Answer:
please write this question in English then I give answer
3(6x+3)=63 How to do it
What are the first and third quartiles for the following data set?
12, 15, 18, 16, 14, 9, 12, 21
A 9 and 21
C 12 and 17
B 12 and 16
D 15 and 17
Answer:
A
Step-by-step explanation:
I guess that is it may be
Hallar el noveno término de la progresión aritmética 8, 13, 18,…
Answer:18
Step-by-step explanation:
7. Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. a. Develop a p-Chart for 95 percent confidence (1.96 standard deviation). b. Based on the plotted data points, what comments can you make
Answer: Hello the table related to your question is attached below
answer:
a) attached below
b) The process is out of control because two ( 2 ) values from the defect rate table are out of the control limits at 95% as seen in the p-chart in question ( A )
Step-by-step explanation:
a) p-chart for 95% confidence
std = 1.96
Total defects = ∑ number of defective items in the sample = 10
number of samples = 10
sample size ( n ) = 15
The P value for the process is calculated as :
Total defects / ( number of sample * sample size )
= 10 / ( 15 * 10 ) = 10 / 150 = 0.067
standard deviation ( σ ) = [tex]\sqrt{\frac{p(1-p)}{n } } = \sqrt{\frac{0.067(1-0.067)}{15} }[/tex] = 0.065
next we determine the limits ( i.e. upper and lower )
UCL = p + zSp = 0.067 + 1.96(0.065 ) = 0.194
LCL = p - zSp = 0.067 - 1.96(0.065) = -0.060 ≈ 0 ( because LCL ≠ negative)
attached below is the required p-chart
b) The process is out of control because two ( 2 ) values from the defect rate table are out of the control limits at 95% as seen in the p-chart in question ( A )
SAT scores are normally distributed with a mean of 1,500 and a standard deviation of 300. An administrator at a college is interested in estimating the average SAT score of first-year students. If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample? Make sure to give a whole number answer.
Answer:
The administrator should sample 968 students.
Step-by-step explanation:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.88}{2} = 0.06[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.06 = 0.94[/tex], so Z = 1.555.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Standard deviation of 300.
This means that [tex]n = 300[/tex]
If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample?
This is n for which M = 15. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]15 = 1.555\frac{300}{\sqrt{n}}[/tex]
[tex]15\sqrt{n} = 300*1.555[/tex]
Dividing both sides by 15
[tex]\sqrt{n} = 20*1.555[/tex]
[tex](\sqrt{n})^2 = (20*1.555)^2[/tex]
[tex]n = 967.2[/tex]
Rounding up:
The administrator should sample 968 students.
so, sunny is 16 he is 132 pounds
the song my time lasts 3:33 and sunny is falling for an entire 3 minutes
the gravitational pull which is pulling sunny back down to the ground is about 10m/s²
we have the new height of the hospital, is 49312,674 meters, or 161.787 feet
upon theory, sunny died upon coming to contact with the ground if you fall head first from 100 feet you're bound to die
you can break just your legs from falling from atleast 16-18 feet so imagine that
??????
divide 111001 by 1101
Based on the fact that you asked this three times and got the same answer three times, I suspect the interpretation made by the users that posted those answers was incorrect, and that you meant to ask about dividing in base 2.
We have
111001₂ = 1×2⁵ + 1×2⁴ + 1×2³ + 1×2⁰ = 57
1101₂ = 1×2³ + 1×2² + 1×2⁰ = 13
and 57/13 = (4×13 + 5)/13 = 4 + 5/13.
4 = 2² is already a power of 2, so we have
111001₂/1101₂ = 1×2² + 5/13
we just need to convert 5/13. To do this, we look for consecutive negative powers of 2 that 5/13 falls between, then expand 5/13 as the sum of the smaller power of 2 and some remainder term. For instance,
• 1/4 < 5/13 < 1/2, and
5/13 - 1/4 = (20 - 13)/52= 7/52
so that
5/13 = 1/4 + 7/52
or
5/13 = 1×2 ⁻² + 7/52
Then a partial conversion into base 2 gives us
111001₂/1101₂ = 1×2² + 1×2 ⁻² + 7/52
111001₂/1101₂ = 100.01₂ + 7/52
Continuing in this fashion, we find
• 1/8 < 7/52 < 1/4, and
7/52 = 1/8 + 1/104
==> 111001₂/1101₂ = 100.011₂ + 1/104
• 1/128 < 1/104 < 1/64, and
1/104 = 1/128 + 3/1664
==> 111001₂/1101₂ = 100.0110001₂ + 3/1664
• 1/1024 < 3/1664 < 1/512, and
3/1664 = 1/1024 + 11/13312
==> 111001₂/1101₂ = 100.0110001001₂ + 11/13312
• 1/2048 < 11/13312 < 1/1024, and
11/13312 = 1/2048 + 9/26624
==> 111001₂/1101₂ = 100.01100010011₂ + 9/26624
• 1/4096 < 9/26624 < 1/2048, and
9/26624 = 1/4096 + 5/53248
==> 111001₂/1101₂ = 100.011000100111₂ + 5/53248
and so on.
It turns out that this pattern repeats, so that
[tex]\displaystyle \frac{111001_2}{1101_2} = 100.\overline{011000100111}_2[/tex]
A line passes through the point (-3, -3) and has a slope of 1/2 What is the equation of the line?
Answer:
y= 1/2x-3/2
Step-by-step explanation:
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
y = 1/2x+b
Using the point for x and y we can find b
-3 = 1/2(-3)+b
-3 = -3/2 +b
-6/2 = -3/2+b
Add 3/2 to each side
-6/2 +3/2 = b
-3/2 = b
y= 1/2x-3/2
Answer:
Step-by-step explanation:
y + 3 = 1/2(x + 3)
y + 3 = 1/2x + 3/2
y + 6/2 = 1/2x + 3/2
y = 1/2x - 3/2
(07.03. 07.04 MC)
Part A: The area of a square is (4x2 + 20x + 25) square units. Determine the length of each side of the square by factoring the area expression completely. Show
your work (5 points)
Part B: The area of a rectangle is (4x2 - 9y2) square units. Determine the dimensions of the rectangle by factoring the area expression completely. Show your work
(5 points)
Answer:
A) 4x^2+20x+25=(2x)^2+2*(2x)*5+5^2=(2x+5)^2
Area=(side)^2, side=sqrt(area)=sqrt((2x+5)^2)=2x+5
B) 4x^2-9y^2=(2x-3y)(2x+3y), these are the dimensions of the rectangle
A) The length of each side of the square is (2x + 5).
B) The dimensions of the rectangle are (2x - 3y) and (2x + 3y).
Used the concept of a quadratic equation that states,
An algebraic equation with the second degree of the variable is called a Quadratic equation.
Given that,
Part A: The area of a square is [tex](4x^2 + 20x + 25)[/tex] square units.
Part B: The area of a rectangle is [tex](4x^2 - 9y^2)[/tex] square units.
A) Now the length of each side of the square is calculated by factoring the area expression completely,
[tex](4x^2 + 20x + 25)[/tex]
[tex]4x^2 + (10 + 10)x + 25[/tex]
[tex]4x^2 + 10x + 10x + 25[/tex]
[tex]2x (x + 5) + 5(2x + 5)[/tex]
[tex](2x + 5) (2x+5)[/tex]
Hence the length of each side of the square is (2x + 5).
B) the dimensions of the rectangle are calculated by factoring the area expression completely,
[tex](4x^2 - 9y^2)[/tex]
[tex](2x)^2 - (3y)^2[/tex]
[tex](2x - 3y) (2x + 3y)[/tex]
Therefore, the dimensions of the rectangle are (2x - 3y) and (2x + 3y).
To learn more about the rectangle visit:
https://brainly.com/question/2607596
#SPJ4
Factor 64a^3 -8b^3 Explain all steps.
Answer:
[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]
Step-by-step explanation:
factor out the 8
then you have the sum/difference of cubes..
look that up SOAP: same opposite, always a plus
[tex]64a^3 -8b^3\\8(8a^3 -b^3)[/tex]
[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]
Assume a random variable representing the amount of time it takes for a customer service representative to pick up has a uniform distribution between 15 and 20 minutes. What is the probability that a randomly selected application from this distribution took less than 18 minutes
Answer:
0.6 = 60% probability that a randomly selected application from this distribution took less than 18 minutes.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b.
The probability of finding a value of at lower than x is:
[tex]P(X < x) = \frac{x - a}{b - a}[/tex]
The probability of finding a value between c and d is:
[tex]P(c \leq X \leq d) = \frac{d - c}{b - a}[/tex]
The probability of finding a value above x is:
[tex]P(X > x) = \frac{b - x}{b - a}[/tex]
Uniform distribution between 15 and 20 minutes.
This means that [tex]a = 15, b = 20[/tex]
What is the probability that a randomly selected application from this distribution took less than 18 minutes?
[tex]P(X < 18) = \frac{18 - 15}{20 - 15} = 0.6[/tex]
0.6 = 60% probability that a randomly selected application from this distribution took less than 18 minutes.
Solve the system of equations.
3x + 4y + 3z = 5
2x + 2y + 3z = 5
5x+ 6y+7z = 7
a. (x = 13, y=-6, z = -2)
b. (x = 15, y = -8, z = -4)
c. (x = 16, y = -9, z = -1)
d. (x = 14, y = -7, z = 3)
Answer:
x = 14
y = -7
z = -3
but this is none of the provided answer options !
Step-by-step explanation:
it's really easy by principle. it's just some work to do.
we try to find equations to express one variable in terms of the others.
but one thing there is : your teacher made a mistake.
the right solution is x = 14, y = -7, z = -3
your teacher made a typo at d.
but the right answer should be d.
just to give you an idea how this can be done (and also to prove that there is a mistake by the teacher):
we can directly try to transform one expression into one that describes x by y and z.
and then another to describe e.g. z by y. and then solve the third one just for y. and then we get the other 2 by these other expressions.
or we can e.g. add or subtract one equation to/from another. this is one of these cases, because we can find really simple expressions that way :
we do
5x + 6y + 7z = 7
- (3x + 4y + 3z = 5)
- (2x + 2y + 3z = 5)
---------------------------
0x + 0y + z = -3
=> z = -3
3x + 4y - 3×3 = 5
3x = -4y + 14
x = (-4y + 14)/3
2×(-4y + 14)/3 + 2y - 9 = 5
(-8y + 28)/3 + 2y = 14
-8y + 28 + 6y = 42
-2y = 14
y = -7
x = (-4×-7 + 14)/3 = (28+14)/3 = 42/3 = 14
help
What is 5 added to 3 4?
6. 12
Answer:
8.4
Step-by-step explanation:
jjdijendjndoendidnie
A^2 + 2AB +B^2
habsbsjabdhjsbfhjbsdjh
What is the length of BC in the right triangle below?
B
00
A
15
с
A. 17
B. 60
C. 17
D. 289
Using Pythagorean Theorem
[tex]\\ \sf\longmapsto H^2=P^2+B^2[/tex]
[tex]\\ \sf\longmapsto H^2=8^2+15^2[/tex]
[tex]\\ \sf\longmapsto H^2=64+225[/tex]
[tex]\\ \sf\longmapsto H^2=289[/tex]
[tex]\\ \sf\longmapsto H=\sqrt{289}[/tex]
[tex]\\ \sf\longmapsto H=17[/tex]
BC=17Suppose (-13,2) is a point on the graph of y=f(x). What is a point that will be on the graph of y=9f(x)-5
9514 1404 393
Answer:
(x, y') = (-13, 13)
Step-by-step explanation:
At the given value of x, f(x) = 2. Then 9f(x)-5 = 9(2) -5 = 13.
The point on the scaled, translated graph will be ...
(x, y') = (-13, 13)
_____
The graph shows a function f(x) with a distinct feature (vertex) at (-13, 2). It also shows where that distinct feature moves to when the function is scaled and translated.
WILL GIVE BRAINLIEST
Complete the equation describing how
x and y are related.
х
-3
-2
-1
0
1
2
3
y
12
8
4
0
-4
-8
-12
y = [? ]x
Answer:
[tex]y=4x[/tex]
Answer:
y = -4x
hope that helped.........
A school sports team contains 68 students. 33 do field events, 40 do track events, 23 do swimming, 14 do both field and track events, 8 do both swimming and field events. If 15 students do field events only and 10 do both swimming and track events, how many students do a. Swimming only b. Track events only c. All three events?
Answer:
a. 9 students
b. 20 students
c. 4 students
solve for x : 2(x^2+9)-4=0
Answer:
no solution
Step-by-step explanation:
multiply 2 and get 2x^2+18-4=0
combine like terms
2x^2+14=0
subtract 14
2x^2=-14
there can't be a square root of a negative number so there's no solution
Answer:
x = ±i sqrt(7)
Step-by-step explanation:
2(x^2+9)-4=0
Add 4 to each side
2(x^2+9)-4+4=0+4
2(x^2+9)=4
Divide by 2
2(x^2+9)/2=4/2
(x^2+9)=2
Subtract 9 from each side
x^2 +9-9 = 2-9
x^2 = -7
Taking the square root of each side
sqrt(x^2) =sqrt(-7)
x = sqrt(-1 *7)
x = ±i sqrt(7)
write the greatest and smallest four digit number by using 7,8,0,9 digit
Assume x and y are two odd numbers and x/y is an integer.
Which of the following statements are true?
I. x + y is odd
2. xy is odd.
3. x/y is odd
4. x-y is odd
Answer:
Let us check these out one at a time:
1. x + y is odd. FALSE. The sum of 2 odd numbers is even.
2. xy is odd. TRUE. The product of 2 odd numbers is odd.
3. x/y is odd. TRUE. The ratio of 2 odd numbers is odd, if the ratio is an integer.
4. x - y is odd. FALSE. The difference of 2 odd numbers is even.
Only statements 2 and 3 are TRUE, so that makes (C) the correct answer.
Find the fraction equivalent to 5/7 with: a) numerator 25 b) denominator 42
Answer:
a) 25/35
b) 30/42
Step-by-step explanation:
a)
Variable x = denominator if numerator is 25
5/7 = 25/x
5 × x = 7 × 25
5x = 175
x = 35
b)
Variable y = numerator if denominator is 42
5/7 = y/42
5 × 42 = 7 × y
210 = 7y
30 = y
25/35
30/42
To get 25/35 multiply by 5
To get 30/42 multiply by 6
The width of a rectangle is 9 less than twice its length. If the area of the rectangle is 129cm^2. What is the length of the diagonal? Give your answer to 2 decimal places.
==========================================================
Explanation:
L = x = length of the rectangleW = 2x-9 = width of the rectangle, since its 9 less than twice the lengtharea of rectangle = L*W = 129
L*W = 129
x*(2x-9) = 129
2x^2-9x = 129
2x^2-9x-129 = 0
Apply the quadratic formula. We'll use a = 2, b = -9, c = -129.
[tex]x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\x = \frac{-(-9)\pm\sqrt{(-9)^2-4(2)(-129)}}{2(2)}\\\\x = \frac{9\pm\sqrt{1113}}{4}\\\\x \approx \frac{9\pm33.36165464}{4}\\\\x \approx \frac{9+33.36165464}{4}\ \text{ or } \ x \approx \frac{9-33.36165464}{4}\\\\x \approx \frac{42.36165464}{4}\ \text{ or } \ x \approx \frac{-24.36165462}{4}\\\\x \approx 10.59041366\ \text{ or } \ x \approx -6.09041364\\\\[/tex]
We ignore the negative solution because a negative length makes no sense.
The length is approximately L = 10.5904 cm.
The width is 2L-9 = 2*10.5904-9 = 12.1808 cm approximately.
As a quick check,
L*W = 10.5904*12.1808 = 128.99954432
which isn't too far off from 129. We have rounding error which is why we don't perfectly land on the target area value. If you wanted to get closer to the value 129, then use more decimal digits in the approximations of L and W.
----------------------------
If you draw a diagonal in the rectangle, then you form two identical or congruent right triangles.
Focusing on one of those triangles, we have
a = 10.5904b = 12.1808c = unknown hypotenuse = diagonal lengthApply the pythagorean theorem
a^2+b^2 = c^2
c = sqrt( a^2 + b^2 )
c = sqrt( (10.5904)^2 + (12.1808)^2 )
c = 16.1408940520653
c = 16.14
The diagonal is roughly 16.14 cm long.
Destiny just received two separate gifts from her great-great-grandmother.
The first gift is a box of 18 chocolate candy bars, and the second gift is a pack of 12 cookies.
Destiny wants to use all of the chocolate candy bars and cookies to make identical snack bags for her cousins.
What is the greatest number of snack bags that Destiny can make?
Answer:
Destiny will be able to create 12 identical snack bags.
Step-by-step explanation:
Given that a snack bag will be 1 chocolate candy bar, and 1 cookie, we have to subtract 1 chocolate for every cookie she has, and that will leave us with 6 chocolate bars left. The equation for this is 18 - 12 = 6.
The distribution of sample means uses
to measure how much distance
is expected on average between a sample mean and the population mean.
re
o the standard error of M
none of these
the standard deviation of the sample
the standard deviation of the population
< Previous
Next
Answer:
A: the standard error of the mean
Step-by-step explanation:
The most frequently used measure to determine how much difference there is between population mean and sample mean is by calculating the standard deviation of the sampling distribution of the mean. This standard deviation is also referred to as the sew Station.
Map Reading. A map is drawn so that every 3.3 inches on the map corresponds to an actual distance of 120
miles. If the actual distance between the two cities is 440 miles, how far apărt are they on the map?
The two cities are
inches apart on the map.
how many feet is 2 1/2 miles
Answer:
13200 ft
Step-by-step explanation:
1 mi = 5280 ft
5280 ft x 2.5 = 13200 ft
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
Fill in the blank with a number to make the expression a perfect square.
u^2- 18u +
Answer:
u^2- 18u +81 = (u-9)^2
Step-by-step explanation:
u^2- 18u +
Take the u coefficient
-18
Divide by 2
-18/2 = -9
Square it
(-9)^2 = 81
u^2- 18u +81 = (u-9)^2
Answer:
The blank should contain 81
Step-by-step explanation:
E = u^2 - 18u + (-18/2)^2
E = (u^2 - 18u + 9^2)
E = (u - 9)^2
To be perfectly correct what you have there is a perfect square, but you need to subtract out (9/2)^2 to make it a valid statement.
E = (u - 9)^2 - 81
Given that the supply and demand function for the product type is Qd = [tex]\sqrt{260-p}[/tex],
Qs = [tex]\sqrt{p-14}[/tex]. consumer surplus ??.
Which number is divisible by 5? 99 45 83 94
Answer:
45
Step-by-step explanation:
because 5•9=45 so yeah that's the answer