Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound

Answers

Answer 1

The question is incomplete. The complete question is :

Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound in the room is 340 m/s.

What is the frequency of the sound?

Solution :

Given :

The distance between the two loud speakers, [tex]d = 1.8 \ m[/tex]

The speaker are in phase and so the path difference is zero constructive interference occurs.

At the point [tex]D[/tex], the speakers are out of phase and so the path difference is [tex]$=\frac{\lambda}{2}$[/tex]

Therefore,

[tex]$AD-BD = \frac{\lambda}{2}[/tex]

[tex]$\sqrt{(1.8)^2+(3)^2-3} =\frac{\lambda}{2}$[/tex]

[tex]$\lambda = 2 \times 0.4985$[/tex]

[tex]$\lambda = 0.99714 \ m$[/tex]

Thus the frequency is :

[tex]$f=\frac{v}{\lambda}$[/tex]

[tex]$f=\frac{340}{0.99714}$[/tex]

[tex]f=340.9744[/tex] Hz

Two Loudspeakers Are Placed 1.8 M Apart. They Play Tones Of Equal Frequency. If You Stand 3.0 M In Front

Related Questions

A car is traveling at 118 km/h when the driver sees an accident 85 m ahead and slams on the brakes. What minimum constant deceleration is required to stop the car in time to avoid a pileup

Answers

Answer:

The constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²

Explanation:

From the question, the car is traveling at 118 km/h, that is the initial velocity, u = 118km/h

The distance between the car and the accident at the moment when the driver sees the accident is 85 m, that is s = 85 ,

Since the driver slams on the brakes and the car will come to a stop, then the final velocity, v = 0 km/h = 0 m/s

First, convert 118 km/h to m/s

118 km/h = (118 × 1000) /3600 = 32.7778 m/s

∴ u = 32.7778 m/s

Now, to determine the deceleration, a, required to stop,

From one of the equations of motion for linear motion,

v² = u² + 2as

Then

0² = (32.7778)² + 2×a×85

0 = 1074.3841 + 170a

∴ 170a = - 1074.3841

a = - 1074.3841 / 170

a = - 6.3199

a ≅ - 6.32 m/s²

Hence, the constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²

A resistor is submerged in an insulated container of water. A voltage of 12 V is applied to the resistor resulting in a current of 1.2 A. If this voltage and current are maintained for 5 minutes, how much electrical energy is dissipated by the resistor

Answers

Explanation:

Given:

[tex]\Delta t = 5\:\text{min} = 300\:\text{s}[/tex]

[tex]V = 12 V[/tex]

[tex]I = 1.2 A[/tex]

Recall that power P is given by

[tex]P = VI[/tex]

so the amount of energy dissipated [tex]\Delta E[/tex] is given by

[tex]\Delta E = VI\Delta t = (12\:\text{V})(1.2\:\text{A})(300\:\text{s})[/tex]

[tex]\:\:\:\:\:\:\:= 4320\:\text{W} = 4.32\:\text{kW}[/tex]

One of the asteroids, Ida, looks like an elongated potato. Surprisingly it has a tiny (compared to Ida) spherical moon! This moon called Dactyl has a mass of 4.20 × 10^16 kg, and a radius of 1.57 × 10^4 meters, according to Wikipedia. Ida has a radius of 3.14 x 10^4 meters.
Find the acceleration of gravity on the surface of this little moon.

Answers

Answer:

g = 0.0114 m/s²

Explanation:

The value of acceleration due to gravity on the surface of the moon can be given by the following formula:

[tex]g = \frac{Gm}{r^2}[/tex]

where,

g = acceleration due to gravity on the surface of moon = ?

G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²

m = mass of moon = 4.2 x 10¹⁶ kg

r = radius of moon = 1.57 x 10⁴ m

Therefore,

[tex]g= \frac{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(4.2\ x\ 10^{16}\ kg)}{(1.57\ x\ 10^4\ m)^2}[/tex]

g = 0.0114 m/s²

A river is 87. meters wide and its current flows northward at 6 meters per second. A boat is launched with a velocity of 1.0 meters per second eastward from the west bank of the river. Determine the magnitude and direction of the boat’s resultant velocity as it crosses the river.

Answers

Answer:

explained

Explanation:

If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead moves diagonally relative to the shore, as in Figure 1. The boat does not move in the direction in which it is pointed. The reason, of course, is that the river carries the boat downstream. Similarly, if a small airplane flies overhead in a strong crosswind, you can sometimes see that the plane is not moving in the direction in which it is pointed, as illustrated in Figure 2. The plane is moving straight ahead relative to the air, but the movement of the air mass relative to the ground carries it sideways.

A boat is trying to cross a river. Due to the velocity of river the path traveled by boat is diagonal. The velocity of boat v boat is in positive y direction. The velocity of river v river is in positive x direction. The resultant diagonal velocity v total which makes an angle of theta with the horizontal x axis is towards north east direction.

Figure 1. A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity (solid arrow) relative to the shore is the sum of its velocity relative to the river plus the velocity of the river relative to the shore.

An airplane is trying to fly straight north with velocity v sub p. Due to wind velocity v sub w in south west direction making an angle theta with the horizontal axis, the plane’s total velocity is thirty eight point 0 meters per seconds oriented twenty degrees west of north.

Figure 2. An airplane heading straight north is instead carried to the west and slowed down by wind. The plane does not move relative to the ground in the direction it points; rather, it moves in the direction of its total velocity (solid arrow).

In each of these situations, an object has a velocity relative to a medium (such as a river) and that medium has a velocity relative to an observer on solid ground. The velocity of the object relative to the observer is the sum of these velocity vectors, as indicated in Figure 1 and Figure 2. These situations are only two of many in which it is useful to add velocities. In this module, we first re-examine how to add velocities and then consider certain aspects of what relative velocity means.

How do we add velocities? Velocity is a vector (it has both magnitude and direction); the rules of vector addition discussed in Chapter 3.2 Vector Addition and Subtraction: Graphical Methods and Chapter 3.3 Vector Addition and Subtraction: Analytical Methods apply to the addition of velocities, just as they do for any other vectors. In one-dimensional motion, the addition of velocities is simple—they add like ordinary numbers. For example, if a field hockey player is moving at  5  m/s

straight toward the goal and drives the ball in the same direction with a velocity of  30 m/s

relative to her body, then the velocity of the ball is  35  m/s

relative to the stationary, profusely sweating goalkeeper standing in front of the goal.

In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will concentrate on analytical techniques. The following equations give the relationships between the magnitude and direction of velocity (

 

The figure shows components of velocity v in horizontal  vx and in vertical y axis v y. The angle between the velocity vector v and the horizontal axis is theta.

Figure 3. The velocity, v, of an object traveling at an angle θ to the horizontal axis is the sum of component vectors  and  

These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used to find the components of a velocity when its magnitude and direction are known. The last two are used to find the magnitude and direction of velocity when its components are known.

An organ pipe of length 3.0 m has one end closed. The longest and next-longest possible wavelengths for standing waves inside the pipe are

Answers

Answer:

The longest wavelength for closed at one end and open at the other is

y / 4      where y is the wavelength - that is node - antinode

The next possible wavelength is 3 y / 4 -    node - antinode - node -antinode

y / 4 = 3 m     y = 12 meters    the longest wavelength

3 y / 4 = 3 m      y = 4 meters   1 / 3 times as long

A refrigerator has a coefficient of performance equal to 4.00. The refrigerator takes in 110 J of energy from a cold reservoir in each cycle. (a) Find the work required in each cycle. J (b) Find the energy expelled to the hot reservoir. J

Answers

Answer:

The correct answer is:

(a) 27.5 Joules

(b) 141.5 Joules

Explanation:

Given:

Energy,

[tex]Q_c = 110 \ J[/tex]

Coefficient of performance refrigerator,

[tex]Cop(refrig)=4[/tex]

(a)

As we know,

⇒ [tex]Cop(refrig) = \frac{Q_c}{Work}[/tex]

or,

⇒ [tex]Work=\frac{Q_c}{Cop(refrig)}[/tex]

              [tex]=\frac{110}{4}[/tex]

              [tex]=27.5 \ Joules[/tex]

(b)

⇒ [tex]Heat \ expelled = Heat \ removed +Work \ done[/tex]

or,

⇒ [tex]Q_h = Q_c+Work[/tex]

         [tex]=114+27.5[/tex]

         [tex]=141.5 \ Joules[/tex]

A diffraction grating has 6000 lines per centimeter ruled on it. What is the angular separation (in degrees) between the second and the third orders on the same side of the central bright fringe when the grating is illuminated with a beam of light of wavelength 500 nm

Answers

Explanation:

Hope it Will help he hsuejwoamxgehanwpalasmbwfwfqoqlmdbehendalmZbgevzuxwllw. yeh we pabdvddxhspapalw. X

The angular separation (in degrees) between the second and the third orders on the same side of the central bright fringe if the wavelength is 500 nm and A diffraction grating has 6000 lines per centimeter ruled on it, is  27.29°.

What is diffraction?

Waves spreading outward around obstructions are known as diffraction. Sound, electromagnetic radiation like light, X-rays, and gamma rays, as well as very small moving particles like atoms, neutrons, and electrons that exhibit wavelike qualities all exhibit diffraction.

Given:

The number of lines = 6000 per cm,

The Wavelength, λ = 500 nm = 500 × 10 ⁻⁹ m

Calculate the diffraction grating,

[tex]d = 1 / no\ of\ lines[/tex]

d = 10⁻² / 6000 m,

Calculate the second-order maxima angle and third-order maxima angle by the formula given below,

[tex]dsin\theta_1 = n_1 \lambda[/tex]

[tex]sin\theta_1 = n_1\lambda / d[/tex]

[tex]\theta _1 = sin^{-1}[2\times 500\times 10 ^{-9}/10^{-2}\times 6000][/tex]

θ₁ = sin⁻¹(0.6)

θ₁ = 36.87°

Similarly, for θ₂,

θ₂ = sin⁻¹(3 × 500 × 10 ⁻⁹ / 10⁻² × 6000)

θ₂ = sin⁻¹(0.9)

θ₂ = 64.16°

Calculate the separation as follows,

θ₂ - θ₁ = 64.16° - 36.87°

θ₂ - θ₁ =  27.29°

Therefore, the angular separation (in degrees) between the second and the third orders on the same side of the central bright fringe if the wavelength is 500 nm and A diffraction grating has 6000 lines per centimeter ruled on it, is  27.29°.

To know more about diffraction:

https://brainly.com/question/12290582

#SPJ2

0
-
ZOOLS
6) The mass of a motorcycle is 250 kg. What is?
A) Its weight on Earth in Newtons?
B) Its weight on the moon (in Newtons)?
ges
C) The mass of your motorcycle on the moon?

Answers

Answer:

Explanation:

Weight is actually a force. A force can change depending on its location. A mass remains constant no matter where it is.

A)

F = m * a

m = 250 kg

a = 9.81 m/s^2

F = 250 * 9.81 = 2452.5 N

B)

The acceleration due to gravity on the moon is roughly 1/6 what it is on earth. You can check its value in your notes.

a = 9.81 + (1/6) = 1.635

m = 250

F = 250 * 1.635

F = 408.75

C)

The mass is the same anywhere in the universe.

250 kg

A rugby player passes the ball 7.00 m across the field, where it is caught at the same height as it left his hand.
(a) At what angle was the ball thrown if its initial speed was 12.0 m/ s, assuming that the smaller of the two possible angles was used?
(b) What other angle gives the same range, and why would it not be used?
(c) How long did this pass take?

Answers

Answer:

a)   θ = 14.23º, b)   θ₂ = 75.77,  c) t = 0.6019 s

Explanation:

This is a missile throwing exercise.

a) the reach of the ball is the distance traveled for the same departure height

          R = [tex]\frac{v_o^2 \ sin 2 \theta }{g}[/tex]

          sin 2θ = [tex]\frac{Rg}{v_o^2}[/tex]

          sin 2θ = 7.00 9.8 / 12.0²

          2θ = sin⁻¹ (0.476389) = 28.45º

           θ = 14.23º

the complementary angle that gives the same range is the angle after 45 that the same value is missing to reach 90º

          θ ’= 90  -14.23

          θ’= 75.77º

b) the two angles that give the same range are

         θ₁ = 14.23

         θ₂ = 75.77

the greater angle has a much greater height so the time of the movement is greater and has a greater chance of being intercepted by the other team.

C) the time of the pass can be calculated with the expression

                       

           x = v₀ₓ t

           t = x / v₀ₓ

           t = 7 / 11.63

           t = 0.6019 s

Describe sound and record​

Answers

Answer:

record is information created, received and maintained as evidence and information by an organization or person.in simpler terms it's a collection of of fields probably of different data types.

sound is however something loud or soft.which can be defined as vibrations that travel through the air or another medium.

I hope this helps

herical piece of candy is suspended in flowing water. The candy has a density of 1950 kg/m3 and has a 1.0 cm diameter. The water velocity is 1.0 m/s, the water density is assumed to be 1000.0 kg/m3, and the water viscosity is 1.010-3 kg/m/s. The diffusion coefficient of the candy solute in water is 2.010-9 m2/s, and the solubility of the candy solute in water is 2.0 kg/m3. Calculate the mass tran

Answers

Answer: Below is the complete question

A spherical piece of candy is suspended in flowing water. The candy has a density of 1950 kg/m3 and has a 1.0 cm diameter. The water velocity is 1.0 m/s, the water density is assumed to be 1000.0 kg/m3, and the water viscosity is 1.0x10-3 kg/m/s. The diffusion coefficient of the candy solute in water is 2.0x10-9 m2/s, and the solubility of the candy solute in water is 2.0 kg/m3. Calculate the mass transfer coefficient (m/s)

answer:

mass transfer coefficient = 9.56 * 10^-5 m/s

Explanation:

Candy density = 1950 kg/m^3

Candy diameter = 1 cm

Velocity of water = 1 m/s

water density = 1000 kg/m^3

Viscosity of water = 1 * 10^-3 kg/m/s

diffusion coefficient of candy in water = 2 * 10^-9 m^2/s

solubility of candy = 2 kg/m^3

Determine the mass transfer coefficient ( m/s )

( Sh) mass transfer coefficient ( flow across sphere ) = 2 + 0.6Re^1/2 * SC^1/3

where : Re = vdp / μ ,   Sh = KLd / Deff

attached below is the remaining solution .

mass transfer coefficient =  9.56 * 10^-5 m/s

The speed of a sound wave

A. Depends on wavelength.
B. Depends on the medium.
C. Depends on amplitude.
D. None of the above.

Answers

Answer:

B) the medium

Explanation:

B. Depends on the medium.

Light takes 1.2 sec to get from the moon to the Earth. Assume you are looking at the moon with noticeable earth shine. If the Sun burned out, you would eventually see the crescent of the moon disappear. The earth shine part of the moon would disappear Answer 2.4 s after the crescent disappeared.

Answers

Answer:

1.2 seconds

Explanation:

Answer to the following question is 1.2 seconds

Because light from the moon takes 1.2 seconds to reach Earth, the light released from the crescent immediately before it vanishes will also take 1.2 seconds to reach Earth. As a result, the earth-shine portion of the moon will vanish 1.2 seconds after the crescent has vanished.

If a conducting loop of radius 10 cm is onboard an instrument on Jupiter at 45 degree latitude, and is rotating with a frequency 2 rev/s; What is the maximum emf induced in this loop? If its resistance is 0.00336 ohms, how much current is induced in this loop? And what is the maximum power dissipated in the loop due to its rotation in Jupiter's magnetic field?

Answers

Answer:

a)  fem = - 2.1514 10⁻⁴ V,  b) I = - 64.0 10⁻³ A, c)    P = 1.38  10⁻⁶ W

Explanation:

This exercise is about Faraday's law

         fem = [tex]- \frac{ d \Phi_B}{dt}[/tex]

where the magnetic flux is

        Ф = B x A

the bold are vectors

        A = π r²

we assume that the angle between the magnetic field and the normal to the area is zero

         fem = - B π 2r dr/dt = - 2π B r v

linear and angular velocity are related

        v = w r

        w = 2π f

        v = 2π f r

we substitute

        fem = - 2π B r (2π f r)

        fem = -4π² B f r²

For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T

we reduce the magnitudes to the SI system

       f = 2 rev / s (2π rad / 1 rev) = 4π Hz

we calculate

       fem = - 4π² 428 10⁻⁶ 4π 0.10²

       fem = - 16π³ 428 10⁻⁶ 0.010

       fem = - 2.1514 10⁻⁴ V

for the current let's use Ohm's law

        V = I R

        I = V / R

         I = -2.1514 10⁻⁴ / 0.00336

         I = - 64.0 10⁻³ A

Electric power is

        P = V I

        P = 2.1514 10⁻⁴ 64.0 10⁻³

        P = 1.38  10⁻⁶ W

HELP ME PLZ FAST
There is more than 1 answer,
The picture is down

Answers

Answer:

test her prototype and collect data about its flight


The temperature of a body falls from 30°C to 20°C in 5 minutes. The air
temperature is 13°C. Find the temperature after a further 5 minutes.

Answers

Answer:

15.88

is the correct answer

A sound wave made up of large number of unrelated frequencies superposted on each other is

Answers

Since the frequencies are unrelated, and there are a large number of them, I'll say this represents an example of noise.

Which circuit element is of special importance in AC circuits?
A. Resistor
B. Ammeter
C. Battery
D. Capacitor​

Answers

Answer:

Explanation:capacitor

Answer:

Ammeter

Explanation:

pls mark me as a brainlist

Your little sister (mass 25 kg) is sitting in her little red wagon (mass
8.5 kg) at rest. You begin pulling her forward, accelerating her with a
constant force for 2.35 s to a speed of 1.8 m/s. Calculate the impulse
you imparted to the wagon and its passenger.

Answers

Answer:

p = 60.6N*s

Explanation:

v_f = v_0+a*t

a = (v_f-v_0)/t

a = (1.8m/s)/2.35s

a = 0.77m/s²

F = m*a

F = (25kg+8.5kg)*0.77m/s²

F = 25.8N

^p = F*t

p = 25.8N*2.35s

p = 60.6N*s

what effect does the force of gravity have on a stone thrown vertically upwards​

Answers

Answer:

rock go down

Explanation:

what comes up must come down.

A mass is tired to spring and begins vibration periodically the distance between it's lowest position is 48cm what is the Amplitude of the vibration

Answers

Answer:

The amplitude of vibration of the spring is "24 cm"

The periodic vibrating body's motion follows a sinusoidal path. This sinusoidal path is illustrated in the attached picture.

From the picture, it can be clearly seen that the amplitude of the periodic vibration motion is the distance from its mean position to the highest point.

Since the distance of both the highest and the lowest points from the mean position is the same. Therefore, the distance between the lowest and the highest point must be equal to two times the amplitude of the wave.

Amplitude = 24 cm

a bullet is dropped from the same height when another bullet is fired horizontally. they will hit the ground

Answers

Answer:

it will drop simultaneously

A stationary horn emits a sound with a frequency of 228 Hz. A car is moving toward the horn on a straight road with constant speed. If the driver of the car hears the horn at a frequency of 246 Hz, then what is the speed of the car? Use 340 m/s for the speed of the sound

Answers

Answer: 26.84 m/s

Explanation:

Given

Original frequency of the horn [tex]f_o=228\ Hz[/tex]

Apparent frequency [tex]f'=246\ Hz[/tex]

Speed of sound is [tex]V=340\ m/s[/tex]

Doppler frequency is

[tex]\Rightarrow f'=f_o\left(\dfrac{v+v_o}{v-v_s}\right)[/tex]

Where,

[tex]v_o=\text{Velocity of the observer}\\v_s=\text{Velocity of the source}[/tex]

Insert values

[tex]\Rightarrow 246=228\left[\dfrac{340+v_o}{340-0}\right]\\\\\Rightarrow 366.84=340+v_o\\\Rightarrow v_o=26.8\ m/s[/tex]

Thus, the speed of the car is [tex]26.84\ m/s[/tex]

Determine the magnitude as well as direction of the electric field at point A, shown in the above figure. Given the value of k = 8.99 × 1012N/C.

Answers

Answer:

Electric field at A = 9.28 x 10¹² N/C

Explanation:

Given:

K = 8.99 x 10¹² N/C

Missing information:

Length = 11 cm = 11 x 10⁻² m

q = 12.5 C

Find:

Electric field at A

Computation:

Electric field = Kq / r²

Electric field at A = [(8.99 x 10¹²)(12.5)] / [11 x 10⁻²]²

Electric field at A = 9.28 x 10¹² N/C

You place a 55.0 kg box on a track that makes an angle of 28.0 degrees with the horizontal. The coefficient of static friction between the box and the inclined plane is 0.680. a) Determine the static frictional force which holds the box in place. b) You slowly raise one end of the track, slowly increasing the incline of the angle. Determine the maximum angle that the incline can make with the horizontal so that the box just remains at rest. Ms 680 u Fgsin 281 Ffg Mgm r 680 55 4 8

Answers

Answer:

[tex]\theta=34 \textdegree[/tex]

Explanation:

From the question we are told that:

Mass [tex]m=55kg[/tex]

Angle [tex]\theta =28.0[/tex]

Coefficient of static friction [tex]\alpha =0.680[/tex]

Generally, the equation for Newtons second Law is mathematically given by

For

[tex]\sum_y=0[/tex]

[tex]N=mgcos \theta[/tex]

for

[tex]\sum_x=0[/tex]

[tex]F_{s}=mgsin\theta[/tex]

Where

[tex]F_{s}=\alpha*N\\\\F_{s}=\alpha*m*gcos \theta[/tex]

[tex]F_{s}=0.68*55*9.8*cos 28[/tex]

[tex]F_{s}=323.62N[/tex]

Therefore

[tex]\alpha mgcos \theta=mg sin \theta[/tex]

[tex]\theta=tan^{-1}(0.68)[/tex]

[tex]\theta=34 \textdegree[/tex]

(a) The static frictional force which holds the box in place is 323.62 N.

(b) The maximum angle that the incline can make with the horizontal is 34.2⁰.

Net force

The net force applied to keep the box at rest must be zero in order for the box to remain in equilibrium position. Apply Newton's second law of motion to determine the net force.

∑F = 0

Static frictional force

The static frictional force is calculated as follows;

Fs = μFncosθ

Fs = 0.68 x (55 x 9.8) x cos28

Fs = 323.62 N

Maximum angle the incline can make

Fn(sinθ) - μFn(cosθ) = 0

mg(sinθ) - μmg(cosθ) = 0

μmg(cosθ) = mg(sinθ)

μ(cosθ) = (sinθ)

μ = sinθ/cosθ

μ = tanθ

θ = tan⁻¹(μ)

θ = tan⁻¹(0.68)

θ = 34.2⁰

Learn more about net force of inclined here: https://brainly.com/question/25784024

The voltage in an EBW operation is 45 kV. The beam current is 50 milliamp. The electron beam is focused on a circular area that is 0.50 mm in diameter. The heat transfer factor is 0.87. Calculate the average power density in the area in watt/mm2.

Answers

Answer:

[tex]P_d=6203.223062W/mm^2[/tex]

Explanation:

From the question we are told that:

Voltage [tex]V=45kV[/tex]

Current [tex]I=50mAmp[/tex]

Diameter  [tex]d=0.50mm[/tex]

Heat transfer factor [tex]\mu= 0.87.[/tex]

Generally the equation for  Power developed is mathematically given by

[tex]P=VI\\\\P=45*10^3*50*10^{-3}[/tex]

[tex]P=2.250[/tex]

Therefore

Power in area

[tex]P_a=1400*0.87[/tex]

[tex]P_a=1218watt[/tex]

Power Density

[tex]P_d=\frac{P_a}{Area}[/tex]

[tex]P_d=\frac{1218}{\pi(0.5^2/4)}[/tex]

[tex]P_d=6203.223062W/mm^2[/tex]

1 A thing ring has a mass of 6kg and a radius of 20cm. calculate the rotational inertia. ​

Answers

Answer:

2400kgm²

Explanation:

Rotational inertia=mass x radius²

Vector a has a magnitude of 8 and makes an angle of 45 with positive x axis vector B has also the same magnitude of 8 units and direction along the

Answers

Answer:

prove that Sin^6 ϴ-cos^6ϴ=(2Sin^2ϴ-1)(cos^2ϴ+sin^4ϴ)

please sove step by step with language it is opt maths question

The answer is:

A + B = 6,123 units at angle 112,5 degrees.
A - B = 14,782 units at angle 22,5 degrees.

HELP ME ASAP PLSSS!!​

Answers

I hope this helped !

an alternating voltage of 100V, 50HZ Is Applied across an impedance of (20-j30) calculate the resistance, the capacitance, current, the phase angle between current and voltage

Answers

The resistance R = 20 Ω

The capacitance C = 106.1 μF

The current, I is 2.773 A at 56.31°.

The phase angle of the between the current and the voltage is 56.31° leading.

Since the impedance Z = 20 - j30 Ω, the resistance, R is the real part of the impedance. So R = ReZ = 20 Ω

So, the resistance R = 20 Ω

To find the capacitance, we need first to find the reactance of the capacitor X. Since the impedance Z = 20 - j30, the reactance of the capacitor X. is the imaginary part of the impedance. So X = ImZ = 30 Ω.

Now the reactance of the capacitor X = 1/ωC where ω = angular frequency of the circuit = 2πf where f = frequency of the circuit = 50 Hz and C = capacitance  

So, C = 1/ωX = 1/2πfX

Substituting the values of the variables into the equation, we have

C = 1/2πfX

C = 1/(2π × 50 Hz × 30 Ω)

C = 1/3000π

C = 1/9424.778

C = 1.061 × 10⁻⁴ F

C = 106.1 × 10⁻⁶ F

C = 106.1 μF

So, the capacitance is 106.1 μF

The current I = V/Z where V = voltage = 100 V at 0° and Z = impedance.

The magnitude of Z = √(20² + (-30)²)

= √(400 + 900)

= √1300

= 36.06 Ω

and its angle Φ = tan⁻¹(ImZ/ReZ)

= tan⁻¹(-30/20)

= tan⁻¹(-1.5) = -56.31°

So, V = 100 ∠ 0° and Z = 36.06 ∠ -56.31°

So, the current, I = V/Z =  (100 ∠ 0°)/36.06 ∠ -56.31°

= 100/36.06 ∠(0° - (-56.31° ))

= 2.773 ∠ 56.31° A

So, the current is 2.773 A at 56.31°.

Since the current is 2.773 A at 56.31°, the phase angle of the between the current and the voltage is 56.31° leading.

So, the phase angle of the between the current and the voltage is 56.31° leading.

Learn more about alternating voltage here:

https://brainly.com/question/20345565

Other Questions
Louise has a hard time keeping her workspace clean at her job. She tries, but it just ends up getting messy again. Which of the following is a likely outcome of her consistent messiness? O a) She will have fewer safety issues. b) She will feel more productive. c) Customers will think she is very busy. O d) She will have a hard time focusing. How many numbers multiple of 3 are in the range [2,2000]? 21:(2 5) + ( 14) + 6.(8 4.3) what is the role of media in our society, and how can we become responsible consumers producers of news and information in the digital age? PLZZZZZ HELP. Place the following events in correct chronological order, from earliest to latest:A. Marshall Plan, Cuban Missile Crisis, McCarthyismB. McCarthyism, Marshall Plan, Cuban Missile Crisis1C. Cuban Missile Crisis, McCarthyism, Marshall PlanCD. Marshall Plan, McCarthyism, Cuban Missile Crisis Giving brainliest, how old do you have to be to get a lip piercing in North Carolina, with parental consent. Ideas of cultural diversity and rejection of authority began to develop and change poetic themes during which period?O PostmodernO ModernO EnlightenmentO Classical A plaintiff sues her employer for sexual harassment. During the trial, the plaintiff attempts to introduce into evidence company records that include written complaints from other employees alleging that they too were sexually harassed by the employer. The defense objects to the admission of the records on the basis of hearsay. Should the objection be sustained? THIS IS A ECONOMICS QUESTIONLawns produce no crops but occupy more land (25 million acres) in the United States than any single crop such as corn or wheat. Does this mean the United States is producing inefficiently (inside the production possibilities curve)? Explain your answer. Even though urban legends have many positive uses, they also have the potential to be negative. Explain why. what fraction of these houses have seven rooms If carina can ride her bike at a speed of 7 mph, it will take her 3 hours to travel 21 miles. True or false? A solution is prepared by dissolving 6.60 g of an nonelectrolyte in water to make 550 mL of solution. The osmotic pressure of the solution is 1.84 atm at 25 C. The molecular weight of the nonelectrolyte is ________ g/mol. Which philosopher suggested that the mind and body are separate but that a link exists between them?A.John LockeB.PlatoC.Ren Descartes D.Aristotle boat costs $54,000. you pay 10% down and amortize the rest with equal monthly payments over a 15 year period. If you must pay 4.5 % comounded monthly, what is your monthly payment? 3. The length of a rectangle is 4 inches more than its width. The area of the rectangle is equal to 5 inches more than 2 times the perimeter. Find the length and width of the rectangle. >> Look at the pictures. Under each write what it represents in order to decrease the freezing point of 500. g of water to 1.00 c how many grams of ethylene glycol (C2H602)must be added (KF=1.86C kg solvent) Find the value of m if x + m is a factor of x^2 - 5mx + 3 Evaluate the extent to which federal policies and court decisions in the 1960s reflected liberal ideals. Provide specific evidence to justify your answer.