Answer:
12
Step-by-step explanation:
P(2)=-2³+4(2)²+4=-8+16+4=12
what is the square root of 15
Step-by-step explanation:
[tex] \sqrt{15} = 3.872983346 = 3.88[/tex]
Calls to a customer service center last on average 2.8 minutes with a standard deviation of 1.4 minutes. An operator in the call center is required to answer 75 calls each day. Assume the call times are independent. What is the expected total amount of time in minutes the operator will spend on the calls each day
Answer:
The expected total amount of time the operator will spend on the calls each day is of 210 minutes.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
n-values of normal variable:
Suppose we have n values from a normally distributed variable. The mean of the sum of all the instances is [tex]M = n\mu[/tex] and the standard deviation is [tex]s = \sigma\sqrt{n}[/tex]
Calls to a customer service center last on average 2.8 minutes.
This means that [tex]\mu = 2.8[/tex]
75 calls each day.
This means that [tex]n = 75[/tex]
What is the expected total amount of time in minutes the operator will spend on the calls each day
This is M, so:
[tex]M = n\mu = 75*2.8 = 210[/tex]
The expected total amount of time the operator will spend on the calls each day is of 210 minutes.
HELP PLEASE MATH PROBLEM
Answer:
x=41
Step-by-step explanation:
LM =JM
154=4x-10
154+10=4x
164=4x
164/4=4x/4
41=x
hope this is helpful
Q23. Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.
Answer:
k=7
Step-by-step explanation:
2x+3y=k
2(2)+3(1)=k
4+3=k
k=7
Answer:
7.
Step-by-step explanation:
Substitute x = 2 and y = 1 into the given equation:
2(2) + 3(1) = k
4 + 3 = k
k = 7.
Assume that a population is normally distributed with a mean of 100 and a standard deviation of 15. Would it be unusual for the mean of a sample of 3 to be 115 or more? Why or why not?
Answer:
|Z| < 2, which means that it would not be unusual for the mean of a sample of 3 to be 115 or more.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
If [tex]|Z| > 2[/tex], the value of X is considered to be unusual.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Assume that a population is normally distributed with a mean of 100 and a standard deviation of 15.
This means that [tex]\mu = 100, \sigma = 15[/tex]
Sample of 3
This means that [tex]n = 3, s = \frac{15}{\sqrt{3}}[/tex]
Would it be unusual for the mean of a sample of 3 to be 115 or more? Why or why not?
We have to find the z-score.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{115 - 100}{\frac{15}{\sqrt{3}}}[/tex]
[tex]Z = 1.73[/tex]
|Z| < 2, which means that it would not be unusual for the mean of a sample of 3 to be 115 or more.
Find the percent of decrease from 46 songs to 41 songs. Round to the nearest tenth of a percent if necessary.
percent of decrease
%
Answer:
10.9 %
Step-by-step explanation:
46 - 41 = 5
5/46 * 100% = 10.8695652174%
Rounded
10.9 %
HELP HELPPP!!!у- 3
|
у+
у- 3
3
What is the common denominator of y+
3
in the complex fraction
5 2
9* Зу
?
Зу(у – 3)
у(у – 3)
Зу
О 3
Answer:
The common denominator of [tex]y + \frac{y-3}{3}[/tex] is 3
Step-by-step explanation:
Given
The complex fraction
Required
The common denominator
To solve this, we need not consider the whole complex fraction.
We only consider
[tex]y + \frac{y-3}{3}[/tex]
Take LCM
[tex]y + \frac{y-3}{3} = \frac{3y - (y-3)}{3}[/tex]
Single out the denominator, i.e. 3
Hence, the common denominator of [tex]y + \frac{y-3}{3}[/tex] is 3
which of the following statements is true
Answer: B ACE is similar to DCB
Step-by-step explanation:
A pizza company runs a marketing campaign based on their delivery time for pizzas. They claim that they will deliver a pizza within 30 minutes of ordering or it is free. In practice the time it takes to prepare a pizza and it being delivered is normally distributed with mean 25 minutes and standard deviation 3 minutes. What is the probability a pizza is delivered for free?On a particular Sunday, 40 pizzas were ordered. What is the probability that more than 2 were delivered for free?If the company wants to reduce the proportion of pizzas that are delivered free to 1%, what should the delivery time be advertised as?
Answer:
0.0475 = 4.75% probability a pizza is delivered for free.
0.2955 = 29.55% probability that more than 2 were delivered for free.
The delivery time should be advertised as 32 minutes.
Step-by-step explanation:
To solve this question, we need to understand the binomial distribution and the normal distribution.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with mean 25 minutes and standard deviation 3 minutes.
This means that [tex]\mu = 25, \sigma = 3[/tex]
What is the probability a pizza is delivered for free?
More than 30 minutes, which is 1 subtracted by the p-value of Z when X = 30.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{30 - 25}{3}[/tex]
[tex]Z = 1.67[/tex]
[tex]Z = 1.67[/tex] has a p-value of 0.9525
1 - 0.9525 = 0.0475
0.0475 = 4.75% probability a pizza is delivered for free
What is the probability that more than 2 were delivered for free?
Multiple pizzas, so the binomial probability distribution is used.
0.0475 probability a pizza is delivered for free, which means that [tex]p = 0.0475[/tex]
40 pizzas, which means that [tex]n = 40[/tex]
This probability is:
[tex]P(X > 2) = 1 - P(X \leq 2)[/tex]
In which
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{40,0}.(0.0475)^{0}.(0.9525)^{40} = 0.1428[/tex]
[tex]P(X = 1) = C_{40,1}.(0.0475)^{1}.(0.9525)^{39} = 0.2848[/tex]
[tex]P(X = 2) = C_{40,2}.(0.0475)^{2}.(0.9525)^{38} = 0.2769[/tex]
Then
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.1428 + 0.2848 + 0.2769 = 0.7045[/tex]
[tex]P(X > 2) = 1 - P(X \leq 2) = 1 - 0.7045 = 0.2955[/tex]
0.2955 = 29.55% probability that more than 2 were delivered for free.
If the company wants to reduce the proportion of pizzas that are delivered free to 1%, what should the delivery time be advertised as?
The 99th percentile, which is X when Z has a p-value of 0.99, so X when Z = 2.327.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]2.327 = \frac{X - 25}{3}[/tex]
[tex]X - 25 = 2.327*3[/tex]
[tex]X = 32[/tex]
The delivery time should be advertised as 32 minutes.
which elements in the following set are integers -8,3/4,-0.18,0,0.16,5,-2/7,6
Answer:
345
Step-by-step explanation:
Assessment
Cymraeg
Isaac plans a hidden treasure game.
Treasure is hidden under the sand in a tray. The tray for the sand is a cuboid: 0.8 m long,
0.6 m wide and 0.1 m deep. Sand comes in 25 kg bags with an approximate volume of
17,000 cm?
How many bags must Isaac buy to completely fill the tray?
3
Isaac needs to buy
bags of sand.
2
Answer:
So, to fill the tray completely , he needs 3 bags of sand.
Step-by-step explanation:
Tray dimensions,
length = 0.8 m
Width = 0.6 m
height = 0.1 m
Volume of one sand bag = 17000 cm^3
Let the volume of the tray is V.
V = length x idth x height
V = 0.8 x 0.6 x 0.1 = 0.048 m^3
Number of sand bags
[tex]n=\frac{0.048}{17000\times 10^{-6}}\\\\n = 2.82[/tex]
So, to fill the tray completely , he needs 3 bags of sand.
Please help will mark BRAINLIEST! This is pt.1
Answer:
See below.
Step-by-step explanation:
Problem 1.
1. QU
2. QW
3. UW
Given
4. QUW
Problem 2.
1. CB
2. <1, <2
Given
3. BD, BE
Given
4. ABD, CBE
SAS
What is the probability of rolling a number greater then two in a 6 sided number cube?
A.) 1/3
B.) 1/2
C.) 2/3
D.) 4/5
Answer:
c
Step-by-step explanation:
4/6 is reduced to two thirds
PLEASEEE HELP ME I WILL MARK YOU JF YOU HELP ME PLEASE
Given:
A figure of a construction.
To find:
The correct option that represent the given construction.
Solution:
We know that, if a transversal line intersect two parallel lines, then the corresponding angles are equal.
In the given figure, two corresponding angles are constructed by using the compass.
Since the corresponding angles are equal, therefore the construction represents the parallel lines through a point.
Therefore, the correct option is B.
Can anyone help me please ????
Hey there! The topic for this problem is Limit of Function!
As for the question, we are given the quadratic function and we have to find the limit, the value that approaches to a.
[tex] \large \boxed{lim_{x \longrightarrow a} f(x)}[/tex]
We call this, "The limit of f(x) when x approaches a."
Then you may ask, "How do we find the limit of function?". That is a very nice question! The answer to your problem is just substitute x-value in. Although this substitution method only applies when the approaching value doesn't make the denominator to 0. I believe that in the beginning of Limit topic, we learn how to find or evaluate the basic limit that only requires substitution.
So from the question, we receive:
[tex] \large{lim_{x \longrightarrow 2} ( {x}^{2} - 3x - 1)}[/tex]
Next step is to substitute x = 2 in the function.
[tex] \large{lim_{x \longrightarrow 2} ( {2}^{2} - 3(2) - 1)}[/tex]
Evaluate the value.
[tex] \large{lim_{x \longrightarrow 2} ( 4 - 6 - 1)} \\ \large{lim_{x \longrightarrow 2} ( - 3)}[/tex]
Cancel the limit out and there you have it!
[tex] \large \boxed{ - 3}[/tex]
Answer
The limit of quadratic function when x approaches 2 is -3.Now whenever you learn limit, you must know that limit is when we substitute the approaching value. That means x —> 2 is not x = 2 but x approaches 2.
Regarding the limit, any questions and doubts can be asked through comment and I will get back to you soon!
Thank you for using Brainly and I hope you have a fantastic day! Good luck on the assignment.
Find the Diameter of the circle, whose radius is 17 cm.
Answer:
34 cm
Step-by-step explanation:
The radius is half of the diameter, so 17 cm is half of 34 cm.
Diameter = 34 cm
Estimate 481 + 223 round each number first.
Answer:
7
Step-by-step explanation:
481 + 223
approximately 481 =5
223 =2
5+2=7
Answer:
7
Step-by-step explanation:
help whats the answer??
Answer:
2 7/12
Step-by-step explanation:
You have to get all the fractions to a common denominator. Smallest common denominator would be 12.
5 and 3/4 turns to 5 and 9/12
2/3 turns to 8/12
2 and 1/2 turns to 2 and 6/12
8/12 + 2 6/12 = 3 2/12
5 9/12 - 3 2/12 = 2 7/12
2 7/12 being the remaining amount
Is triangle XYZ = ABC ? If so, name the postulate that applies. A. Congruent - ASA B. Congruent - SAS C. Might not be congruent D. Congruent - SSS
How tall is the average human baby ?
Use Pythagorean Theorem to find each missing length
please help with the steps
Answer:
25 is A and 26 is B
Step-by-step explanation:
25) a²+b²=c²
missing side can be=b
to find the missing side subtract 6.7² from 12.6²
b²=12.6²-6.7²
b²=158.76-44.89
the square root of b²= the square root of 113.87
b=10.67
the missing side is equal to 10.7(1d.p)
26) a²+b²=c²
c= hypotenuse
10.8²+11²=c²
116.64+121=c²
c²=237.64
the square root of c²= the square root of 237.64
c=15.42(2d.p)
the hypotenuse is=15.4
The places that I have "the square root of" you must replace it with the square root sign. I'm using my phone so I wasn't sure how to insert a square root sign.
Stan knows that segment AB∥segment CD. He wants to use the definition of a parallelogram to prove that quadrilateral ABCD is a parallelogram. Which equation can he use?
Answer:
[tex]\frac{q - r}{m- n} = \frac{p - s}{m - n}[/tex]
Step-by-step explanation:
Given
See attachment for parallelogram
Required
Proof that ABCD is a parallelogram
We know that opposite sides are equal and parallel.
First, we calculate the slope of BC
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
So, we have:
[tex]m = \frac{q - r}{m- n}[/tex]
Next, the slope of AD using:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
So, we have:
[tex]m = \frac{p - s}{m - n}[/tex]
For ABCD to be a parallelogram; then:
[tex]\frac{q - r}{m- n} = \frac{p - s}{m - n}[/tex]
course
Look at the following number line:
- 10
-5
0
5
10
What are two ways to write the inequality graphed?
x>-1 and -1
XS-1 and -12X
x < -1 and -1 > X
x2-1 and -1 5x
first and last one i think
Three bags contain 3 red, 7 black; 8 red, 2 black, and 4 red & 6 black balls
respectively. 1 of the bags is selected at random and a ball is drawn from it. If the ball
drawn is red, find the probability that it is drawn from the third bag.
Answer:
[tex]Probability = \frac{4}{15}[/tex]
Step-by-step explanation:
B1 = first bag
B2= second bag
B3 = third bag
Let A = ball drawn is red
Since, there are three bags.
Probability of choosing one bag= P(B1) = P(B2) = P(B3) = 1/3.
From B1: Total balls = 10
3 red + 7 black balls.
Probability of drawing 1 red ball from it , P(A) = 3/10.
From B2: Total balls = 10
8 red + 2 black
Probability of drawing 1 red ball is, P(A) = 8/10
From B3 : Total Balls = 10
4 red + 6 black
Probability of drawing 1 red ball, P(A) = 4/10 .
To find Probability given that the ball drawn is red, that the ball is drawn from the third bag by Bayes' rule.
That is , P(B3|A)
[tex]=\frac{\frac{1}{3} \times \frac{4}{10}} { \frac{1}{3} \times \frac{3}{10} + \frac{1}{3} \times\frac{8}{10} + \frac{1}{3} \times \frac{4}{10}}[/tex]
[tex]=\frac{4}{30} \times \frac{30}{15}\\\\=\frac{4}{15}[/tex]
Therefore, the probability that it is drawn from the third bag is 4/15.
Answer:
4/15
Step-by-step explanation:
Solution of conditional probability problem:
Given:
Bags (3R,7B), (8R,2B), (4R,6B)
Let
P(R,i) = probability of drawing a red AND from bag i
P(R, 1) = 3/10 * (1/3) = 3/30
P(R, 2) = 8/10 * (1/3) = 8/30
P(R, 3) = 4/10 * (1/3) = 4/30
Let
Let P(R) = probability of drawing a red from any bag
P(R) = sum P(R,i) for i = 1 to 3 using the addition rule
= 3/30 + 8/30 + 4/30
= 15/30
= 1 / 2
Conditional Probability of drawing from the third bag GIVEN that it is a red
= P(3 | R)
= P(R, 3) / P(R)
= 4/30 / (1/2)
= 8/30
= 4 / 15
(Since all bags contain 10 balls, by intuition, 4 red from third / 15 total red = 4/15)
6 Write 89.4945 correct to (a) nearest whole number, [1] (b) two decimal places.
Answer:
a)89
b)89.45
Step-by-step explanation:
Weekly demand for a certain brand of a golf ball at The Golf Outlet is normally distributed with a mean of 35 and a standard deviation of 5. The profit per box is $5.00. Write an Excel formula that simulates the weekly profit:
= 5 * 35 * NORMSINV(RAND())
= 5* NORMINV(RAND(), 35, 5)
= 5 * RANDBETWEEN(5, 35)
= NORMINV(RAND(), 5 * 35, 5)
Answer:
= 5 * NORMINV(RAND(), 35, 5)
Step-by-step explanation:
From the given information:
The total weekly profit is achieved by the multiplication of the unit profit (5) and the weekly demand.
Here, the weekly demands obey a normal distribution where the mean = 35 and the standard deviation = 5.
Using the Excel Formula:
The weekly profit can be computed as:
= 5 * NORMINV(RAND(), 35, 5)
What translation maps ABC to A'B'C'?
Somebody please help me asap
Answer:
sum of angles in a triangle = 180°
180-(90+21)
= 69
pls am I correct
What is the inverse function of y = 2x - 8
Answer:
Step-by-step explanation:
y = 2x-8
2x = y+8
x = 0.5y+4
inverse function: y = 0.5x+4
by how much is 2690 less than 3780
Step-by-step explanation:
Subtract 2690 from 3780
3780
-2690
=1090