Answer:
The measure of one angle is 81.3° and the other angle is 8.7°.
Step-by-step explanation:
We are given that two angles are complementary. One angle's measure is 3 more than 9 times the other angle.
Let the measure of one angle be 'x' and the measure of other angle be 'y'.
So, according to the question;
The first condition states that two angles are complementary, this means that the sum of both angles must be equal to 90°, i.e;x + y = 90°
x = 90° - y ---------------- [equation 1]
The second condition states that One angle's measure is 3 more than 9 times the other angle, i.e;x = 3 + 9y ------------ [equation 2]
Now, both the equations we get;
90 - y = 3 + 9y
9y + y = 90 - 3
10y = 87
[tex]y=\frac{87}{10}[/tex] = 8.7°
Now, putting the value of y in equation 1 we get;
x = 90° - y
x = 90° - 8.7° = 81.3°
Hence, the measure of one angle is 81.3° and the other angle is 8.7°.
Can you please Solve for x
x - 3 = 27
add three to both sides
then x= 30
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Let's solve your equation step-by-step.
[tex]x-3=27[/tex]
Step 1: Add 3 to both sides.
[tex]x -3 + 3 = 27 +3[/tex]
[tex]x = 30[/tex]
So the answer is : [tex]x = 30[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
Two buildings are 12m apart on the same horizontal level. From the top of the taller building, the angle of depression of the bottom of the shorter building is 48degrees and from the bottom, the angle of of elevation of the top of the shorter building is 36 degrees. Calculate the difference in the heights of the buildings
Answer:
4.61 m
Step-by-step explanation:
The angle of depression of the bottom of the shorter building from the top of the taller building = 48° equals the angle of elevation of the top of the taller building from the bottom of the shorter building
Using trig ratios
tan48° = H/d where H = height of taller building and d = their distance apart = 12 m
H = dtan48° = 12tan48° = 13.33 m
Also, the angle of elevation of the top of the shorter building from the bottom of the taller building is 36°
Using trig ratios
tan36° = h/d where h = height of shorter building
h =dtan36° = 12tan36° = 8.72 m
Now, the difference in height of the buildings is thus H - h = 13.33 m - 8.72 m = 4.61 m
Evaluate a + b for a= 34 and b= -6
Answer:
Hey there!
a+b
34+(-6)
34-6
28
Let me know if this helps :)
Solve the equation for x. the square root of the quantity x plus 4 end quantity minus 7 equals 1 x = 4 x = 12 x = 60 x = 68
Answer:
x = 60
Step-by-step explanation:
Given
[tex]\sqrt{x+4}[/tex] - 7 = 1 ( add 7 to both sides )
[tex]\sqrt{x+4}[/tex] = 8 ( square both sides )
([tex]\sqrt{x+4}[/tex] )² = 8² , that is
x + 4 = 64 ( subtract 4 from both sides )
x = 60
Suppose that $9500 is placed in an account that pays 9% interest compounded each year.
Assume that no withdrawals are made from the account.
Follow the instructions below. Do not do any rounding.
(a) Find the amount in the account at the end of 1 year.
so
(b) Find the amount in the account at the end of 2 years.
$
?
Answer:
$11286.95 second year
$10335 first year
Step-by-step explanation:
9% of 9500 is 855, 9500 plus 855 = 10335. (first year)
9% of 10335 is 931.95, and 10335+931.95 is 11286.95. (second year)
The amount in the account at the end of 1 year $10335 (first year)
The amount in the account at the end of 2 years $11286.95.
What is the compound interest?Compound interest is when you earn interest on both the money you've saved and the interest you earn.
Formula:
A = P(1 + {r}/{n})^{n.t}
here, we have,
$9500 is placed in an account that pays 9% interest compounded each year.
so, we get,
9% of 9500 is 855,
9500 plus 855 = 10335. (first year)
again,
9% of 10335 is 931.95,
and 10335+931.95 is 11286.95. (second year)
Hence, The amount in the account at the end of 1 year $10335 (first year)
The amount in the account at the end of 2 years $11286.95.
To learn more on Compound interest click:
brainly.com/question/29335425
#SPJ2
Solve for X answer asap thanks
Answer:
Step-by-step explanation:
The formula we need for this is
4(4 + x) = 5(5 + 3) and
16 + 4x = 5(8) and
16 + 4x = 40 and
4x = 24 so
x = 6, choice C.
All the edges of a cube have the same length. Tony claims that the formula SA = 6s, where s is the length of
each side of the cube, can be used to calculate the surface area of a cube.
a. Draw the net of a cube to determine if Tony's formula is correct.
b. Why does this formula work for cubes?
Frances believes this formula can be applied to calculate the surface area of any rectangular prism. Is
she correct? Why or why not?
d. Using the dimensions of Length, Width and Height, create a formula that could be used to calculate the
surface area of any rectangular prism, and prove your formula by calculating the surface area of a
rectangular prism with dimensions L = 5m, W = 6m and H=8m.
Answer:
Here's what I get
Step-by-step explanation:
a. Net of a cube
Fig. 1 is the net of a cube
b. Does the formula work?
Tony's formula works if you ignore dimensions.
There are six squares in the net of a cube.
If each side has a unit length s, the total area of the cube is 6s.
c. Will the formula work for any rectangular prism?
No, because a rectangular prism has sides of three different lengths — l, w, and h — as in Fig. 2.
d. Area of a rectangular prism
A rectangular prism has six faces.
A top (T) and a bottom (b) — A = 2×l×w
A left (L) and a right (R) — A = 2×l×h
A front (F) and a back (B) — A = 2×w×h
Total area = 2lw + 2lh + 2wh
If l = 5 m, w = 6 m and h = 8 m,
[tex]\begin{array}{rl}A &=& \text{2$\times$ 5 m $\times$ 6 m + 2$\times$ 5 m $\times$ 8 m + 2 $\times$ 6 m $\times$ 8 m}\\&=& \text{60 m}^{2} + \text{80 m}^{2} + \text{96 m}^{2}\\&=& \textbf{236 m}^{2}\\\end{array}[/tex]
I NEED YOUR HELP PLS
Answer:
For question 1 you can try dividing each of the value
For instance, you can divide 9 by 25 and see if you get a nice number
e.g. 1/8=0.125, numbers like these
For the second question, you can find the fraction by dividing 1000 starting with the decimal points
e.g 0.650, you would be plotting 650/1000 and you would simplify the fraction to the lowest value any value above the decimal point you can multiply by the denominator and add the nominator value to get your final answer.
Step-by-step explanation:
Answer:
Write the denominator in its prime factors. If the prime factorization of the denominator of a fraction has only factors of 2 and factors of 5, the decimal expression terminates. If there is any prime factor in the denominator other than 2 or 5, then the decimal expression repeats.
example: 9/25
25 = 5*5, so it will be terminating
example: 7/12
12 = 3*2*2, which contains a 3, so it will be repeating.
What two numbers multiply to negative 12 and add up to negative 13
Answer:
−13.8654599313 and 0.8654599313
Step-by-step explanation:
The two numbers of interest will be the solutions to ...
xy = -12
x +y = -13
Substituting for y, this becomes the quadratic ...
x(-13 -x) = -12
x^2 +13x = 12 . . . . . multiply by -1
x^2 +13x +6.5^2 = 12 +6.5^2 . . . . . complete the square
(x +6.5)^2 = 54.25
x = -6.5 ± √54.25 . . . . . . take the square root, subtract 6.5
x ≈ -13.865499313 or 0.8654599313
The value of y is the other of these two numbers. So, the two numbers of interest are {-13.865499313, 0.8654599313}.
Find the missing probability. P(A)=1120,P(B|A)=1320,P(A∩B)=?
Explanation:
Assuming you meant to say
P(A) = 11/20
P(B|A) = 13/20
then,
P(A∩B) = P(A)*P(B|A)
P(A∩B) = (11/20)*(13/20)
P(A∩B) = (11*13)/(20*20)
P(A∩B) = 143/400
The width of a rectangle measures (6.8d-4.2)(6.8d−4.2) centimeters, and its length measures (9.2d+8.7)(9.2d+8.7) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?
Answer:
The perimeter of the rectangle is represented by [tex]p = 32\cdot d + 9[/tex], measured in centimeters.
Step-by-step explanation:
The perimeter ([tex]p[/tex]) of a rectangle, measured in centimeters, is represented by this formula:
[tex]p = 2\cdot (w+l)[/tex]
Where [tex]w[/tex] and [tex]l[/tex] are width and length, measured in centimeters.
If [tex]w = 6.8\cdot d-4.2[/tex] and [tex]l = 9.2\cdot d+8.7[/tex], the expression that represents the perimeter is:
[tex]p = 2\cdot (16\cdot d +4.5)[/tex]
[tex]p = 32\cdot d + 9[/tex]
The perimeter of the rectangle is represented by [tex]p = 32\cdot d + 9[/tex], measured in centimeters.
What is the rate of change and initial value for the linear relation that includes the points shown in the table?
ху
1 20
3 10
5 0
7 -10
Initial value: 20, rate of change: 10
Initial value: 30, rate of change: 10
Initial value: 25, rate of change: -5
Initial value: 20, rate of change: -10
Answer:
Initial Value: 25, Rate of change -5.
First. Lets find the rate of change.
y2-y1/x2-x1 = m
We have A(1,20) B(3,10)
10-20/3-1=-5
m=-5(Rate of change)
Now let's find the initial value using slope-point form.
y-y₁=m(x-x₁)
y-20=-5(x-1)
=-5x+5+20
=-5x+25
The initial value is the value of y when the value of x is equal to 0. (Also the Y-Intercept)
Initial Value = -5(0)+25
=25
Can someone please tell me how to solve this problem??!! I literally have to go back in math if I don’t pass this HELP!!
Answer:
D. 270° < φ < 360°Step-by-step explanation:
Imagine coordinate system
I quarter is where x>0 and y>0 {right top} and it is (0°,90°)
II quarter is where x<0 and y>0 {left top} and it is (90°,180°)
III quarter is where x<0 and y<0 {left bottom} and it is (180°,270°)
IV quarter is where x>0 and y<0 {right bottom} and it is (270°,360°)
Now, we have an angle wich vertex is point (0,0) and one of its sides is X-axis and the second lay at one of the quarters.
For the trig functons of an angle created by this second side always are true:
In first quarter all functions are >0
in second one only sine
in third one: tangent and cotangent
and in fourth one: cosine
{You can check this by selecting any point on the second side of angle and put it's coordinates to formulas of these functions:
[tex]\sin \phi=\dfrac y{\sqrt{x^2+y^2}}\,,\quad \cos \phi=\dfrac x{\sqrt{x^2+y^2}}\,,\quad \tan\phi=\dfrac yx\,,\quad \cot\phi=\dfrac xy[/tex] }
So:
sinφ<0 ⇒ III or IV quarter
tanφ<0 ⇒ I or IV quarter
IV quarter ⇒ φ ∈ (270°, 360°)
8 kids bought a 3 cakes. How many equal parts will need to divide it so that everyone can have it. Easy one!
Answer:
3/8 is your answer.
Step-by-step explanation:
Given:
8 kids bought a 3 cakes.
Required:
How many equal parts will need to divide it so that everyone can have it.
Solution:
3/8
Hope this helps ;) ❤❤❤
Greyson completes a dive from a
cliff 75-feet above a river. It takes
him only 1.5 seconds to hit the
water and then another 0.5
second to descend 10 feet into the river
what’s the x axis and y axis?
Answer: y: height, x: time.
Step-by-step explanation:
The data we have is:
The initial position of Greyson is 75ft above the river.
He needs 1.5 seconds to hit the water, and other 0.5s tho reach the bottom of the river.
Then we have a relationship of height vs time.
The y axis will represent the heigth of Greyson, and the x-axis will represent the time, such that at the time x = 0 seconds, we have y = 75ft
31. Each day, Talisa exercises by first
stretching and then swimming
some laps, as shown in the table.
Make a scatter plot of the total
time she exercises as a function
of the number of laps she swims.
Draw a trend line.
Answer:
Step-by-step explanation:
Given the following :
Laps - - - - - - - - 5 - - - 6 - - - 7 - - - 8 - - - 9
Total time - - - 25 - - 28 - - 29 - - 30 - - 32
Using online graphing tool:
The y - axis named dependent variable represents the total time taken.
The x-axis, represents the number of laps.
The equation of the trend line attached to the plot is in the form :
y = mx + c
y = 1.6x + 17.6
Where y = total time taken
x = number of laps
m = 1.6 = gradient of the line (change in y / change in x)
C = 17.6 = intercept (whee the trndline intersects the y-axis).
If the initial amount of iodine-131 is 537 grams , how much is left after 10 days?
Answer:
225.78 grams
Step-by-step explanation:
To solve this question, we would be using the formula
P(t) = Po × 2^t/n
Where P(t) = Remaining amount after r hours
Po = Initial amount
t = Time
In the question,
Where P(t) = Remaining amount after r hours = unknown
Po = Initial amount = 537
t = Time = 10 days
P(t) = 537 × 2^(10/)
P(t) = 225.78 grams
Therefore, the amount of iodine-131 left after 10 days = 225.78 grams
how many are 8 raised to 4 ???
Complete the following two-way frequency table.
Answer:
Step-by-step explanation:
Number of candies with Forest = 12
Candies containing coconut and chocolate both = Number common in coconut and the chocolate = 3
Candies which do not contain coconut but contain the chocolate = 6
Candies which contain the coconut but do not contain the chocolate = 1
Candies which neither contain the chocolate nor coconut = 2
From the given Venn diagram,
Contain coconut Do not contain coconut
Contain chocolate 3 6
Do not contain chocolate 1 2
8 more than a number
Answer:
[tex]\boxed{ 8 + x}[/tex]
Step-by-step explanation:
Hey there!
In most cases "the number" would be x.
So if the statement says 8 "more than a number",
It is saying 8 plus x or 8 + x.
Hope this helps :)
Answer:
x + 8 is the meaning.
Step-by-step explanation:
“more” means addition. Take the number as “x”, so it will be x + 8.
That's the answer.
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. Stacy goes to the county fair with her friends. The total cost of ride tickets is given by the equation c = 3.5t, where c is the total cost of tickets and t is the number of tickets. If Stacy bought 15 tickets, she would spend $
Answer:
$52.2Step-by-step explanation:
Given her total cost of ride tickets modeled by the equation c = 3.5t where c is the total cost of tickets and t is the number of tickets, If Stacy bought 15 tickets, to know the amount she would spend on 15 tickets, we will substitute t = 15 into the modeled equation as shown;
[tex]c = 3.5t\\when t = 15\\\\c = 3.5(15)\\\\c = \frac{35}{10} * 15\\ \\c = \frac{5*7}{5*2} * 15\\\\[/tex]
[tex]c = \frac{7}{2} * 15\\ \\c = \frac{105}{2}\\ \\c = \ 52.2[/tex]
Hence Stacy would spend $52.2 on 15 tickets
Answer:
I hope this helps!
Step-by-step explanation:
Find the value of x. Round to the nearest tenth.Find the value of x. Round to the nearest tenth.
Answer:
x = 55.6Step-by-step explanation:
In order to find the value of x we use sine
sin ∅ = opposite / hypotenuse
From the question
x is the hypotenuse
the opposite is 19
So we have
sin 20 = 19/x
x = 19/sin 20
x = 55.55
We have the final answer as
x = 55.6 to the nearest tenthHope this helps you
Answer:
x = 55.6
Step-by-step explanation:
[tex] \frac{w}{ -6} = 6[/tex]
I cant figure out the answer
help!! im stuck on this and i can't remeber how to sove this.... 6/3c = 2/3
Hello!
Answer:
[tex]\huge\boxed{c = 3}[/tex]
Given:
[tex]\frac{6}{3c} = \frac{2}{3}[/tex]
Cross multiply:
[tex]6 * 3 = 3c * 2[/tex]
Simplify:
[tex]18 = 6c[/tex]
Divide both sides by 6:
[tex]c = 18/6 = 3[/tex]
Answer:
c=3
Step-by-step explanation:
6 2
----- = -----
3c 3
Using cross products
6*3 = 2*3c
18 = 6c
Divide each side by 6
18/6 = 6c/6
3 =c
The cost of milk is modeled by a linear equation where four quarts (one gallon) costs $3.09 while two quarts
(half-gallon) costs $1.65. Write the linear equation that expresses the price in terms of quarts. How much would
an eight-quart container of milk cost?
Answer:
linear equation to express the price is:
y=0.72x+0.21
An eight quarts will cost : $5.97
Step-by-step explanation:
linear equation represent y=mx+b
let x=quarts ( x=4, x=2)
y= price (3.09 and y=1.65 )
two points (4,3.09) and (2,1.65)
need to find the slope m:
y2-y1/x2-x1
(1.65-3.09)/(2-4) ⇒ m=0.72
y=0.72x+b find b at point (2,1.65)
1.65=0.72(2) +b ⇒ b=0.21
y=0.72x +0.21
check : point (4,3.09)
y=0.72(4) +0.21
y=3.09 ( correct)
An eight quarts will cost :
y=0.72(8)+0.21
y=5.97 dollars
Find the measure of each side indicated. Round to the nearest tenth.
A) 19.8
C) 24.9
B) 27.2
D) 25.3
Answer:
D. 25.3
Step-by-step explanation:
tan∅ = opposite over adjacent
Step 1: Write equation
tan66.5° = x/11
Step 2: Multiply both sides by 11
11tan66.5° = x
Step 3: Evaluate
x = 25.2983
x ≈ 25.3
Answer:
[tex]\huge\boxed{x = 25.3}[/tex]
Step-by-step explanation:
Tan θ = opposite / adjacent
Where θ = 66.5 , opposite = x and adjacent = 11
Tan 66.5 = x / 11
2.3 * 11 = x
25.3 = x
OR
x = 25.3
Find the distance across the lake. Assume the triangles are similar.
80 m
х
у
20 m
60 m
Answer:
a
Step-by-step explanation:
Answer:
A. L = 240 m
Step-by-step explanation:
use similar triangle
L / 60 = 80 / 20
L = (80 * 60) / 20
L = 240 m
pls help with sum geometry
YES! quite easily.
I hope you can see the two pairs of corresponding angles between the parallel lines. they'll be equal
and then there's a pair of vertically opposite angle at centre.
that means all pairs of corresponding angles are equal, thus, triangles are similar by AAA
Answer:
[tex]\Large \boxed{\mathrm{D}}[/tex]
Step-by-step explanation:
The triangles can be proven by AA or Angle-Angle similarity.
[tex]\angle QUR \cong \angle TUS[/tex]
The vertical angles are congruent.
[tex]\angle R \cong \angle S[/tex]
The alternate interior angles are congruent.
HELP ASAP PLEASE!!!!!!!!!!!!!!!!!
Answer:
A
C
D
Step-by-step explanation:
√54 or√9 *√6 or √27 *√4
are equal to the answer.
You can do that by doing the square of outer number which is 3 which equals to 9 when squared and multiplying that with the number inside the square root.
Reduce 5/15 to its lowest terms
Answer:
The answer is 1/3
Answer:
1/3
Step-by-step explanation:
The factors of 5 are 1,5;
* The factors of 15 are 1,3,5,15.
We can see that the GCD is 5 because it is the largest number by which 5 y 15 can be divided without leaving any residue.
To reduce this fraction, simply divide the numerator and denominator by 5 (the GCF).
So, 5 /15
= 5÷5 /15÷5
= 1 /3