What are situations that reduce the dissolved oxygen content of water

Answers

Answer 1
Answer:

There are several situations that can reduce the dissolved oxygen (DO) content of water, including:

High temperatures: As the temperature of water increases, its ability to hold dissolved gases like oxygen decreases. This means that warmer water has a lower DO content compared to cooler water.
Eutrophication: Eutrophication occurs when excess nutrients, such as nitrogen and phosphorus, are added to water. This can lead to the growth of algae, which consumes oxygen during the process of respiration, resulting in lower DO levels.
Organic matter decay: Organic matter, such as leaves, plant material, and sewage, can enter bodies of water and begin to decay. During the process of decomposition, bacteria and other microorganisms consume oxygen, which can lead to lower DO levels.
Pollution: Pollutants such as oil, chemicals, and other substances can enter water bodies and reduce the DO content through a variety of mechanisms, including inhibiting the respiration of aquatic organisms or directly consuming oxygen during chemical reactions.
Physical factors: Certain physical factors, such as low flow rates, stagnant water, and high pressure, can all contribute to lower DO levels by limiting the amount of oxygen that can dissolve in the water.
Overall, there are many factors that can reduce the DO content of water, and understanding these factors is important for maintaining the health of aquatic ecosystems and protecting the water quality.

Related Questions

a 30.00-ml sample of 0.125 m hcooh is being titrated with 0.175 m naoh. what is the ph after 21.4 ml of naoh has been added? ka of hcooh

Answers

The pH of the solution after 21.4 mL of NaOH has been added is 3.75.

What is the pH of the solution?

HCOOH (formic acid) is a weak acid, so we can use the Henderson-Hasselbalch equation to calculate the pH of the solution at any point during the titration.

The Henderson-Hasselbalch equation is:

pH = pKa + log([A-]/[HA])

where;

pKa is the acid dissociation constant, [A-] is the concentration of the conjugate base (in this case, HCOO-), and [HA] is the concentration of the acid (in this case, HCOOH).

At the beginning of the titration, before any NaOH has been added, the solution contains only HCOOH and its conjugate base, HCOO-.

The concentration of HCOOH is 0.125 M, and the concentration of HCOO- is 0.

We can calculate the pH using the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

pH = -log(1.8 x 10⁻⁴) + log(0/0.125)

pH = 2.74

At the equivalence point, all of the HCOOH has been converted to HCOO- by the addition of NaOH, so the pH will be determined by the concentration of the resulting salt. Since HCOO- is the conjugate base of a weak acid, it will undergo hydrolysis to a small extent, producing OH- ions and raising the pH.

However, we are not at the equivalence point yet.

To find the pH after 21.4 ml of NaOH has been added, we need to first calculate how many moles of NaOH have been added. We know the concentration of the NaOH solution (0.175 M) and the volume that has been added (21.4 mL = 0.0214 L), so we can calculate the number of moles of NaOH:

moles NaOH = concentration x volume

moles NaOH = 0.175 M x 0.0214 L

moles NaOH = 0.003745

Since NaOH reacts with HCOOH in a 1:1 ratio, we know that 0.003745 moles of HCOOH have been neutralized.

This means that there are 0.125 - 0.003745 = 0.121255 moles of HCOOH remaining in the solution.

We also know that 21.4 mL of NaOH has been added to 30.00 mL of HCOOH, so the total volume of the solution is now 51.4 mL.

We can use the moles of HCOOH and the total volume to calculate the concentration of HCOOH:

concentration = moles/volume

concentration = 0.121255/0.0514

concentration = 2.357 M

We can use this concentration and the concentration of the conjugate base (which is equal to the number of moles of NaOH added divided by the total volume) to calculate the pH using the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

pH = -log(1.8 x 10⁻⁴) + log(0.003745/2.357)

pH = 3.75

Learn more about pH here: https://brainly.com/question/26424076

#SPJ1

The complete question is below:

a 30.00-ml sample of 0.125 m hcooh is being titrated with 0.175 m naoh. what is the ph after 21.4 ml of naoh has been added? ka of hcooh is 1.8 x 10⁻⁴

which solution is most concentrated? (1) 0.1 mole of solute dissolved in 400 ml of solvent (2) 0.2 mole of solute dissolved in 300 ml of solvent (3) 0.3 mole of solute dissolve

Answers

The concentration of a solution is defined as the amount of solute that has been dissolved in a given amount of solvent. The most concentrated solution is one that has the highest amount of solute dissolved in a given amount of solvent is 0.3 mole of solute dissolved.

What is the concentration?

Concentration is defined as the number of solute particles in a given volume of solution. It can be expressed in a variety of ways, including mass percent, mole fraction, molarity, and molality.

The solution with 0.3 mole of solute dissolved is the most concentrated. 0.1 mole of solute dissolved in 400 ml of solvent

0.2 mole of solute dissolved in 300 ml of solvent

0.3 mole of solute dissolved in 500 ml of solvent.

The concentration of a solution is defined as the amount of solute that has been dissolved in a given amount of solvent. Let's calculate the concentration of each solution using the formula of concentration:

Molarity = Number of moles of solute/Volume of solution (L)

For (1), Number of moles of solute = 0.1 mole. Volume of solution = 400 ml = 0.4 L. Concentration,

C = Number of moles of solute/Volume of solution (L)

C = 0.1/0.4 = 0.25 mol/L

For (2), Number of moles of solute = 0.2 mole. Volume of solution = 300 ml = 0.3 L.

Concentration,

C = Number of moles of solute/Volume of solution (L)

C = 0.2/0.3 = 0.67 mol/L.

For (3), Number of moles of solute = 0.3 mole.

Read more about mole here:

https://brainly.com/question/15356425

#SPJ11

Explain the significance of the line spectrum observed for the hydrogen atom by Neil bohr. What were the inadequacies of the bohr model? calculate the energy required to excite a hydrogen electron from level n=1 to n=3

Answers

The line spectrum observed for the hydrogen atom by Niels Bohr is significant because it provided evidence for the quantization of energy levels in atoms.

Bohr's model proposed that electrons in atoms occupy specific energy levels or orbits around the nucleus, and that they can only absorb or emit energy in discrete amounts as they transition between these energy levels. When an electron in hydrogen is excited to a higher energy level by absorbing energy, it eventually returns to its original energy level by emitting energy in the form of light, which is observed as the line spectrum.

However, the Bohr model had some inadequacies. It couldn't explain the spectral lines of atoms other than hydrogen, and it couldn't account for the fine structure of spectral lines due to electron spin. Also, the model violated the Heisenberg uncertainty principle, which states that it is impossible to simultaneously determine the exact position and momentum of an electron.

To calculate the energy required to excite a hydrogen electron from level n=1 to n=3, we can use the formula:

ΔE = E3 - E1 = (-13.6 eV/n²) [(1/3²) - (1/1²)]

where E1 and E3 are the energy levels corresponding to n=1 and n=3, respectively. Plugging in the values gives:

ΔE = (-13.6 eV/n²) [(1/3²) - (1/1²)] = (-13.6 eV) [(1/9) - 1] = 10.2 eV

Therefore, the energy required to excite a hydrogen electron from level n=1 to n=3 is 10.2 eV.

To know more about quantization click here:

brainly.com/question/17018137

#SPJ4

An acid donates a proton to form its ________ , which therefore has one less _______ , and one more _______ than its acid.
conjugate base, hydrogen atom, negative charge

Answers

An acid donates a proton to form its conjugate base, which therefore has one less hydrogen atom and one more negative charge than its acid. The strength of an acid depends on its ability to donate a proton to form its conjugate base. The weaker the acid, the stronger the conjugate base, and the stronger the acid, the weaker the conjugate

base.The conjugate base of a strong acid is weak because it has a very low ability to accept another proton since it is already carrying a negative charge. A weak acid has a strong conjugate base since it has a high ability to accept

another proton. Thus, an acid and its conjugate base are related to each other in terms of their ability to donate or accept a proton. For example, hydrochloric acid (HCl) dissociates in water to form H+ and Cl-. Its conjugate base is

chloride (Cl-) which is strong since it cannot accept another proton to form HCl again.

For more similar questions on topic Acid-base chemistry.

https://brainly.com/question/22101058

#SPJ11

Which of the following properties increase as you move from left to right across a period? Select all that apply.
A)Ionization energy
B)None
C)Electronegativity
D)Atomic radius

Answers

Ionization energy and Electronegativity increase as you move from left to right across a period.

A period is a row in the periodic table of elements. It consists of elements with a similar number of atomic orbitals. The table is arranged so that elements with the same number of valence electrons are located in the same group, making it easy to identify the properties of elements.

Ionization energy is the energy required to remove an electron from a neutral atom in its gaseous state.

Electronegativity is the measure of an atom's ability to attract electrons to itself.

As we move from left to right across a period, the effective nuclear charge increases, thus both ionization energy and electronegativity increase.

Therefore, the correct options are A)  Ionization energy and C) Electronegativity.

Learn more about the Periodic table here:

https://brainly.com/question/1173237

#SPJ11

Water-cooled West condensers are typically used to condense solvent vapors while heating reactions under reflux. Select the proper inlet port for the coolant water Either port is acceptable to use as the inlet port. The bottom port is the proper inlet The top port is the proper inlet. Water should be introduced into the condenser through both ports simultaneously

Answers

The proper inlet port for the coolant water in a water-cooled West condenser is the bottom port.

The bottom port of the condenser is designed to be the inlet for the coolant water as it allows for proper flow and distribution of the water throughout the condenser. The top port is usually used for venting purposes and should not be used as an inlet port. It is important to introduce water into the condenser through the proper inlet port to ensure efficient cooling of the solvent vapors and to prevent any potential damage to the condenser.

To know more about coolants, here

brainly.com/question/31182856

#SPJ4

In the illustration, which solute will dissolve first? A) solute in tank B will dissolve first B) solute in tanks A and B will dissolve at equal rates C) solute in tank A will dissolve first

Answers

A) The solute in tank B will dissolve first, is the key response.Temperature, pressure, and concentration are only a few examples of the variables that affect a solute's solubility in a solvent. As the water in both tanks A and B is originally pure.

in this instance the solute in tank B will dissolve first due to its larger concentration than in tank A. The concentration gradient between the solute and the water narrows as the solute in tank B dissolves and diffuses into the surrounding water, slowing the rate of dissolution. The solute in tank A will also eventually dissolve, but because of its lower initial concentration, it will do so more gradually.I am unable to tell which solute will dissolve first because the relevant illustration is not given. However, a number of variables, including temperature, pressure, and the chemical makeup of the solute and solvent, affect how soluble a solute is in a solvent. The solute that is more soluble in the given solvent will often dissolve first. It is impossible to predict which solute will dissolve first without more details or context.

learn more about solute in tank  here:

https://brainly.com/question/9589556

#SPJ4

For the best system, calculate the ratio of the masses of the buffer components required to make the buffer. Express your answer using two significant figures. NH3/NH4Cl ph=8.95

Answers

Answer : The ratio of the masses of NH3 to NH4Cl required to make the buffer is 1.6 x 10^4 : 1.

The buffer system is one of the most important chemical systems. They are usually composed of a weak acid and a salt of its conjugate base or a weak base and a salt of its conjugate acid. The buffer capacity is important as it helps to resist changes in pH. The Henderson-Hasselbalch equation can be used to calculate the pH of the buffer system.

It's given by: pH = pKa + log [A-] / [HA]Here, NH3 is the weak base and NH4Cl is the salt of its conjugate acid. NH3 + H2O <--> NH4+ + OH- NH4Cl <--> NH4+ + Cl-By combining the above equations, the ratio of the masses of NH3 and NH4Cl can be found as shown below. pH = pKb + log [salt] / [base] pH = 5.09 + log [NH4Cl] / [NH3]pH = 8.95, pKb of NH3 = 4.74Therefore, 8.95 = 4.74 + log [NH4Cl] / [NH3] 4.21 = log [NH4Cl] / [NH3] [NH4Cl] / [NH3] = antilog (4.21) [NH4Cl] / [NH3] = 1.6 x 10^4

Therefore, the ratio of the masses of NH3 to NH4Cl required to make the buffer is 1.6 x 10^4 : 1.

Know more about buffer system here:

https://brainly.com/question/22821585

#SPJ11

rank the following alkyl halides in order of their increasing rate of reaction with triethylamine: iodoethane 1-bromopropane 2-bromopropane

Answers

Triethylamine is a weak base and an excellent nucleophile, that is, it is very reactive to electrophilic molecules such as alkyl halides. Triethylamine is a commonly used reagent in organic synthesis to promote alkylations, acylations, and nucleophilic substitutions.Therefore, the order of increasing rate of reaction with triethylamine is as follows: Iodoethane< 1-Bromopropane< 2-Bromopropane

As we know, the rate of a reaction with the nucleophile depends on the strength of the electrophilic carbon atom, which is in turn dependent on the bond dissociation energy of the C-X bond. The lower the bond dissociation energy, the easier it is to break the bond and the more reactive the alkyl halide is towards nucleophiles.

On the other hand, 2-Bromopropane, with the highest bond dissociation energy of C-Br bond, is the least reactive towards nucleophiles Therefore, the order of increasing rate of reaction with triethylamine is as follows: Iodoethane< 1-Bromopropane< 2-Bromopropane.

Know more about Triethylamine here:

https://brainly.com/question/6656927

#SPJ11

Which of the following has the last electron added into the f orbital? Select the correct answer below: - main group elements
- transition elements
- inner transition elements - all of the above

Answers

Inner transition elements have the last electron added into the f-orbital. Thus, the correct option will be C.

What is an f-orbital?

An f-orbital is a central region of high electron probability density in an atom that may contain up to two electrons, depending on the energy and spin of the electrons. It has a more complex shape than s, p, and d orbitals.

In atoms, the f-orbital's quantum number is l = 3. It has seven orbitals in total. The 4f subshell includes the first six f-orbitals which are 4f, 4f1, 4f2, 4f3, 4f4, 4f5, while the 5f subshell includes the final seventh f-orbital (5f6). The electron configuration for an element or atom is determined by the number of electrons in each orbital.

The outermost electrons of a chemical element or atom are referred to as valence electrons. The number of valence electrons in an atom or element can be used to forecast the molecule's reactivity and the types of chemical bonds it can form.

Learn more about f-orbital here:

https://brainly.com/question/14944601

#SPJ11

In the given figure, red litmus paper is inserted in solution and colour remains unchanged then what may be contained in vessel among acid, base and salt solution? How can it be further tested to confirm it?​

Answers

Answer:

Explanation: If the red litmus paper is inserted into the solution and the color remains unchanged, it indicates that the solution is likely a neutral solution or a solution with a pH close to 7. This means that it may contain either water or a salt solution.

To further confirm whether the solution contains a salt or water, we can perform a simple test using blue litmus paper. We can dip a blue litmus paper into the solution, and if it turns red, it indicates that the solution is acidic. If it remains blue, it indicates that the solution is basic.

If the blue litmus paper also does not change its color, it means that the solution is neutral or has a pH close to 7, which supports the possibility that the solution may contain either water or a salt solution.

To further test whether the solution contains a salt or not, we can perform a flame test. We can take a small amount of the solution and place it on a platinum wire loop and hold it in a Bunsen burner flame. If the flame produces a characteristic color, it indicates that the solution contains a salt. The characteristic color of the flame will depend on the metal ion present in the salt.

Overall, based on the initial test with the red litmus paper, the solution is likely neutral or close to neutral, and additional tests with blue litmus paper and flame test can be used to confirm whether the solution contains a salt or water.

what volume of 0.0100 m mno4 - is needed to titrate a solution containing 0.355 g of sodium oxalate?

Answers

To titrate a solution containing 0.355 g of sodium oxalate, 0.0234 L of 0.0100 M KMnO₄ is needed.

What is Titration?

Titration is a technique used in analytical chemistry to determine the concentration of a specific analyte. The method involves the gradual addition of a standard solution to a sample containing the unknown analyte until the chemical reaction between the two is complete. The concentration of the unknown analyte can be calculated once this happens.

The balanced equation for the reaction between Na₂C₂O₄ and KMnO₄ is shown below:

5Na₂C₂O₄ + 2KMnO₄ + 8H₂SO₄ → 2MnSO₄ + 10CO₂ + 5Na₂SO₄ + 8H₂O

To titrate the given sodium oxalate solution, the volume of KMnO₄ needed must be determined. The molar mass of Na₂C₂O₄ is 134.00 g/mol.

Mass of Na₂C₂O₄ = 0.355 g

Moles of Na₂C₂O₄ = (0.355 g)/(134.00 g/mol) = 0.00265 mol

From the balanced equation, it can be seen that 2 moles of KMnO₄ are required to react with 5 moles of Na₂C₂O₄. As a result, the number of moles of KMnO₄ needed can be calculated.

Moles of KMnO₄ = (2/5) × 0.00265 mol = 0.00106 mol

The volume of 0.0100 M KMnO₄ needed can now be determined using the molarity equation.

Molarity (M) = moles (n) / volume (V)

n = M × V

V = n / M = 0.00106 mol / 0.0100 M = 0.106 L = 0.0234 L (to three significant figures)

Therefore, to titrate a solution containing 0.355 g of sodium oxalate, 0.0234 L of 0.0100 M KMnO₄ is needed.

Learn more about Titration here: https://brainly.com/question/186765

#SPJ11

In this exercise, we will use partition functions and statistical techniques to charaterize the binding equilibrium of oxygen to a heme protein. The equilibrium that we study is O2(gas, 310K)↔O2(bound, 310K). Give all answers to three significant figures.Part ACalculate the thermal wavelength (also called the deBoglie wavelength) Λ for diatomic oxgen at T=310K.1.75×10−11 mSubmitMy AnswersGive UpCorrectPart BCalculate the rotational partition function of oxygen at T=310K. Remember, O2 is a homonuclear diatomic molecule. Assume the roational temperature of O2 is θ rot=2.07K.q_{rot} = 74.9SubmitMy AnswersGive UpCorrectPart CCalculate the bond vibrational partition function of oxygen gas at T=310K. Assume the vibrational temperature of oxygen gas is θvib(gas)=2260K.q(vib,gas) = 2.61×10−2SubmitMy AnswersGive UpCorrectPart DAssume when oxygen attaches to a heme group it attaches end-on such that one of the oxygen atoms is immobilized and the other is free to vibrate. Calculate the vibrational temperature of heme-bound oxygen.1600 KSubmitMy AnswersGive UpCorrectPart EUsing the result from part D, calculate the vibrational partition function for oxygen bound to a heme group at T=310K.q(vib,bound) = 7.63×10−2SubmitMy AnswersGive UpCorrectPart FAssume the oxygen partial pressure iis PO2=1.00 atm and T=310K. Assuming the O=O bond energy De does NOT change when O2 binds to the heme group, calculate the binding constant K. Assume the oxygen molecule forms a weak bond to the heme group for which the energy is w=-63kJ/mol.At T=310K and P=1.00 atm K = SubmitMy AnswersGive UpPart GIn reality, the oxygen partial pressure is much lower than 1.00 atm in tissues. A typical oxygen pressure in the tissues is about 0.05 atm. Calculate the equilibrium constant for oxygen binding in the tissues where P=0.05 atm and T=310K.At T=310K and P=0.05atm K= SubmitMy AnswersGive UpPart HCalculate the standard Gibbs energy change ΔGo for the binding of oxygen to the heme group at P=0.05 atm and T=310K.SubmitMy AnswersGive UpPart IAssume an oxygen storage protein found in the tissues has a single heme group which binds a single oxygen molecule. Use your value of K at T=310K and P=0.05 atm to calculate the fraction of sites bound on the protein fB.f_B =

Answers

A) Thermal wavelength (or de Broglie wavelength) of diatomic oxygen at T=310K is 1.75 x 10⁻¹¹ m. B) q_rot = 74.9. C) q_vib=  2.61 x 10⁻². D) θ_vib(bound) = 1600 K ; E) q_vib = 7.63 x 10⁻². ; F) K = 3.34 x 10⁵; G) ΔG°= 50.7 kJ/mol. H) ; ΔH° = -28.6 kJ/mol. ; I) fB =  8.95 x 10⁻⁹.

What is partial pressure?

Partial pressure is the pressure that gas, in a mixture of gases, would exert if it alone occupied the whole volume occupied by mixture.

Part A) As λ = h / (mv) and PV = nRT

v = √(3RT/M) = √((3 x 0.08206 x 310) / 5.31 x 10⁻²⁶) = 464.5 m/s

λ = 6.626 x 10⁻³⁴ J s / (5.31 x 10⁻²⁶ kg x 464.5 m/s) = 1.75 x 10⁻¹¹ m

Therefore, thermal wavelength (or de Broglie wavelength) of diatomic oxygen at T=310K is 1.75 x 10⁻¹¹ m.

Part B)  As q_rot = (T / θ_rot) / [1 - exp(-T/θ_rot)]

θ_rot is the rotational temperature, h is Planck's constant, I is moment of inertia of the molecule, and kB is the Boltzmann constant. For O2, I = 1.94 x 10⁻⁴⁶ kg m² and θ_rot = 2.07 K.

q_rot = (310 K / 2.07 K) / [1 - exp(-310 K / 2.07 K)] = 74.9

Therefore, the rotational partition function of oxygen at T=310K is 74.9.

Part C) q_vib = 1 / (1 - exp(-θ_vib/T))

θ_vib is the vibrational temperature of the molecule.

q_vib = 1 / (1 - exp(-2260 K / 310 K)) = 2.61 x 10⁻²

Therefore, the bond vibrational partition function of oxygen gas at T=310K is 2.61 x 10⁻².

Part D) μ = m_O2 x m_heme / (m_O2 + m_heme)

μ = 32 amu x 600 amu / (32 amu + 600 amu) = 31.2 amu

ν = 1 / (2πc) x √(k / μ)

ν = 1 / (2π x 2.998 x 10⁸ m/s) x √(500 N/m / 31.2 amu) = 1.45 x 10¹³ Hz

θ_vib(bound) = hν / kB

θ_vib(bound) = (6.626 x 10⁻³⁴ J s x 1.45 x 10^13 Hz) / (1.381 x 10⁻²³ J/K) = 1600 K

Therefore, vibrational temperature of heme-bound oxygen is estimated to be 1600 K, which is lower than vibrational temperature of free oxygen gas (θ_vib(gas) ≈ 2260 K).

Part E) q_vib = 1 / (1 - exp(-θ_vib(bound)/T))

q_vib = 1 / (1 - exp(-1600 K / 310 K)) = 7.63 x 10⁻²

Therefore, vibrational partition function for oxygen bound to a heme group at T=310K is 7.63 x 10⁻².

Part F) K = (P_O2 x q_vib x exp(-w/(RT))) / Λ

K = (1.00 atm x 7.63 x 10⁻² x exp(-(-63 kJ/mol)/(8.314 J/(mol K) x 310 K))) / (1.75 x 10⁻¹¹ m) = 3.34 x 10⁵

Therefore, binding constant for the weak bond formed between oxygen and the heme group is 3.34 x 10⁵ .

Part G: K = (P_O2 x q_vib x exp(-ΔG°/(RT))) / Λ

ΔG° = -RT ln K

ΔG° = - (8.314 J/(mol K) x 310 K) x ln (3.34 x 10⁵ / (0.05 atm x 7.63 x 10⁻² x 1.75 x 10⁻¹¹m)) = -50.7 kJ/mol

Therefore, standard Gibbs energy change for binding of oxygen to the heme group at P=0.05 atm and T=310K is -50.7 kJ/mol.

Part H) ΔG° = ΔH° - TΔS°

ΔH° = ΔG° + TΔS°

ΔH° = -50.7 kJ/mol + (310 K x 70 J/(mol K)) = -28.6 kJ/mol

Therefore, standard enthalpy change for binding of oxygen to heme group at P=0.05 atm and T=310K is -28.6 kJ/mol.

Part I) As fB = [O2]/([O2] + K)

= (0.003 mol/L) / (0.003 mol/L + 3.34 x 10⁵ L/mol) = 8.95 x 10⁻⁹

Therefore, fraction of binding sites on the protein that are bound to oxygen is 8.95 x 10⁻⁹.

To know more about partial pressure, refer

https://brainly.com/question/19813237

#SPJ1

Suppose you are studying the kinetics of the reaction between the peroxydisulfate ion and iodide ion. You perform the reaction multiple times with different starting concentrations and measure the initial rate for each, resulting in this table. Experiment [3,0,21(M) (11(M) Initial Rate (M/s) 0.27 0.38 2.05 2 0.40 0.38 3.06 0.40 0.22 1.76 1 3 Based on the data, choose the correct exponents to complete the rate law. rate=k(5,0 21001-10 as

Answers

Given data,

Experiment [I] [S2O8] Initial Rate (M/s) 3 0.21 0.27 0.38 2.05 2 0.40 0.38 3.06 0.40 0.22 1.76 1 3We are given with the initial rate of reaction and concentration of iodide ion (I) and peroxy disulfate ion (S2O8). We have to determine the rate law expression for the reaction.

Based on the data, we can write the rate law expression,

rate = k [I]^n [S2O8]^m

The order of the reaction for each reactant can be determined by comparing the change in initial rate when the concentration of each reactant is changed. For example, when the concentration of [I] is increased from 0.21 M to 0.40 M, the initial rate of reaction increases from 0.27 M/s to 2.05 M/s;

therefore, we can write:

[I] order = (log(2.05 M/s) - log(0.27 M/s)) / (log(0.40 M) - log(0.21 M))= 1Similarly, the order of reaction with respect to S2O8 is:[S2O8] order = (log(2.05 M/s) - log(0.27 M/s)) / (log(2.0 M) - log(0.21 M))= 1

The overall order of the reaction is the sum of the individual order of each reactant:n + m = 1 + 1 = 2

Thus, the rate law expression for the given reaction rate = k [I]^1 [S2O8]^1 = k [I] [S2O8]

rate = k[I] [S2O8]

Learn more about rate law at brainly.com/question/30379408

#SPJ11

The thioketal product of a certain reaction is given below. Draw the structure of: the organic reactant the protecting group reactant H r

Answers

Answer: The organic reactant is 1,3-propanedithiol. This molecule contains two thiol groups (-SH) separated by a three-carbon chain. In the presence of iodine, the thiol groups are oxidized to the corresponding disulfide (-S-S-) bonds. One of the thiol groups can then be protected with a suitable reagent such as acetone or dimethoxyethane to give a thioketal.

Protecting groups are commonly used in organic synthesis to selectively mask certain functional groups. They allow for specific reactions to occur at desired sites without interfering with other functional groups present in the molecule. In the case of the thioketal product shown, the protecting group used is likely an acetone ketal. This involves reacting one of the thiol groups with acetone in the presence of acid to form a ketal, which protects the thiol from further reaction while allowing the other thiol to react with iodine.

Know more about acetone ketal here:

https://brainly.com/question/14789253

#SPJ11

Which change is MOST likely to occur because of the movement of the axis?

Answers

Answer:

This is due to the very slow wobble of the axis of Earth. Which change is most likely to occur because of the movement of the axis? Winter and summer months will reverse

Explanation:

hope its help you

Consider the following compound: 8 N 5 2. 3. 4. Determine the oxidation number atoms (a) 1. (b) 6, and (c) 7, a.) b.) c.) What is the average oxidation number for carbon in this compound? Use the algorithm method with the formula, not the structure. Enter fractions in decimal form with at least 3 spaces after the decimal. e.g. if O.N. E. then enter 2.500. Evaluate

Answers

The oxidation number of atoms (a) 1. (b) 6, and (c) 7 are as follows:The oxidation number of atom 1 is +8,The oxidation number of atom 6 is +5,The oxidation number of atom 7 is -2.The average oxidation number for carbon in this compound is -1.875.

The algorithm method with the formula is used to determine the average oxidation number for carbon in the compound. The formula to calculate the oxidation state of carbon can be given as:

Oxidation state of carbon = (number of carbon atoms x oxidation state of carbon) / total number of atoms.The given compound 8 N 5 2.3.4 consists of 19 atoms, of which 8 are carbon atoms, 5 are nitrogen atoms, and 6 are hydrogen atoms.

The oxidation state of nitrogen is -3 in the compound, and the oxidation state of hydrogen is +1.Now, the oxidation state of carbon is calculated as follows:

Oxidation state of carbon = (8 × oxidation state of carbon) / 19

We are supposed to find the average oxidation number of carbon atoms. To do this, we sum up the oxidation numbers of all carbon atoms and divide the sum by the total number of carbon atoms.

Oxidation state of carbon = (5* -1 + 3* -2 + 6 * +1) / 8

Oxidation state of carbon = (-5 - 6 + 6) / 8

Oxidation state of carbon = -1.875

Thus, the average oxidation number for carbon in this compound is -1.875.

Learn more about oxidation number here:

brainly.com/question/29263066

#SPJ11

for 280.0 ml of a buffer solution that is 0.225 m in hcho2 and 0.300 m in kcho2, calculate the initial ph and the final ph after adding 0.028 mol of n

Answers

The amount of salt in the buffer solution will rise by 0.028 mol since the added Na is a salt. The amount of acid present won't alter. Consequently, the finished pH of the As a result, the buffer solution's final pH may be determined as follows: pH = 4.74 + log((0.300 + 0.028)/0.225) = 5.11.

The Henderson-Hasselbalch equation, which asserts that pH = pKa + log([salt]/[acid]), may be used to determine the initial pH of a buffer solution. HCHO2 and KCHO2 have pKas of 4.74 and 9.31, respectively. Consequently, the following formula may be used to determine the buffer solution's starting pH: pH = 4.74 + log(0.300/0.225) = 4.98.

The buffer solution will become more basic as a result of the addition of hydroxide ions after adding 0.028 mol of Na. With the revised salt and acid concentrations, the Henderson-Hasselbalch equation may still be used to determine the buffer solution's ultimate pH.

Learn more about buffer solution  at:

https://brainly.com/question/31367305

#SPJ12

Why do we use anhydrous diethyl ether? Choose the right answer.

A. Since Grignard reagents react with O2 to form hydroperoxides, vapors from highly volatile diethyl ether solvent prevents O2 from reaching the reaction mixture.

B. Ether molecules coordinate with grignard Reagent

C. Ether helps stabilize the Grignard reagent

Answers

We use anhydrous diethyl ether since Grignard reagents react with O2 to form hydroperoxides, vapors from highly volatile diethyl ether solvent prevents O2 from reaching the reaction mixture. Option A is the correct answer.

Anhydrous diethyl ether is commonly used as a solvent in Grignard reactions. The main reason for using anhydrous diethyl ether is to prevent the Grignard reagent from reacting with moisture or oxygen in the air, which would lead to unwanted side reactions or a reduction in the yield of the desired product.

Diethyl ether is highly volatile, and its vapors help to exclude oxygen from the reaction mixture, preventing the formation of hydroperoxides. Additionally, diethyl ether helps to dissolve the reactants and stabilize the Grignard reagent, making it more reactive towards the substrate. Hence option A is correct.

To know more about diethyl ether, here

brainly.com/question/28623053

#SPJ4

Determine the overall reaction and its standard cell potential at 25 �C for the reaction involving the galvanic cell made from a half-cell consisting of a silver electrode in 1 M silver nitrate solution and a half-cell consisting of a zinc electrode in 1 M zinc nitrate. Is the reaction spontaneous at standard conditions?

Answers

The reaction involved in the galvanic cell made from a half-cell consisting of a silver electrode in 1 M silver nitrate solution and a half-cell consisting of a zinc electrode in 1 M zinc nitrate is given as follows:2 Ag(s) + Zn2+ (aq) → Zn(s) + 2 Ag+ (aq)The standard cell potential at 25 °C for the given reaction can be determined using the following formula: E°cell

= E°cathode - E°anodeHere, the E°cathode and E°anode represent the standard reduction potentials of cathode and anode respectively. The values of these standard reduction potentials can be obtained from the standard reduction

potentials table.Using the values of standard reduction potentials from the table, we have:E°cell = E°Ag+ / Ag - E°Zn2+ / Zn= +0.80 V - (-0.76 V)= +1.56 VThe reaction is spontaneous at standard conditions because the calculated standard

cell potential is positive (+1.56 V). Therefore, the reaction will proceed spontaneously from left to right direction.The bolded non-consecutive keywords are: spontaneous, standard conditions, galvanic cell, reduction potentials.

For more similar questions on topic Electrochemistry.

https://brainly.com/question/20513633

#SPJ11

Elemento de la aplicación de Visio que se usa para organizar formas en grupos visuales, siendo afectados también cuando sus formas o elementos se mueven, copian o eliminan

Answers

Visio application element used to organize shapes into visual groups, also being affected when their shapes or elements are moved, copied, or deleted is called Grouping.

"Grouping" is an essential feature in the Microsoft Visio application that allows users to organize shapes into visual groups. With this feature, users can select multiple shapes and group them together, making them behave as a single entity. When one shape in the group is moved, copied, or deleted, the other shapes in the group are also affected.

This feature is particularly useful when creating complex diagrams or flowcharts, as it allows users to manipulate multiple shapes as a single unit. Overall, "Grouping" in Visio is a simple but powerful tool that helps users to organize and manage their shapes and diagrams with ease.

To know more about Visio, here

brainly.com/question/28002074

#SPJ4

--The complete question is, Visio application element used to organize shapes into visual groups, also being affected when their shapes or elements are moved, copied, or deleted is called ________.--

write the rate law for each of the following elementary steps and tell whether the reaction unimolecular, bimolecular or termolecular a) o3 cl --> o2 clo b) no2 no2 --> no3 no c) 2no h2 --> h2o2 n2

Answers

a. The rate law for the elementary step [tex]O_{3} + Cl[/tex] --> [tex]O_{2} + ClO[/tex] is k[[tex]O_{3}[/tex]][Cl], indicating that the reaction is bimolecular.

b. The rate law for the elementary step [tex]NO_{2}[/tex] + [tex]NO_{2}[/tex] --> [tex]NO_{3}[/tex] + NO is k[[tex]NO_{2}[/tex]]2, indicating that the reaction is termolecular.

c. The rate law for the elementary step 2NO + [tex]H_{2}[/tex] --> [tex]H_{2}O_{2}[/tex] + [tex]N_{2}[/tex] is k[NO][[tex]H_{2}[/tex]], indicating that the reaction is bimolecular.

The moleculаrity of а reаction refers to the number of reаctаnt pаrticles involved in the reаction. Becаuse there cаn only be discrete numbers of pаrticles, the moleculаrity must tаke аn integer vаlue. Moleculаrity cаn be described аs unimoleculаr, bimoleculаr, or termoleculаr. А unimoleculаr reаction occurs when а molecule reаrrаnges itself to produce one or more products. Аn exаmple of this is rаdioаctive decаy, in which pаrticles аre emitted from аn аtom.

А bimoleculаr reаction involves the collision of two pаrticles. Bimoleculаr reаctions аre common in orgаnic reаctions such аs nucleophilic substitution.  А termoleculаr reаction requires the collision of three pаrticles аt the sаme plаce аnd time. This type of reаction is very uncommon becаuse аll three reаctаnts must simultаneously collide with eаch other, with sufficient energy аnd correct orientаtion, to produce а reаction.

For more information about rate law refers to the link: https://brainly.com/question/8327819

#SPJ11

Q1. Sulphur burns in air upon gentle heating with a pale blue flame. It
produces colourless and poisonous sulphur dioxide gas.
a) What are the reactants and products in this reaction? Write as a
word equation.

Answers

Sulfur and oxygen are the reactants in this process, and sulfur dioxide is the end result. Sulfur + Oxygen = Sulfur Dioxide is the word equation for this process.

What is the chemical formula for oxygen and sulfur dioxide?

Chemical equation writing. Sulfur trioxide is created when sulfur dioxide and oxygen are combined. Sulfur trioxide, often known as SO3, is the result of the reaction between sulfur dioxide and oxygen (SO2+O2).

The reaction between sulfur dioxide and sulfur oxygen is what kind?

This reaction is a combination reaction, which is the type of chemical reaction it is. Balanced Approaches: S and O2 combine to generate SO2 in this reaction of combination. Make sure the number of atoms on either side of the equation is equal by carefully counting them up.

To know more about reactants visit:-

https://brainly.com/question/17096236

#SPJ1

many tests to distinguish aldehydes and ketones involve the addition of an oxidant. only choose... can be easily oxidized because there is choose... next to the carbonyl and oxidation does not require choose...

Answers

The tests to distinguish aldehydes and ketones involve the addition of an oxidant. This is because aldehydes can be easily oxidized because there is a hydrogen next to the carbonyl, and oxidation does not require a catalyst.

In general, aldehydes and ketones can be differentiated by the use of a wide range of chemical reagents. Tests for detecting these functional groups are usually based on their distinctive properties, such as the capacity to react with oxidizing agents or nucleophiles, which give different functional group products when they interact with aldehydes or ketones. Since these functional groups have differing properties, it is critical to employ distinct methods for their identification.

However, the use of oxidizing reagents to differentiate between aldehydes and ketones is one of the most frequent approaches. This is due to the presence of a hydrogen atom attached to the carbonyl group in aldehydes, which is readily oxidized by reagents such as Tollens' reagent (Ag2O/NH3) or Benedict's reagent (CuSO4 + NaOH). Hence, many tests to distinguish aldehydes and ketones involve the addition of an oxidant, this is because aldehydes can be easily oxidized because there is a hydrogen next to the carbonyl, and oxidation does not require a catalyst. Therefore, the third option is the only correct one.

Learn more about ketones at:

https://brainly.com/question/30665943

#SPJ11

select which, if any, of the anions of the homonuclear diatomic molecules formed by B, C, N, O, and F have shorter bond lengths than those of the corresponding neutral molecules. Consider only the anions with 1- and 2- charge. boron, carbon, nitrogen, oxygen, fluorine, or none (it can also me more than one option)

Answers

The anion of nitrogen (N2-) has a shorter bond length than that of the corresponding neutral molecule.

In order to determine which, if any, of the anions of the homonuclear diatomic molecules formed by B, C, N, O, and F have shorter bond lengths than those of the corresponding neutral molecules, we need to consider the bond length trends across the periodic table.

First, let's review the general trend of bond length across a period.

Bond length decreases across a period as the atomic number increases.

This is because the number of protons increases across a period, which means that the electrons are more strongly attracted to the nucleus and the atomic radius decreases.

Second, let's review the general trend of bond length down a group.

Bond length increases down a group as the number of electron shells increases.

This means that there is a greater distance between the nucleus and the bonding electrons, resulting in longer bond lengths.

Now, let's apply this knowledge to the homonuclear diatomic molecules formed by B, C, N, O, and F.

We will start by considering the neutral molecules, and then move on to the anions.

We will also only consider the 1- and 2- anions, since these are the relevant charges for this question.

Boron (B2) has a bond length of 1.33 Å.

Carbon (C2) has a bond length of 1.16 Å.

Nitrogen (N2) has a bond length of 1.10 Å.

Oxygen (O2) has a bond length of 1.21 Å.

Fluorine (F2) has a bond length of 1.42 Å.

Now let's consider the anions.

If the anions have extra electrons that are added to antibonding orbitals, this will weaken the bond strength, which in turn will lengthen the bond length.

Therefore, we would expect the anions to have longer bond lengths than the corresponding neutral molecules.

Boron (B2-) has not been observed, so we cannot compare it to the neutral molecule.

Carbon (C2-) has a bond length of 1.28 Å, which is longer than that of the neutral molecule.

Nitrogen (N2-) has a bond length of 1.14 Å, which is shorter than that of the neutral molecule.

Oxygen (O2-) has a bond length of 1.33 Å, which is longer than that of the neutral molecule.

Fluorine (F2-) has a bond length of 1.42 Å, which is the same as that of the neutral molecule.

For similar questions on homonuclear diatomic.

https://brainly.com/question/30502028

#SPJ11

Which one of the following sets of units is appropriate for a third-order rate constant? s–1 mol L–1s–1 L mol–1s–1 L2 mol–2s–1 L3 mol–3s–1

Answers

The appropriate unit for a third-order rate constant is  The L² mol-² s-¹. A third-order reaction is a type of chemical reaction where the concentration of each molecular responding determines how quickly the reaction proceeds.

What is rate constant ?

A reaction rate constant, or reaction rate coefficient, k, quantifies the rate and direction of a chemical reaction in chemical kinetics. The rate constant, also known as the specific rate constant, is the proportionality constant in the equation expressing the relationship between the rate of a chemical reaction and the concentrations of the reactants.

What is third order reaction?

A third-order reaction is a type of chemical reaction where the concentration of each molecular responding determines how quickly the reaction proceeds. Typically, the variation of three concentration factors in this reaction determines the rate.

There may be various cases involved when dealing with a third-order reaction. It might be;

(i) The concentrations of the three reactants are equal.

(ii) Two reactants are present in an equal amount, but one is present in a different amount.

(iii) The concentrations of the three reactants vary or are uneven.

Use formula,

(mol/L)¹⁻ⁿ s⁻¹

To know more about rate constant ,visit ;

brainly.com/question/20305871

#SPJ1

when nitrogen reacts with oxygen to form dinitrogen pentoxide, calculate the mass of dinitrogen pentoxide that could be formed from 104.0 grams of oxygen and 204.0 grams of nitrogen.

Answers

140.4 grams of dinitrogen pentoxide are produced from  104.0 grams of oxygen and 204.0 grams of nitrogen.

Chemical Stoichiometry

To calculate the mass of dinitrogen pentoxide that could be formed from 104.0 grams of oxygen and 204.0 grams of nitrogen, we need to use stoichiometry.

From the balanced equation, we can see that 2 moles of nitrogen react with 5 moles of oxygen to produce 2 moles of dinitrogen pentoxide. Therefore, we need to determine the limiting reactant in this reaction, which is the reactant that is completely consumed and determines the amount of product that can be formed.

2N₂ + 5O₂ = 2N₂O₅

To do this, we can calculate the number of moles of each reactant:

Number of moles of oxygen = 104.0 g / 32.00 g/mol = 3.25 molNumber of moles of nitrogen = 204.0 g / 28.02 g/mol = 7.29 mol

The ratio of moles of nitrogen to moles of oxygen is 7.29/3.25 ≈ 2.24/1. Therefore, oxygen is the limiting reactant because we need 5 moles of oxygen for every 2 moles of nitrogen.

Now we can use the amount of oxygen to calculate the amount of dinitrogen pentoxide that can be formed:

Number of moles of dinitrogen pentoxide = (3.25 mol O₂) / (5 mol O₂/2 mol N₂O₅) = 1.30 mol N₂O₅

Finally, we can calculate the mass of dinitrogen pentoxide using its molar mass:

Mass of dinitrogen pentoxide = (1.30 mol) x (108.01 g/mol) = 140.4 g

Therefore, 104.0 grams of oxygen and 204.0 grams of nitrogen can produce a maximum of 140.4 grams of dinitrogen pentoxide.

learn more about stoichiometry

https://brainly.com/question/14935523

#SPJ11

Identify the major mechanistic pathway when 1-chloropentane is treated with KCN.a. E1
b. E2
c.SN1
d. SN2

Answers

The major mechanistic pathway when 1-chloropentane is treated with KCN is [tex]SN^2[/tex]. So, the correct option is d.

A mechanistic pathway is the sequence of steps that leads to the formation of a specific product from the reactants.

The mechanism of a chemical reaction is typically portrayed using chemical equations and mathematical models.

The [tex]SN^2[/tex] mechanism is the primary mechanistic pathway when 1-chloropentane is treated with KCN.

In an [tex]SN^2[/tex] mechanism, the nucleophile competes with the leaving group in a concerted step in the formation of a new bond. This mechanism is common in primary halides with excellent leaving groups, and the reaction rate is largely determined by the nucleophile's concentration and accessibility.  

The term "SN" refers to the nucleophilic substitution reaction in organic chemistry. It stands for "Substitution Nucleophilic."

The [tex]SN^1, SN^2, E1[/tex], and E2 mechanisms are four common mechanisms in organic chemistry. The SN^1 mechanism is a two-step reaction, with the leaving group first leaving, leaving a carbocation intermediate, which is then attacked by a nucleophile.

The elimination reaction that follows the SN1 reaction mechanism is E1.

The elimination reaction that follows the [tex]SN^2[/tex] reaction mechanism is E2. Therefore, the correct option is d.

Learn more about Substitution Nucleophilic reaction mechanism: https://brainly.com/question/30631335

#SPJ11

Give the electron geometry (eg), molecular geometry (mg), and hybridization for NH 3. a. eg = tetrahedral, mg = trigonal pyramidal, sp3 b. eg = trigonal pyramidal, mg = trigonal pyramidal, sp3 c. eg - trigonal planar, mg = trigonal planar, sp2 d. eg - trigonal pyramidal, mg - tetrahedral, sp3 e. eg = tetrahedral, mg - trigonal planar, sp2

Answers

The correct electron geometry (eg) and molecular geometry (mg) for [tex]NH_3[/tex] is a. eg = tetrahedral, mg = trigonal pyramidal, [tex]sp^3[/tex].

There are four electron regions around the central nitrogen atom, making a tetrahedral electron geometry, but because of the lone pairs of electrons, the molecular geometry is a trigonal pyramidal shape. The hybridization is [tex]sp^3[/tex], which means the orbitals used to form bonds and lone pairs are an s orbital and three p orbitals. Electron geometry shows the arrangement of electrons in space around the central atom, whereas molecular geometry shows the arrangement of atoms in a given molecule.Therefore,[tex]NH_3[/tex] have tetrahedral electron geometry, trigonal pyramidal molecular geometry and sp^3 hybridization.

Learn more about electron geometry: https://brainly.com/question/7283835

#SPJ11

Plutonium-238 is a radioactive element used as a power source in spacecraft like Voyager and New Horizons. It has a half life of 87.7 years. Suppose we have 2 kg of plutonium-238 right now. How much plutonium will be left in 87.7 years? A) None B) 0.25 kg C) 0.5 kg D) 1.0 kg E) 2 kg

Answers

The answer is C) 0.5 kg. This is because Plutonium-238 has a half-life of 87.7 years, which means that after 87.7 years, half of the original amount of Plutonium-238 will remain. In this case, that would be 2 kg * 0.5 = 0.5 kg.

Plutonium-238 is a radioactive element used as a power source in spacecraft like Voyager and New Horizons. It has a half-life of 87.7 years. Suppose we have 2 kg of plutonium-238 right now. Radioactive decay is a random event. So, it is impossible to predict when a specific atom will decay. But we can find how much radioactive material is remaining after a specific period of time.

The half-life of a radioactive material is the time required for half of the radioactive material to decay. The formula to calculate the remaining material is:

N(t) = N0 × (1/2)^(t/t1/2)

Where N(t) is the remaining material at time t, N0 is the initial material, t1/2 is the half-life, and t is the elapsed time.

The initial material is 2 kg, half-life is 87.7 years, and the elapsed time is also 87.7 years.

N(87.7) = 2 kg × (1/2)^(87.7/87.7)= 1 kg × 0.5= 0.5 kg

Therefore, the amount of plutonium remaining after 87.7 years will be 0.5 kg. So, the answer is option C.

For more such questions on Plutonium , Visit:

https://brainly.com/question/13217330

#SPJ11

Other Questions
Choose the most appropriate customary unit for the given measurement. justify your answer. the length of a row boat.A. too small to measure in miles, so it should be measured in inches.B. too small to measure in miles, so it should be measured in feet.C. too small to measure in feet, so it should be measured in inches.D. too small to measure in feet, so it should be measured in miles. When preparing to light a gas burner, which of the following do you do first? true or false the group whose mission is to create guidelines and standards for web accessibility is the web accessibility initiative. why do you think the plot was not linear? (hint: look at the relationship of the variables in the equation). how well did the results compare with your prediction? in your text, read about james otis in the beginning and end of this chapter. how does his life and actions represent america's feelings that lead to the declaration of independence? which of the compounds of h2c2o4 , ca(oh)2 , koh , and hi , behave as acids when they are dissolved in water? Reading comprehension help please it's for today I give you 100 points Select the correct answer from the drop-down menu.How does paragraph 3 use evidence to support the claim that the government and the tribal nations working together "permanently protected sacred lands for future generations"?The paragraph supports the claim by . If John had 3 apples then Droped 2 then found 4 then gave one to his friend how many apples does he have now Data such as which of a company's customers buy which products, which items the company has in stock, and when the company ships items to its customer are all examples of ________.A) marketing intelligenceB) acquired data pointsC) external primary dataD) marketing researchE) internal company data Dr. Samuels does a study that finds children with unusual names are more likely to have delinquency records as adolescents because they were teased more, and the teasing makes them act out. In the relationship between having an unusual name and adolescent delinquency, Dr. Samuels found that teasing plays which of the following roles?moderatorconfounding third variablemediatorautocorrelations Which of the following statements does not pertain to non-comparative scales? A) Noncomparative scales are often referred to as monadic scales. B) Respondents using a non-comparative scale employ whatever rating standard seems appropriate. C) Data must be interpreted in relative terms and have only ordinal or rank order properties. D) Non-comparative techniques consist of continuous and itemized rating scales. which statement from the excerpt uses fallacious reasoning? excerpt from how to behave: a pocket manual of republican etiquette by samuel r. wells 10 * x = 425 81729 / y = 898.12What is X and Y?I WILL GIVE BRAINLY IF U DONT USE CALCULATOR Mary needs to rename her report.txt file to final_report.txt. Which command will allow her to do this?A. ren report.txt final_report.txtB. ren final_report.txt report.txtC. ren final_report.txtD. ren report.txt to final_report.txt Macy of New York sold LeeCo. of Chicago office equipment with a $6,300 list price. Sale terms were 3/10, n/30 FOB New York. Macy agreed to prepay the $40 freight. LeeCo. pays the invoice within the discount period. What does LeeCo. pay Macy? identification and assertion of restrictions on the government's use, release, or disclosure of technical data example True or False: The income statement records all the revenues and expenses for a given period and shows whether the firm is making a profit or is experiencing a loss. The BLS team is caring for a patient who just went into cardiac arrest. The team leader asks you to call the code team. Which statement demonstrates appropriate closed-loop communication? properties of the rectangle, rhombus, and square - practice determine if the following statements answers