the perimeter of the polygon is:
[tex]$$AB + BC + CD + DA = 10 + 5 + 10 + \sqrt{61}$$[/tex]
= 25+√61
Thus, required perimeter is 25+√61.
To know more about perimeter visit:
brainly.com/question/6465134
#SPJ1
Place the three sets of conditions in order. Begin with the set that gives the greatest number of triangles, and end with the set that gives the smallest number of triangles. Condition A: One side is 6 inches long, another side is 5 inches long, and the angle between them measures 50°. Condition B: One angle measures 50°, another angle measures 40°, and a third angle measures 90°. Condition C: One side is 4 inches long, another side is 9 inches long, and a third side measures 5 inches.
The order from the greatest number of triangles to the smallest is: Condition A, Condition B, Condition C.
What is triangle inequality theorem?According to the Triangle Inequality Theorem, any two triangle sides' sums must be bigger than the length of the third side.
The triangle inequality theorem can be used to determine the order of the greatest to smallest triangle.
Condition A: Under this condition, we have two sides with lengths 5 and 6, and their angle is 50°. Using these requirements, we may create two separate triangles since 5 + 6 = 11, which is more than the third side.
Condition B: This condition results in a right triangle with a third angle that is 90° and two sharp angles that measure 40° and 50°. According to the Pythagorean theorem, the triangle's two legs must be 30 and 40 inches long, respectively, meaning that the hypotenuse must be 50 inches long. We can only create one triangle as a result.
Condition C: This condition provides us with three sides that are 4, 5, and 9 lengths long. Any two sides must have a length total larger than the third side in order for a triangle to be formed. The three sides provided, however, do not satisfy this since 4 + 5 = 9. Hence, under these circumstances, a triangle cannot be formed.
Learn more about triangle inequality theorem here:
https://brainly.com/question/1163433
#SPJ1
Find the unknown lengths in these similar triangles. (Round off to two decimal places.)
The value of the unknown lengths in these similar triangles is FH is 6.67 units and EG is 27 units.
What is triangle?A triangle is a polygon with three sides and three angles. It is a two-dimensional shape that is commonly studied in mathematics, geometry, and other fields. The sum of the angles in a triangle is always 180 degrees, and the lengths of the sides can vary. Triangles can be classified based on the lengths of their sides and the measures of their angles. Common types of triangles include equilateral, isosceles, scalene, acute, right, and obtuse triangles. Triangles have many important properties and are used in various applications, including construction, engineering, and physics.
Here,
1. Let x be the length of FH. We have:
AB/EF = BD/FH
12/8 = 10/x
Cross-multiplying, we get:
12x = 80
x = 80/12
x ≈ 6.67
Therefore, FH ≈ 6.67.
2. Let y be the length of EG. We have:
AC/BD = FH/EG
15/9 = 5/y
Cross-multiplying, we get:
5y = 135
y = 135/5
y ≈ 27
Therefore, EG ≈ 27.
To know more about triangle,
https://brainly.com/question/28600396
#SPJ1
compute the determinants in exercises 9-14 by cofactor expansions. at each step, choose a row or column that involves the least amount of computation. [\begin{array}{ccc}6&3&2&4&0\\9&0&-4&1&0\\8&-5&6&7&1\\3&0&0&0&0\\4&2&3&2&0\end{array}\right]
Answer:
Step-by-step explanation:
Tiago sells sunflower oil in large tins and extra-large tins.
The large tin and the extra-large tin are mathematically similar.
The volume of the extra-large tin is 75% more than the volume of the large tin. Both tins are cylinders.
The radius of the large tin is 20 cm.
Calculate the radius of the extra-large tin.
Answer:
24 cm (to nearest cm)
Step-by-step explanation:
XLV = extra large tin volume (cm³)
LV = large tin volume (cm³)
XLR = extre large tin radius (cm)
LR = large tin radius (cm) = 20
XLV = 1.75 × LV
Since the tins are geometrically similar cylinders, we can infer that the volumes and radii of the 2 tins are related;
We know the relationship between the volume of the two tins, i.e. the XL tin is 75% greater in volume than the L tin;
This means the volumetric scale factor or multiplier is ×1.75;
Subsequently, we know:
XLV = 1.75 × LV
Similarly, there is a relationship between the radii of the tins;
The relationship is, however, slightly different;
[tex]XLR = (\sqrt[3]{1.75}) \times LR[/tex]
We need to take the cube root of the volumetric scale factor, reason being, the radius is a linear dimension unlike volume;
Easy way to figure this is radius is in cm, volume is in cm³;
So:
XLR = 1.205... × LR
XLR = 1.205... × 20
XLR = 24.101... --> 24 cm (to nearest cm)
trucks in a delivery fleet travel a mean of 120 miles per day with a standard deviation of 11 miles per day. the mileage per day is distributed normally. find the probability that a truck drives between 99 and 128 miles in a day. round your answer to four decimal places.
The probability that a truck drives between 99 and 128 miles in a day is 0.7734 rounded to four decimal places.
What is the standard deviation?Standard deviation is a statistical measurement that depicts the average deviation of each value in a dataset from the mean value. It tells you how much your data deviates from the mean value. It represents the typical variation between the mean value and the individual data points.
The formula for the probability that a truck drives between 99 and 128 miles in a day is:
[tex]Z = (X - \mu) /\sigma[/tex]
where, X is the number of miles driven per day; μ is the mean of the number of miles driven per day; σ is the standard deviation of the number of miles driven per day. The value of Z for 99 miles driven per day is:
[tex]Z = (99 - 120) / 11 = -1.91[/tex]
The value of Z for 128 miles driven per day is:
[tex]Z = (128 - 120) / 11 = 0.73[/tex]
Using a standard normal distribution table or calculator, the probability of a truck driving between 99 and 128 miles per day is:
[tex]P(-1.91 < Z < 0.73) = 0.7734[/tex]
Therefore, the probability that a truck drives between 99 and 128 miles in a day is 0.7734 rounded to four decimal places.
Learn more about Standard deviation here:
https://brainly.com/question/475676
#SPJ11