two identical rubber balls are dropped from different heights. Ball 1 is dropped from a height of 109 feet, and ball 2 is dropped from a height of 260 feet. Use the function f(t) -16t^2+h to determine the current height, f(t), of a ball from a height h, over given time t.

When does ball 1 reach the ground? Round to the nearest hundredth​

Answers

Answer 1

Answer:  5.22 seconds

Step-by-step explanation:

t represents time and y represents the height.

Since we want to know when the ball hits the ground, find t when y = 0

Ball 1 starts at a height of 109 --> h = 109

0 = -16t² + 109

16t² = 109

   [tex]t^2=\dfrac{109}{16}\\[/tex]

   [tex]t=\sqrt{\dfrac{109}{16}}[/tex]

   [tex]t=\dfrac{\sqrt{109}}{2}[/tex]

   t = 5.22

Answer 2
Answer:Let us assume "H" height here, "t" as time.

=> H = 109

=> 0 = -16t² + 109

=> 16t² = 109

=> t² = 109/16

=> t = 109/2

=> t = 5.22 sec

Therefore, 5.22 second is the answer.


Related Questions

i will rate you brainliest

Answers

Answer:

(3x+11)/ (5x-9)

Step-by-step explanation:

The numerator is what is on the top of the bar in the middle

(3x+11)/ (5x-9)

Answer:

[tex]\large \boxed{\mathrm{Option \ B}}[/tex]

Step-by-step explanation:

The numerator of a fraction is the top section of the fraction.

Convert 6 feet to miles ( round five decimal places

Answers

Answer:

0.00114

Step-by-step explanation:

Divide length value by 5280

Find the equation of the circle in standard form for the given center (h, k) and radius R:(H,K)=(4/3,-8/8),R=1/3

Answers

Answer:

The answer is option B

Step-by-step explanation:

Equation of a circle is given by

( x - h)² + ( y - k)² = r²

where r is the radius and

( h , k) is the center of the circle

From the question the radius R = 1/3

the center ( h ,k ) = (4/3 , -8/3)

Substituting the values into the above equation

We have

[tex](x - \frac{4}{3} )^{2} + {(y - - \frac{8}{3}) }^{2} = ({ \frac{1}{3} })^{2} [/tex]

We have the final answer as

[tex](x - \frac{4}{3} )^{2} + {(y + \frac{8}{3}) }^{2} = \frac{1}{9} [/tex]

Hope this helps you

(x−1)(x−7)=0 PLEASE HELP

Answers

Answer:

1, 7

Step-by-step explanation:

Because the product is 0, either (x-1) or (x-7) is equal to 0. That means that x = 1, or 7

Which equation will solve the following word problem? Jared has 13 cases of soda. He has 468 cans of soda. How many cans of soda are in each case? 13(468) = c 468c = 13 468/13 = c 13 = c/468

Answers

Answer:

c = 468 / 13

Step-by-step explanation:

If c is the number of cans of soda in each case, we know that the number of cans in 13 cases is 13 * c = 13c, and since the number of cans in 13 cases is 468 and we know that "is" denotes that we need to use the "=" sign, the equation is 13c = 468. To get rid of the 13, we need to divide both sides of the equation by 13 because division is the opposite of multiplication, therefore the answer is c = 468 / 13.

Answer:

468/13 = c

Step-by-step explanation: Further explanation :

[tex]13 \:cases = 468\:cans\\1 \:case\:\:\:\:= c\: cans\\Cross\:Multiply \\\\13x = 468\\\\\frac{13x}{13} = \frac{468}{13} \\\\c = 36\: cans[/tex]

Find a vector equation and parametric equations for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5.

Answers

The normal vector to the plane x + 3y + z = 5 is n = (1, 3, 1). The line we want is parallel to this normal vector.

Scale this normal vector by any real number t to get the equation of the line through the point (1, 3, 1) and the origin, then translate it by the vector (1, 0, 6) to get the equation of the line we want:

(1, 0, 6) + (1, 3, 1)t = (1 + t, 3t, 6 + t)

This is the vector equation; getting the parametric form is just a matter of delineating

x(t) = 1 + t

y(t) = 3t

z(t) = 6 + t

The vector equation for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5 is v =(1+t)i + (3t)j + (6+t)k

The parametric equations for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5

x(t) = 1+ty(t) = 3tz(t) = 6+t

The parametric equation of a line through the point A(x, y, z) perpendicular to the plane ax+by+cz= d is expressed generally as:

A + vt where:

A = (x, y, z)

v = (a, b, c) (normal vector)

This can then be expressed as:

s = A + vt

s = (x, y, z) + (a, b, c)t

Given the point

(x, y, z) = (1,0,6)

(a, b, c) = (1, 3, 1)

Substitute the given coordinate into the equation above:

s = (1,0,6) + (1, 3, 1)t

s = (1+t) + (0+3t) + (6+t)

The parametric equations from the equation above are:

x(t) = 1+t

y(t) = 3t

z(t) = 6+t

The vector equation will be expressed as v = xi + yj + zk

v =(1+t)i + (3t)j + (6+t)k

Learn more here: brainly.com/question/12850672

AB||CD. Find the measure of

Answers

Answer:

135 degrees

Step-by-step explanation:

3x+15 = 5x - 5 because of the alternate interior angles theorem.

20 = 2x

x = 10

3(10) + 15 = 30+15 = 45

Remember that a line has a measure of 180 degrees. So we can just subtract the angle we found from 180 degrees to get BFG.

180-45 = 135.

2⁶ × 2⁵ how do i simplify this?​

Answers

Answer:

2^11

Step-by-step explanation:

since the bases are the same, we can add the exponents

a^b * a^c = a^(b+c)

2^6 * 2^5

2^(6+5)

2^11

A company finds that the rate at which the quantity of a product that consumers demand changes with respect to price is given by the​ marginal-demand function Upper D prime (x )equals negative StartFraction 5000 Over x squared EndFraction where x is the price per​ unit, in dollars. Find the demand function if it is known that 1006 units of the product are demanded by consumers when the price is ​$5 per unit.

Answers

Answer:

q =  5000/x  + 6

Step-by-step explanation:

D´= dq/dx  =  - 5000/x²

dq = -( 5000/x²)*dx

Integrating on both sides of the equation we get:

q = -5000*∫ 1/x²) *dx

q = 5000/x + K   in this equation x is the price per unit and q demanded quantity and K integration constant

If when  1006 units are demanded when the rice is 5 then

x = 5     and   q = 1006

1006  =  5000/5 +K

1006 - 1000 = K

K = 6

Then the demand function is:

q =  5000/x  + 6

Consider the distribution of exam scores graded 0 from 100, for 79 students. When 37 students got an A, 24 students got a B and 18 students got a C. How many peaks would you expect for distribution?

Answers

Answer:

Three

Step-by-step explanation:

Assuming the grade score from 70 to 100 is A; for grade score from 60 to 69 is B and grade score from 50 to 59 is C. Well it is certain there are three peaks in the distribution of scores

4 + (-13)
Yajmmsmssjsjsjjsnssnsnnsnsxxdddddddd

Answers

Answer:

-9

Step-by-step explanation:

4 + (-13)

=> 4 - 13

=> -9

The correct answer is #9

Please answer this correctly without making mistakes

Answers

Answer:

1/2 mi

Step-by-step explanation:

Fairfax to Greenwood is equal to one mile

Now think of it as an equation and substitute 1/2 for fairfax and x for greenwood

1/2 + x = 1

This means that x = 1/2

Because of this from Arcadia to Greenwood it is 1/2 mi

hich statement best describes the domain and range of p(x) = 6–x and q(x) = 6x? p(x) and q(x) have the same domain and the same range. p(x) and q(x) have the same domain but different ranges. p(x) and q(x) have different domains but the same range. p(x) and q(x) have different domains and different ranges.

Answers

Answer:

[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.

Step-by-step explanation:

[tex]p(x) = 6-x[/tex] and

[tex]q(x) = 6x[/tex]

First of all, let us have a look at the definition of domain and range.

Domain of a function [tex]y =f(x)[/tex] is the set of input value i.e. the value of [tex]x[/tex] for which the function [tex]f(x)[/tex] is defined.

Range of a function [tex]y =f(x)[/tex] is the set of output value i.e. the value of [tex]y[/tex] or [tex]f(x)[/tex] for the values of [tex]x[/tex] in the domain.

Now, let us consider the given functions one by one:

[tex]p(x) = 6-x[/tex]

Let us sketch the graph of given function.

Please find attached graph.

There are no values of [tex]x[/tex] for which p(x) is not defined so domain is All real numbers.

So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

Its range is also All Real Numbers

So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

[tex]q(x) = 6x[/tex]

Let us sketch the graph of given function.

Please find attached graph.

There are no values of [tex]x[/tex] for which [tex]q(x)[/tex] is not defined so domain is All real numbers.

So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

Its range is also All Real Numbers

So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

Hence, the correct answer is:

[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.

 evaluate the expression for r=-10 -54-r=

Answers

Answer:

To evaluate an algebraic expression, you have to substitute a number for each variable and perform the arithmetic operations. In the example above, the variable x is equal to 6 since 6 + 6 = 12. If we know the value of our variables, we can replace the variables with their values and then evaluate the expression.

Step-by-step explanation:

Evaluate Algebraic Expressions. ... To evaluate an algebraic expression means to find the value of the expression when the variable is replaced by a given number. To evaluate an expression, we substitute the given number for the variable in the expression and then simplify the expression using the order of operations.

Find the sum. 31.25 + 9.38

Answers

Answer:

40.63

Step-by-step explanation:

31.25+9.38= 40.63

Hope this helps

Answer: 40.63

Look at the image for shown work.

Which of the following units is incommensurable with kilograms

Answers

Answer:

All units of measurement that are not based on or do not measure mass or weight and volume are incommensurable with kilograms.

Step-by-step explanation:

A measure unit is said to be incommensurable with another if it does not have the same measurement basis with the other measure unit.  For example, a measure in time cannot be measured in kilograms because time is measured in hours, minutes, seconds, days, etc.  But, if a measurement base can be applied to two or more measurement units, then the measurement units are commensurable with the measurement base.

Solve for x. Question 12 options: A) 8 B) 5 C) 14 D) 10

Answers

Answer:

B) 5

Step-by-step explanation:

Proportions:

8 ⇒ 10

20 ⇒ 5x

5x = 20*10/8

5x = 25

x = 25/5

x = 5

The diagonals of a rhombus bisect each other of measures 8cm and 6cm .Find its perimeter. please help !!!!!!!!!!!!!!!!!!!!!!!!

Answers

Answer:

20 cm

Step-by-step explanation:

20 cm

8/2 = 4

6/2 = 3

3 and 4 are the sides of the triangle (four triangles in rhombus)

a²+b²=c²

4³+3²=c²

c = 5

5 x 4 = 20

Hope this helped

Answer:

perimeter = 20 cm

Step-by-step explanation:

consider breaking the rhombus into four equal parts.

and that gives you a triangle.

(refer to image attached for more clarification)

let a = 3, b = 4

to get the side c, use Pythagorean theorem = c² = a² + b²

c = sqrt (3² + 4²)

side c = 5

therefore,

perimeter = 4 x sides (c)

perimeter = 4 x 5

perimeter = 20 cm

What is the x-value of point A?

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

x = 5

▹ Step-by-Step Explanation

The x-axis and y-axis are labeled on the graph. The x-axis is the horizontal axis. Between 4 and 6, there is a missing number. That number should be 5, leaving us with an x-value of 5 for Point A.

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

Answer:

The x value is 5

Step-by-step explanation:

The x value is the value going across

Starting where the two axis meet, we go 5 units to the right

That is the x value

Use the following cell phone airport data speeds​ (Mbps) from a particular network. Find the percentile corresponding to the data speed 4.9 Mbps.

0.2 0.8 2.3 6.4 12.3 0.2 0.8 2.3 6.9 12.7 0.2 0.8 2.6 7.5 12.9 0.3 0.9 2.8 7.9 13.8
0.6 1.5 0.1 0.7 2.2 6.1 12.1 0.6 1.9 5.5 11.9 27.5 0.6 1.7 3.3 8.3 13.8 1.3 3.5 9.8
14.6 10.1 14.7 11.8 14.8

Answers

Answer:

Thus percentile lies between 53.3% and 55.6 %

Step-by-step explanation:

First we arrange the data in ascending order . Then find the number of the values corresponding to the given value. Then equate it with the number of observations and x and then multiply it to get the percentile. n= P/100 *N

where n is the ordinal rank of the given value

N is the number of values in ascending order.

The data in ascending order is

0.1 0.2 0.2 0.2 0.3 0.6 0.6 0.6 0.7 0.8 0.8 0.8 0.9 1.3

1.5 1.7 1.9 2.2 2.3 2.3 2.6 2.8 3.3 3.5 5.5 6.1 6.4 6.9 7.5 7.9 8.3 9.8 10.1 11.8 11.9 12.1 12.3 12.7 12.9 13.8 13.8 14.6 14.7 14.8 27.5

Number of observation = 45

4.9 lies between 3.3 and 5.5

x*n = 24 observation x*n = 25 observation

x*45= 24 x*45= 25

x= 0.533 x= 0.556

Thus percentile lies between 53.3% and 55.6 %

Let A represent going to the movies on Friday and let B represent going bowling on Friday night. The P(A) = 0.58 and the P(B) = 0.36. The P(A and B) = 94%. Lauren says that both events are independent because P(A) + P(B) = P(A and B) Shawn says that both events are not independent because P(A)P(B) ≠ P(A and B) Which statement is an accurate statement? Lauren is incorrect because the sum of the two events is not equal to the probability of both events occurring. Shawn is incorrect because the product of the two events is equal to the probability of both events occurring. Lauren is correct because two events are independent if the probability of both occurring is equal to the sum of the probabilities of the two events. Shawn is correct because two events are independent if the probability of both occurring is not equal to the product of the probabilities of the two events.

Answers

Answer:

Shawn is correct because two events are independent if the probability of both occurring is equal to the product of the probabilities of the two events.

Step-by-step explanation:

We are given that A represent going to the movies on Friday and let B represent going bowling on Friday night. The P(A) = 0.58 and the P(B) = 0.36. The P(A and B) = 94%.

Now, it is stated that the two events are independent only if the product of the probability of the happening of each event is equal to the probability of occurring of both events.

This means that the two events A and B are independent if;

P(A) [tex]\times[/tex] P(B) = P(A and B)

Here, P(A) = 0.58, P(B) = 0.36, and P(A and B) = 0.94

So, P(A) [tex]\times[/tex] P(B) [tex]\neq[/tex] P(A and B)

      0.58 [tex]\times[/tex] 0.36 [tex]\neq[/tex] 0.94

This shows that event a and event B are not independent.

So, the Shawn statement that both events are not independent because P(A)P(B) ≠ P(A and B) is correct.

Answer:

Shawn is correct

Step-by-step explanation:

Find an equation for the surface consisting of all points P in the three-dimensional space such that the distance from P to the point (0, 1, 0) is equal to the distance from P to the plane y

Answers

Answer:

x^2 +4y +z = 1

Step-by-step explanation:

Surface consisting of all points P to point (0,1,0) been equal to the plane y =1

given point, p (x,y,z ) the distance from P to the plane (y)

| y -1 |

attached is the remaining part of the solution

A bag contains two six-sided dice: one red, one green. The red die has faces numbered 1, 2, 3, 4, 5, and 6. The green die has faces numbered 1, 2, 3, 4, 4, and 4. A die is selected at random and rolled four times. You are told that two rolls were 1's and two were 4's. Find the probability the die chosen was green.

Answers

Answer:

the probability the die chosen was green is 0.9

Step-by-step explanation:

Given that:

A bag contains two six-sided dice: one red, one green.

The red die has faces numbered 1, 2, 3, 4, 5, and 6.

The green die has faces numbered 1, 2, 3, 4, 4, and 4.

From above, the probability of obtaining 4 in a single throw of a fair die is:

P (4  | red dice) = [tex]\dfrac{1}{6}[/tex]

P (4 | green dice) = [tex]\dfrac{3}{6}[/tex] =[tex]\dfrac{1}{2}[/tex]

A die is selected at random and rolled four times.

As the die is selected randomly; the probability of the first die must be equal to the probability of the second die = [tex]\dfrac{1}{2}[/tex]

The probability of two 1's and two 4's in the first dice can be calculated as:

= [tex]\begin {pmatrix} \left \begin{array}{c}4\\2\\ \end{array} \right \end {pmatrix} \times \begin {pmatrix} \dfrac{1}{6} \end {pmatrix} ^4[/tex]

= [tex]\dfrac{4!}{2!(4-2)!} ( \dfrac{1}{6})^4[/tex]

= [tex]\dfrac{4!}{2!(2)!} \times ( \dfrac{1}{6})^4[/tex]

= [tex]6 \times ( \dfrac{1}{6})^4[/tex]

= [tex](\dfrac{1}{6})^3[/tex]

= [tex]\dfrac{1}{216}[/tex]

The probability of two 1's and two 4's in the second  dice can be calculated as:

= [tex]\begin {pmatrix} \left \begin{array}{c}4\\2\\ \end{array} \right \end {pmatrix} \times \begin {pmatrix} \dfrac{1}{6} \end {pmatrix} ^2 \times \begin {pmatrix} \dfrac{3}{6} \end {pmatrix} ^2[/tex]

= [tex]\dfrac{4!}{2!(2)!} \times ( \dfrac{1}{6})^2 \times ( \dfrac{3}{6})^2[/tex]

= [tex]6 \times ( \dfrac{1}{6})^2 \times ( \dfrac{3}{6})^2[/tex]

= [tex]( \dfrac{1}{6}) \times ( \dfrac{3}{6})^2[/tex]

= [tex]\dfrac{9}{216}[/tex]

The probability of two 1's and two 4's in both dies = P( two 1s and two 4s | first dice ) P( first dice ) + P( two 1s and two 4s | second dice ) P( second dice )

The probability of two 1's and two 4's in both die = [tex]\dfrac{1}{216} \times \dfrac{1}{2} + \dfrac{9}{216} \times \dfrac{1}{2}[/tex]

The probability of two 1's and two 4's in both die = [tex]\dfrac{1}{432} + \dfrac{1}{48}[/tex]

The probability of two 1's and two 4's in both die = [tex]\dfrac{5}{216}[/tex]

By applying  Bayes Theorem; the probability that the die was green can be calculated as:

P(second die (green) | two 1's and two 4's )  = The probability of two 1's and two 4's | second dice)P (second die) ÷ P(two 1's and two 4's in both die)

P(second die (green) | two 1's and two 4's )  = [tex]\dfrac{\dfrac{1}{2} \times \dfrac{9}{216}}{\dfrac{5}{216}}[/tex]

P(second die (green) | two 1's and two 4's )  = [tex]\dfrac{0.5 \times 0.04166666667}{0.02314814815}[/tex]

P(second die (green) | two 1's and two 4's )  = 0.9

Thus; the probability the die chosen was green is 0.9

How many variable terms are in the expression 3x3y + 5x2 − 4y + z + 9?

Answers

Answer:

4

Step-by-step explanation:

"4" is the number of variable terms that are in the expression 3x3y + 5x2 _ 4y + z + 9. The four variable terms in the expression are "xy", "x^2", "y" and "z". I hope that this is the answer that you were looking for and the answer has actually come to your desired help. If you need any clarification, you can always ask.

For the regression equation, Ŷ = +20X + 200 what can be determined about the correlation between X and Y?

Answers

Answer:

There is a positive correlation between X and Y.

Step-by-step explanation:

The estimated regression equation is:

[tex]\hat Y=20X+200[/tex]

The general form of a regression equation is:

[tex]\hat Y=b_{yx}X+a[/tex]

Here, [tex]b_{yx}[/tex] is the slope of a line of Y on X.

The formula of slope is:

[tex]b_{yx}=r(X,Y)\cdot \frac{\sigma_{y}}{\sigma_{x}}[/tex]

Here r (X, Y) is the correlation coefficient between X and Y.

The correlation coefficient is directly related to the slope.

And since the standard deviations are always positive, the sign of the slope is dependent upon the sign of the correlation coefficient.

Here the slope is positive.

This implies that the correlation coefficient must have been a positive values.

Thus, it can be concluded that there is a positive correlation between X and Y.

In tests of a computer component, it is found that the mean time between failures is 520 hours. A modification is made which is supposed to increase the time between failures. Tests on a random sample of 10 modified components resulted in the following times (in hours) between failures. 518 548 561 523 536 499 538 557 528 563 At the 0.05 significance level, test the claim that for the modified components, the mean time between failures is greater than 520 hours. Use the P-value method of testing hypotheses.
H0:
H1:
Test Statistic:
Critical Value:
Do you reject H0?
Conclusion:
If you were told that the p-value for the test statistic for this hypothesis test is 0.014, would you reach the same decision that you made for the Rejection of H0 and the conclusion as above?

Answers

Answer:

As the calculated value of t is greater than critical value reject H0. The tests supports the claim at ∝= 0.05

If the p-value for the test statistic for this hypothesis test is 0.014, then the critical region is t ( with df=9) for a right tailed test is 2.821

then we would accept H0. The test would not support the claim at ∝= 0.01

Step-by-step explanation:

Mean x`= 518 +548 +561 +523 + 536 + 499+  538 + 557+ 528 +563 /10

x`= 537.1

The Variance is  = 20.70

H0 μ≤ 520

Ha μ > 520

Significance level is set at ∝= 0.05

The critical region is t ( with df=9) for a right tailed test is 1.8331

The test statistic under H0 is

t=x`- x/ s/ √n

Which has t distribution with n-1 degrees of freedom which is equal to 9

t=x`- x/ s/ √n

t = 537.1- 520 / 20.7 / √10

t= 17.1 / 20.7/ 3.16227

t= 17.1/ 6.5459

t= 2.6122

As the calculated value of t is greater than critical value reject H0. The tests supports the claim at ∝= 0.05

If the p-value for the test statistic for this hypothesis test is 0.014, then the critical region is t ( with df=9) for a right tailed test is 2.821

then we would accept H0. The test would not support the claim at ∝= 0.01

Assume that f(x)=ln(1+x) is the given function and that Pn represents the nth Taylor Polynomial centered at x=0. Find the least integer n for which Pn(0.2) approximates ln(1.2) to within 0.01.

Answers

Answer:

the least integer for n is 2

Step-by-step explanation:

We are given;

f(x) = ln(1+x)

centered at x=0

Pn(0.2)

Error < 0.01

We will use the format;

[[Max(f^(n+1) (c))]/(n + 1)!] × 0.2^(n+1) < 0.01

So;

f(x) = ln(1+x)

First derivative: f'(x) = 1/(x + 1) < 0! = 1

2nd derivative: f"(x) = -1/(x + 1)² < 1! = 1

3rd derivative: f"'(x) = 2/(x + 1)³ < 2! = 2

4th derivative: f""(x) = -6/(x + 1)⁴ < 3! = 6

This follows that;

Max|f^(n+1) (c)| < n!

Thus, error is;

(n!/(n + 1)!) × 0.2^(n + 1) < 0.01

This gives;

(1/(n + 1)) × 0.2^(n + 1) < 0.01

Let's try n = 1

(1/(1 + 1)) × 0.2^(1 + 1) = 0.02

This is greater than 0.01 and so it will not work.

Let's try n = 2

(1/(2 + 1)) × 0.2^(2 + 1) = 0.00267

This is less than 0.01.

So,the least integer for n is 2

In this exercise we have to use the knowledge of Taylor Polynomial to calculate the requested function, this way we will have;

the least integer for n is 2    

The function given in this exercise corresponds to:

[tex]f(x) = ln(1+x)[/tex]

knowing that the x point will be centered on:

[tex]x=0\\Pn(0,2)\\Error < 0.01[/tex]

By rewriting the equation we have to:

[tex][[Max(f^{(n+1)} (c))]/(n + 1)!] *0.2^{(n+1)} < 0.01[/tex]

So doing the derivatives related to the first function given in the exercise we have to:

[tex]f(x) = ln(1+x)[/tex]

First derivative: [tex]f'(x) = 1/(x + 1) < 0! = 1[/tex] 2nd derivative: [tex]f"(x) = -1/(x + 1)^2 < 1! = 1[/tex] 3rd derivative: [tex]f"'(x) = 2/(x + 1)^3 < 2! = 2[/tex] 4th derivative: [tex]f""(x) = -6/(x + 1)^4 < 3! = 6[/tex]

Following this we have to:

[tex]Max|f^{(n+1)} (c)| < n![/tex]

Thus, error is;

[tex](n!/(n + 1)!) * 0.2^{(n + 1)} < 0.01[/tex]

[tex](1/(n + 1))* 0.2^{(n + 1)} < 0.01[/tex]  

Let's try n = 1

[tex](1/(1 + 1)) *0.2^{(1 + 1)} = 0.02[/tex]

This is greater than 0.01 and so it will not work. Let's try n = 2

[tex](1/(2 + 1)) * 0.2^{(2 + 1)} = 0.00267[/tex]

This is less than 0.01. So,the least integer for n is 2.

See more about Taylor polynomial at brainly.com/question/23842376

A professor at a local community college noted that the grades of his students were normally distributed with a mean of 74 and standard deviation of 10. The professor has informed us that 6.3 percent of his students received A's while only 2.5 percent of his students failed the course and received F's.
a. What is the minimum score needed to make an A?
b. What is the maximum score among those who received an F?
c. If there were 5 students who did not pass the course, how many students took the course?

Answers

Answer:

a)  z (score) 1,53

b)  z ( score) - 1,96

c) 200 students

Step-by-step explanation:

Normal Distribution N ( 74;10)

a) From z-table, and for 6,3 %  ( 0,063 ) we find the z (score) 1,53

Note : 6,3 % or 0,063 is the area under the curve, the minimum score neded to get A

b) To fail   2,5 %  ( 0,025 ) from z-table  get - 1,96

c) If the group of  student who did not pass the course (5) correspond to 2,5 % then by simple rule of three

5                 2,5

x ?               100

x = 500/2,5

x = 200

Triangle ABC has vertices A(0, 6) , B(−8, −2) , and C(8, −2) . A dilation with a scale factor of 12 and center at the origin is applied to this triangle. What are the coordinates of B′ in the dilated image? Enter your answer by filling in the boxes. B′ has a coordinate pair of ( , )

Answers

Answer:

[tex]B' = (-96,-24)[/tex]

Step-by-step explanation:

Given

[tex]A(0,6)[/tex]

[tex]B(-8,-2)[/tex]

[tex]C(8,-2)[/tex]

Required

Determine the coordinates of B' if dilated by a scale factor of 12

The new coordinates of a dilated coordinates can be calculated using the following formula;

New Coordinates = Old Coordinates * Scale Factor

So;

[tex]B' = B * 12[/tex]

Substitute (-8,-2) for B

[tex]B' = (-8,-2) * 12[/tex]

Open Bracket

[tex]B' = (-8 * 12,-2 * 12)[/tex]

[tex]B' = (-96,-24)[/tex]

Hence the coordinates of B' is [tex]B' = (-96,-24)[/tex]

Answer:

Bit late but the answer is (-4,-1)

Step-by-step explanation:

Took the test in k12

9. There are 50 pupils in a class. Out of this
number, 1/10 speak French only and 4/5 of the remainder speak both French and
English. If the rest speak English only,
i) find the number of students who speak​

Answers

Answer:

Step-by-step explanation:

50 : 10 = 5 speaks French only

50 -5= 45 the remainder

4/5 * 45= 36 speaks French and English

45 - 36= 9 speaks English only

The number of students who speak:

i) French only = 5 students,

ii) both French and English = 36 students,

iii) English only = 9 students.

Step 1: Find the number of students who speak French only.

Step 2: Find the remainder (students who speak both French and English) after subtracting the French-only speakers.

Step 3: Find the number of students who speak both French and English.

Step 4: Find the number of students who speak English only.

Let's calculate it step by step:

Step 1: Find the number of students who speak French only.

1/10 of 50 pupils speak French only:

French-only speakers = (1/10) * 50 = 5 students.

Step 2: Find the remainder (students who speak both French and English) after subtracting the French-only speakers.

Remaining students = Total students - French-only speakers

Remaining students = 50 - 5 = 45 students.

Step 3: Find the number of students who speak both French and English.

4/5 of the remaining students speak both French and English:

Both French and English speakers = (4/5) * 45 = 36 students.

Step 4: Find the number of students who speak English only.

To find the English-only speakers, subtract the total number of French-only speakers and both French and English speakers from the total number of students:

English-only speakers = Total students - (French-only speakers + Both French and English speakers)

English-only speakers = 50 - (5 + 36) = 50 - 41 = 9 students.

To know more about French:

https://brainly.com/question/34246494

#SPJ2

Complete question is:

There are 50 pupils in a class. Out of this number, 1/10 speak French only and 4/5 of the remainder speak both French and English. If the rest speak English only, find the number of students who speak​

i) French only,

ii) both French and English,

iii) English only,

Other Questions
If there is a market with the below noted market segmentation, what would the four firm market concentration ratio be?Distribution of sales: 30%, 3%,10%, 5%,15%, 2%, 35%a. 10b. 90c. 50d. 40 3. El tambor de una lavadora que gira a 3 000 revoluciones por minuto (rpm) se acelera uniformemente hasta que alcanza las 6 000 rpm, completando un total de 12 revoluciones. d. Determina la aceleracin tangencial, centrpeta y la total en m.s-2 cuando el tambor a alcanzado los 60000 rpm e. Explica lo que ocurre con la magnitud y direccin de los vectores aceleracin tangencial, aceleracin centrpeta, aceleracin total, aceleracin angular, velocidad angular cuando la lavadora ha girado desde 3000 rpm hasta 6000 rpm. (1) People collect different objects as a hobby, and starting a collection can be the beginning of an exciting opportunity. (2) When deciding on an object to collect, one must decide what interests them. (3) Items that are often collected include postage stamps, coins, sports memorabilia, seashells, and many other diverse objects. (4) The object being collected must be accessible to the collector. (5) The collector will need to develop an understanding of the objects and learn as much as possible about their collection. (6) For example, collecting seashells when one does not live near the ocean would not be a good choice. (7) Organization and dedication are also important traits for a new collector. Which sentence is out of order in the paragraph? You are the owner of Decorama Flooring Tod and Claudia have asked for an estimate 15 feet*23 feet dinning room 12ft*18 kitchen 9ft*11 ft and 10ft*12 ft how many square ft required(multipy length by the width) limit chapter~ anyone can help me with these questions?please gimme clear explanation :) In which type of government is political power distributed among the widest group of people?A. a socialist governmentB. a direct democracyC. a constitutional monarchy D.a representative democracy Find the sum to infinity of the series 2+5/4+11/16+23/64+..........up to the infinity. infinity Calculate Srxn for the balanced chemical equation 2H2S(g)+3O2(g)2H2O(g)+2SO2(g) Express the entropy change to four significant figures and include the appropriate units. A metal sphere A of radius a is charged to potential V. What will be its potential if it is enclosed by a spherical conducting shell B of radius b and the two are connected by a wire? A bungee cord with a spring constant of 800 StartFraction N over m EndFraction stretches 6 meters at its greatest displacement. How much elastic potential energy does the bungee cord have? The bungee cord has J of elastic potential energy. Controlling how questions are asked is governed under A. rules of evidence. B. judicial administration. C. rules of legal conduct. D. jury litigation. For a new Madden video game, EA Sports decides to have Antonio Brown on the cover and run an ad campaign on ESPN. After the advertisement has run, EA Sports asks ESPN viewers if they recall the advertising and if it changed their attitudes about the product. What is this process called? If Gradin decided to quote one of his friends opinions on his paper and include it with citation, then he would have supplied an expert testimony about the quality of his paper. Select one: True False A librarian needs to package up all of the children's books and move them to a different location in the library. There are 625 books, and she can fit 25 books in one box. How many boxes does she need in order to move all of the books? 5 B. 25 C. 125 D. 600 E. 650 Determine the most precise name for KIET (parallelogram,rhombus,rectangle or square.) you must use slope or length. K(0,0) I(2,2) T(5,-5) E(7,-3) An article about the environmental impact of recycling would be considered a _____. A)narrative nonfiction B)memoir C)informative nonfiction D)biography Each power smoothie that Theo makes has 3 scoops of mango, 1 scoop of strawberries, and 1 scoop of spinach. If Theo makes 7 power smoothies, how many scoops will he use in all? Which expression, in exponential form, is equivalent to 26x3y 47z5r3 A) ( 26x3y 47z5r3 )2 B) (26xy) 1 2 (47zr) 1 2 C) 26 1 2 x 3 2 y 1 2 47 1 2 z 5 2 r 3 2 D) 26x 3 2 y 1 2 47z 5 2 r 3 2 If the theoretical yield of a reaction is 332.5 g and the percent yield for the reaction is 38 percent, what's the actual yield of product in grams? \A. 8.74 g B. 12616 g C. 116.3 g D. 126.4 g This is the new one! Please help Im so lost