Answer:
Traffic signs are regulated by the Manual on Uniform Traffic Control Devices (MUTCD). The perimeter of a rectangular traffic sign is 126 inches. Also, its length is 9 inches longer than its widthFind the dimensions of this sign.
Step-by-step explanation:
Let's say the width of the sign is x inches. Then, according to the problem, the length of the sign is 9 inches longer than the width, which means the length is x + 9 inches.
The perimeter of a rectangle can be found by adding up the length of all its sides. For this sign, the perimeter is given as 126 inches. So we can set up an equation:
2(length + width) = 126
Substituting the expressions for length and width in terms of x, we get:
2(x + x + 9) = 126
Simplifying and solving for x:
2(2x + 9) = 126
4x + 18 = 126
4x = 108
x = 27
So the width of the sign is 27 inches, and the length is 9 inches longer, or 36 inches. Therefore, the dimensions of the sign are 27 inches by 36 inches.
Find the area of the region that is bounded by the given curve and lies in the specified sector.
r = e^ θ/2
π/6 = θ = 7π/6
The area of the region that is bounded by the given curve and lies in the specified sector is A = 2(e^(7π/12) - e^(π/12))
The polar curve r = e^(θ/2) represents a spiral that starts from the origin and gets farther away as it unwinds. We want to find the area of the region that lies inside this spiral and inside the sector defined by the angles θ = π/6 and θ = 7π/6.
To solve the problem, we need to find the points where the curve intersects the sector, which are given by plugging in the values of θ:
r(π/6) = e^(π/12)
r(7π/6) = e^(7π/12)
Then we can set up the integral for the area inside the sector:
A = 1/2 ∫[π/6, 7π/6] (r(θ))^2 dθ
Substituting the equation for r:
A = 1/2 ∫[π/6, 7π/6] e^θ/2 dθ
Using the power rule for integration:
A = 2(e^(7π/12) - e^(π/12))
This is the exact value of the area inside the sector and inside the spiral. If we want a decimal approximation, we can use a calculator or computer software to evaluate it.
To know more about Area:
https://brainly.com/question/4036565
#SPJ4
mr.woodstock has a plot of land 36 meter long and 16 meters wide. he uses the land for mixed farming- rearing animals and growing crop? What length of wire does mr.woodstock need to fence his land?
Mr. Woodstock will need to purchase 144 meters of wire to fully encircle his land. He will need to measure the length of the four sides of the land and add them together. The four sides measure 36 meters + 36 meters + 16 meters + 16 meters, which equals a total of 104 meters. He should buy enough wire to cover an additional 40 meters to account for any extra material he may need. Therefore, he needs to purchase 144 meters of wire for his fencing.
A mountain is 13,318 ft above sea level and the valley is 390 ft below sea level What is the difference in elevation between the mountain and the valley
Answer: 13,708 ft
Step-by-step explanation:
To find the difference in elevation between the mountain and the valley, we need to subtract the elevation of the valley from the elevation of the mountain:
13,318 ft (mountain) - (-390 ft) (valley) = 13,318 ft + 390 ft = 13,708 ft
Therefore, the difference in elevation between the mountain and the valley is 13,708 ft.
Answer: The difference is 13,708 ft.
Given that a mountain is 13,318 feet above sea level. So the elevation of the mountain is [tex]= +13,318 \ \text{ft}[/tex].
Given that a valley is 390 feet below sea level.
So the elevation of the valley is [tex]= -390 \ \text{ft}[/tex].
So the difference between them is [tex]= 13,318 - (-390) = 13,318 + 390 = 13,708 \ \text{ft}.[/tex]
Learn more: https://brainly.com/question/20521181
which of the following correctly relates the measures of the diameter (d) and radius (r) of a circle
The equation which correctly relates the measure of diameter and radius of a circle is (c) r = d/2.
The Diameter (d) of a circle is defined as the distance across the circle through its center. The radius (r) of a circle is defined as the distance from the center of the circle to any point on the circle.
We know that the radius of the circle is half of diameter, because it extends from the center to the edge of the circle, while the diameter extends all the way across the circle.
So, we can express the relationship between d and r as:
⇒ d = 2r
To solve for r, we can divide both sides by 2:
We get,
⇒ r = d/2
Therefore, The correct equation is Option (c) r = d/2.
Learn more about Radius here
https://brainly.com/question/12922563
#SPJ4
The given question is incomplete, the complete question is
Which of the following correctly relates the measures of the diameter (d) and radius (r) of a circle?
(a) d = r/2
(b) r = 2d
(c) r = d/2
(d) d = 2/r
what is 7 in x 3 in x 6 in x 4 in x 15 in=
Answer:
7,560 inches.
Step-by-step explanation:
Given: 7 in x 3 in x 6 in x 4 in x 15 in = ?
First, multiply 7 and 3:
21 in x 6 in x 4 in x 15 in
Then multiply 21 and 6:
126 in x 4 in x 15 in
Then multiply 4 and 15:
126 in x 60 in
Finally, multiply 126 and 60:
= 7,560 inches.
Really need help asap !
The value of h(x) using exponents are as follows:
For -1, the value of h(x)=1/10
For 0, the value of h(x) = 1
For 1, the value of h(x) = 10
For 2, the value of h(x) = 100
For 3, the value of h(x) = 1000
What are exponents?The exponent of a number tells us how many times the original value has been multiplied by itself. For instance, 2×2×2×2 can be expressed as [tex]2^{4}[/tex] the result of 4 times multiplying 2 by itself. Thus, 4 is referred to as the "exponent" or "power," while 2 is referred to as the "base."
Generally speaking, [tex]x^{n}[/tex] denotes that x has been multiplied by itself n times. Here x is the base and n is the power.
Now here, as we put the value of x in the equation, h(x) we can get the value of h(x) for each value of x.
So,
For -1, the value of h(x)=1/10
For 0, the value of h(x) = 1
For 1, the value of h(x) = 10
For 2, the value of h(x) = 100
For 3, the value of h(x) = 1000
To know more about exponents, visit:
https://brainly.com/question/30066987
#SPJ1
The roots of a quadratic equation a x +b x +c =0 are (2+i √2)/3 and (2−i √2)/3 . Find the values of b and c if a = −1.
[tex]\begin{cases} x=\frac{2+i\sqrt{2}}{3}\implies 3x=2+i\sqrt{2}\implies 3x-2-i\sqrt{2}=0\\\\ x=\frac{2-i\sqrt{2}}{3}\implies 3x=2-i\sqrt{2}\implies 3x-2+i\sqrt{2}=0 \end{cases} \\\\\\ \stackrel{ \textit{original polynomial} }{a(3x-2-i\sqrt{2})(3x-2+i\sqrt{2})=\stackrel{ 0 }{y}} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\stackrel{ \textit{difference of squares} }{[(3x-2)-(i\sqrt{2})][(3x-2)+(i\sqrt{2})]}\implies (3x-2)^2-(i\sqrt{2})^2 \\\\\\ (9x^2-12x+4)-(2i^2)\implies 9x^2-12x+4-(2(-1)) \\\\\\ 9x^2-12x+4+2\implies 9x^2-12x+6 \\\\[-0.35em] ~\dotfill\\\\ a(9x^2-12x+6)=y\hspace{5em}\stackrel{\textit{now let's make}}{a=-\frac{1}{9}} \\\\\\ -\cfrac{1}{9}(9x^2-12x+6)=y\implies \boxed{-x^2+\cfrac{4}{3}x-\cfrac{2}{3}=y}[/tex]
Which of the following pairs of sample size n and population proportion p would produce the greatest standard deviation for the sampling distribution of a sample proportion p?
Therefore , the solution of the given problem of standard deviation comes out to be option C with n = 1,000 and p near to 1/2 is the right response.
What does standard deviation actually mean?Statistics uses variance as a way to quantify difference. The image of the result is used to compute the average deviation between the collected data and the mean. Contrary to many other valid measures of variability, it includes those pieces of data on their own by comparing each number to the mean. Variations may be caused by willful mistakes, irrational expectations, or shifting economic or business conditions.
Here,
The following algorithm determines the standard deviation of the sampling distribution of a sample proportion p:
=> √((p*(1-p))/n)
where n is the sample size, and p is the population percentage.
For the sampling distribution of a sample proportion p,
the pair of sample number n and population proportion p that would result in the highest standard deviation is:
=>n =1,000, and p is almost half.
Because p=1/2
yields the highest possible value of the expression (p*(1-p)), a bigger sample size will result in a smaller standard deviation.
The standard deviations will be lower for the other choices, which have smaller sample sizes or extreme values of p.
Therefore, (C) with n = 1,000 and p near to 1/2 is the right response.
To know more about standard deviation visit :-
brainly.com/question/13673183
#SPJ1
I need your help to buy a door for my house. I have a scale drawing for the door I want but I am not sure of the true size. In the scale drawing the length is 4 in and the width as 7in. The scale for the door is 1 in = 1.5 ft. What are the actual measurements of the door?
Answer:
According to the scale, 1 inch on the drawing represents 1.5 feet in real life. So, to find the actual length of the door, we need to multiply the length on the drawing by the scale factor:
4 inches x 1.5 feet/inch = 6 feet
Similarly, to find the actual width of the door, we need to multiply the width on the drawing by the scale factor:
7 inches x 1.5 feet/inch = 10.5 feet
Therefore, the actual measurements of the door are 6 feet by 10.5 feet.
Karina is making a quilt and she has determined she needs 420 square inches of green fabric and 688 square
inches of burgundy. How many square yards of each material will she need? Round your answers up to the
nearest quarter yard.
The green fabric:
square yards
The burgundy fabric:
How many total yards of fabric will she have to buy?
square yards
square yards
1. The total yards of each fabric that Karina will buy to make a quilt is as follows:
a) Green Fabric = 12 square yards
b) Burgundy Fabric = 19 square yards
2. The total yards of fabric she will buy is 31 square yards.
How are the total determined?The total yards of fabric can be determined by unit conversion using division operation.
Given that 36 inches = 1 yard, the square inches of fabric are converted to square yards by dividing the total by 36.
The total number of green fabric Karina requires = 420 square inches
= 12 square yards (420/36)
The total number of burgundy fabric Karina requires = 688 square inches
= 19 square yards (688/36)
The total number of fabric (green and burgundy) = 1,108 square inches (420 + 688)
36 inches = 1 yard
1,108 inches = 30.78 square yards (1,108/36)
= 31 square yards or (12 + 19)
Learn more about unit conversions at https://brainly.com/question/174910.
#SPJ1
T/F. Star clusters with lots of bright, blue stars of spectral type O and B are generally younger than clusters that don't have any such stars.
The given statement "Star clusters with lots of bright, blue stars of spectral type O and B are generally younger than clusters that don't have any such stars." is True. The reason for this is that O and B stars are short-lived and burn through their fuel quickly.
The reason for this is that O and B stars burn through their fuel quickly, causing them to exhaust their nuclear fuel and end their lives in a relatively short period, typically within a few tens of millions of years.
On the other hand, stars of lower mass and cooler temperatures, like G and K type stars like our sun, have longer lifetimes and take billions of years to exhaust their nuclear fuel.
Therefore, clusters without any bright, blue stars are likely to have evolved for longer periods, allowing these short-lived stars to have already expired.
To know more about Star clusters:
https://brainly.com/question/30899528
#SPJ4
Se depositan $ 8.000 en un banco que reconoce una tasa de interés del 36% anual, capitalizable mensualmente. ¿Cuál será el monto acumulado en cuatro años?
Answer:
Se depositan $ 8.000 en un banco que reconoce una tasa de interés del 36% anual, capitalizable mensualmente. ¿Cuál será el monto acumulado en cuatro años?
Step-by-step explanation:
Para resolver este problema, podemos utilizar la fórmula del interés compuesto:
A = P*(1 + r/n)^(n*t)
Donde:
A: el monto acumulado después de t años
P: el capital inicial
r: la tasa de interés anual
n: el número de veces que se capitaliza el interés por año
t: el tiempo en años
En este caso, tenemos:
P = $8.000
r = 36% = 0.36
n = 12 (ya que la tasa de interés se capitaliza mensualmente)
t = 4 años
Sustituyendo estos valores en la fórmula, obtenemos:
A = $8.000*(1 + 0.36/12)^(124)
A = $8.000(1 + 0.03)^48
A = $8.000*(1.03)^48
A = $16.751,83
Por lo tanto, el monto acumulado en cuatro años será de $16.751,83.
Sharon used 8 roses and 6 tulips to make a bouquet. The tape diagram below shows the relationship between the number of roses and the number of tulips in the bouquet.
Answer:
Step-by-step explanation:
its C
This year, the ratio of Alan's age to Bernice's age is 1:2. Four years ago, the total age of Alan and Bernice was 55 years. How old is Alan this year?
Answer:
21 years old
Step-by-step explanation:
Set Alan's age as x, Bernice's age as y
2x=y
x-4+y-4=55
x+y=63
3y=63
x=21
y=42
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between 0°C and 1.08°C. Round your answer to 4 decimal places
Answer: We are given that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C.
To find the probability of obtaining a reading between 0°C and 1.08°C, we need to calculate the z-scores for these values using the formula:
z = (x - mu) / sigma
where x is the value we are interested in, mu is the mean, and sigma is the standard deviation.
For x = 0°C, we have:
z1 = (0 - 0) / 1.00 = 0
For x = 1.08°C, we have:
z2 = (1.08 - 0) / 1.00 = 1.08
Using a standard normal table or a calculator, we can find the probability of obtaining a z-score between 0 and 1.08.
Using a standard normal table or a calculator, we find that the probability of obtaining a z-score between 0 and 1.08 is 0.3583.
Therefore, the probability of obtaining a reading between 0°C and 1.08°C is 0.3583, rounded to 4 decimal places.
Step-by-step explanation:
I need help with this
Answer:
Angle AIC is vertical.
Step-by-step explanation:
Defn of vertical angles
I will mark you brainiest!
In a triangle, the interior angles add up to 180º.
True
False
Answer:
it should be true because sum of 3 interior angle of a triangle is 180 degree
Answer:
True.
Step-by-step explanation:
A triangle's angles add up to 180 degrees because one exterior angle is equal to the sum of the other two angles in the triangle. In other words, the other two angles in the triangle (the ones that add up to form the exterior angle) must combine with the third angle to make a 180 angle.
which of the following code segments assigns bonus correctly for all possible integer values of score ?
The code segment that assigns bonus correctly for all possible integer values of score is D, which uses nested if statements to implement the game's rules for assigning a value to bonus based on the value of score.
The code segment that assigns bonus correctly for all possible integer values of score is D:
IF(score < 50)
{
bonus ← Ø
}
ELSE
{
IF (score > 100)
{
bonus ← score (10)
}
ELSE
{
bonus ← score
}
}
This code segment correctly implements the rules for assigning a value to bonus based on the value of score. It first checks if score is less than 50, and if so, it assigns 0 to bonus. If score is greater than or equal to 50, it checks if score is greater than 100, and if so, it assigns 10 times score to bonus. Otherwise, it assigns score to bonus. This covers all possible integer values of score and ensures that bonus is assigned correctly according to the game's rules.
Learn more about integer here: brainly.com/question/15276410
#SPJ4
Complete question is in the image attached below
Consider the function f (x) = -2/3x + 5.
What is f(-1/2)?
Enter your answer, as a simplified fraction, in the box.
f(-1/2) =
Answer: f(-1/2) = 16/3
Step-by-step explanation:
Substituting -1/2 for x in the given function:
f(-1/2) = (-2/3)(-1/2) + 5
f(-1/2) = 1/3 + 5
f(-1/2) = 16/3
Therefore, f(-1/2) = 16/3.
Find the missing length indicated
The calculated value of the indicated missing length x in the right triangle is 12
How to determine the value of the indicated missing lengthGiven the right triangle
We can start by calculating the value of x using the following equivalent ratio
x : 9 = 25 - 9 : x
Evaluate the difference
This gives
x : 9 = 16 : x
Next, we express the equivalent ratio as a fraction
So, the ratio becomes
x/9 = 16/x
Cross multiply the equation to calculate x
So, we have the following
x * x = 9 * 16
Evaluate the product
x² = 144
Take the square root of both sides
So, we have the solution to be
y = 12
Hence, the value of x is 12
Read more about right triangles at
https://brainly.com/question/2437195
#SPJ1
10 points!!! ASAP PLEASE HELP FIND THE AREA AND THE PERIMETER!!
Answer:
Area = 559.17 square feet
Perimeter = 94.26 ft
Step-by-step explanation:
Make sure all the units are the same and consistent.
r = radius of semi-circle
= [tex]\frac{Diameter}{2}[/tex]
= [tex]\frac{18}{2}[/tex] ft
= 9 ft
Area of composite figure = Area of rectangle + Area of semi-circle:
= [Length × Breadth] + [[tex]\frac{1}{2}[/tex] × (Area of circle)]
= [24 ft × 18 ft] + [[tex]\frac{1}{2}[/tex] × ([tex]\pi r^{2}[/tex])]
= 432 [tex]ft^{2}[/tex] + [[tex]\frac{1}{2}[/tex] × ([tex]\pi 9^{2}[/tex])] [tex]ft^{2}[/tex]
= 432 + [[tex]\frac{1}{2}[/tex] × (3.14) ×(81)]
= 559.17[tex]ft^{2}[/tex]
Perimeter of composite figure =
Circumference of semi-circle + 3 outer sides of rectangle:
= [[tex]\frac{1}{2}[/tex] × [tex]2\pi r[/tex]] + [24 + 18 + 24]
= ( [tex]\pi r[/tex] + 66) ft
= [(3.14)(9) + 66] ft
= 94.26 ft
Mr. Roy captures 15 snapping turtles near some wetland by his house. He marks them with a “math is cool” label and releases them back into the wild. 6 months later, he captures another 15 snapping turtles – 4 of which were marked. Estimate the population of snapping turtles in the area to the nearest whole number. Show your work.
Answer: 56
Step-by-step explanation:
One possible method to estimate the population of snapping turtles in the area is by using the mark and recapture method, also known as the Lincoln-Petersen index.
According to this method, the population size can be estimated by dividing the number of marked individuals in the second sample by the proportion of marked individuals in the combined sample. In other words:
Estimated population size = (Number of individuals in sample 1 × Number of individuals in sample 2) / Number of marked individuals in sample 2
Using the information provided in the problem, we can fill in the formula as follows:
Estimated population size = (15 × 15) / 4
Estimated population size = 56.25
Rounding to the nearest whole number, we get an estimated population size of 56 snapping turtles in the area.
100 POINTS + BRAINLIEST PLS BE FAST!!
i) Find the mean, median, and mode of the frequency table as follows:
Mean = 6.6Median = 8Mode = 3.ii) The average that justifies the teacher's statement congratulating the class that 'over three quarters were above average' is the average mark of 10, which is 5.
What are the mean, median, and mode?The mean refers to the average or the quotient of the total values divided by the number of items.
The median is the middle value in the data, which occurs with marks 8 for the 13th and 14th students.
The mode is the value that occurs most frequently, which is 3 which occurs 6 times.
Frequency Table:
Mark Frequency Cumulative Frequency
3 6 18 (0 + 3 x 6)
4 3 30 (18 + 4 x 3)
5 1 35 (30 + 5 x 1)
6 2 47 (35 + 6 x 2)
7 0 47 (47 + 7 x 0)
8 5 87 (47 + 8 x 5)
9 5 132 (87 + 9 x 5)
10 4 172 (132 + 10 x 4)
Mean = 6.6 (172/26)
Median = 8
Mode = 3
Learn more about the mean, median, and mode at https://brainly.com/question/452652.
#SPJ1
Suppose you have a cache of radium, which has a half-life of approximately 1590 years. How long would you have to wait for 1/7 of it to disappear?
You would have to wait ___ years for 1/7 of the radium to disappear.
Accοrding tο the half-life fοrmula, we wοuld have tο wait apprοximately 4975 years fοr 1/7 οf the radium tο decay.
What is Expοnential Decay ?Expοnential decay is a mathematical prοcess in which a quantity decreases οver time in a manner prοpοrtiοnal tο its current value. This means that the rate οf decay is prοpοrtiοnal tο the amοunt οf the substance remaining, and as the amοunt οf the substance decreases, the rate οf decay alsο decreases. The fοrmula fοr expοnential decay is οften written as:
N(t) = N₀ *[tex]e^{(-kt)[/tex]
where N(t) is the amοunt οf substance remaining at time t, N₀ is the initial amοunt οf the substance, k is the decay cοnstant, and e is the base οf the natural lοgarithm.
The half-life οf radium is apprοximately 1590 years, which means that after 1590 years, half οf the οriginal radium will have decayed. Therefοre, we can use the half-life fοrmula tο find the amοunt οf time it wοuld take fοr 1/7 οf the radium tο decay:
N = N₀[tex]* (1/2)^{(t/t1/2)[/tex]
where N is the final amοunt (1/7 οf the οriginal amοunt), N0 is the initial amοunt, t is the time elapsed, and t1/2 is the half-life.
We can rearrange this fοrmula tο sοlve fοr t:
t = t1/2 * lοg2(N₀/N)
t = 1590 years * lοg2(7)
t ≈ 4975 years
Therefοre, we wοuld have tο wait apprοximately 4975 years fοr 1/7 οf the radium tο decay.
To know more about exponential Decay visit:
brainly.com/question/2193799
#SPJ1
Graph the linear equation.
42 + 6y = -12
Plot two points on the line to graph the line.
The graph of the linear function 4x + 6y = -12 is given by the image presented at the end of the answer.
How to define a linear function?The slope-intercept representation of a linear function is given by the equation presented as follows:
y = mx + b
The coefficients of the function and their meaning are described as follows:
m is the slope of the function, representing the change in the output variable y when the input variable x is increased by one.b is the y-intercept of the function, which is the initial value of the function, i.e., the numeric value of the function when the input variable x assumes a value of 0. On a graph, it is the value of y when the graph of the function crosses the y-axis.The function for this problem is given as follows:
4x + 6y = -12.
In slope-intercept form, the function is given as follows:
6y = -4x - 12.
y = -2x/3 - 2.
The slope and the intercept are given as follows:
Intercept of b = -2, meaning that when x = 0, y = -2.Slope of -2/3, meaning that when x decays by 3, y increases by two, hence the graph also passes through point (-3,0).More can be learned about linear functions at https://brainly.com/question/24808124
#SPJ1
Using the data table, what is the probability that Baxter’s Shelties will NOT have a Tri-Color puppy this year? Justify your decision.
Use the equation f=d–5 to find the value of f when d=7.
Answer:
2
Step-by-step explanation:
since d=7 and the equation is d-5 in the place of d we'll put 7 therefore 7-5=2
olivia and kieran share money in the ratio 2:5. Olivia gets £42. how much did kieran get?
[tex] \huge \: \tt \green{Answer} [/tex]
Olivia and kieran share ratio 2 : 5
[tex] \texttt{olivia's share \: of \: money = £42 }= \frac{2}{7} \\ [/tex]
Total Amount of Money = Olivia's share of money × Reciprocal of olivia's share
[tex] \tt \: = > 42 \times \frac{7}{2} \\ \\ = > 147[/tex]
Kieran's share of Money =
[tex] = > 147 \times \frac{5}{7} \\ \\ = > \sf{ \pink{£105}}[/tex]
A normal distribution is informally described as a probability distribution that is "bell-shaped" when graphed. Draw a rough sketch of a curve having the bell shape that is characteristic of a normal distribution.
Choose the correct answer below.
A.
A symmetric curve is plotted over a horizontal scale. From left to right, the curve starts on the horizontal scale and rises at a decreasing rate to a central peak before falling at an increasing rate to the horizontal scale.
B.
A symmetric curve is plotted over a horizontal scale. From left to right, the curve starts above the horizontal scale, falls from the horizontal at an increasing rate, then falls at a decreasing rate to a central minimum before rising at an increasing rate, then rising at a decreasing rate, and finally becoming nearly horizontal.
C.
A symmetric curve is plotted over a horizontal scale. From left to right, the curve starts on the horizontal scale, rises from horizontal at an increasing rate, then rises at a decreasing rate to a central peak before falling at an increasing rate, then falling at a decreasing rate, and finally approaches the horizontal scale.
The correct answer is C. A normal distribution is a symmetric probability distribution that is bell-shaped when graphed. When plotted on a horizontal scale, the curve starts on the horizontal axis, rises to a central peak, and then falls back to the horizontal axis.
The curve is symmetric, meaning that the left and right halves of the curve are mirror images of each other. The curve approaches the horizontal axis but never touches it, which indicates that there is a non-zero probability of observing values at any distance from the mean, although the probability decreases as the distance from the mean increases.
Normal distribution is a type of probability distribution that is commonly found in natural and social phenomena, where the majority of the observations tend to cluster around the mean, with fewer observations further away from the mean.
To know more about Normal distribution:
https://brainly.com/question/29509087
#SPJ4
find the value of the derivative (if it exists) at
each indicated extremum
Answer:
The value of the derivative at (-2/3, 2√3/3) is zero.
Step-by-step explanation:
Given function:
[tex]f(x)=-3x\sqrt{x+1}[/tex]
To differentiate the given function, use the product rule and the chain rule of differentiation.
[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Product Rule of Differentiation}\\\\If $y=uv$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}[/tex]
[tex]\boxed{\begin{minipage}{7 cm}\underline{Differentiating $[f(x)]^n$}\\\\If $y=[f(x)]^n$, then $\dfrac{\text{d}y}{\text{d}x}=n[f(x)]^{n-1} f'(x)$\\\end{minipage}}[/tex]
[tex]\begin{aligned}\textsf{Let}\;u &= -3x& \implies \dfrac{\text{d}u}{\text{d}{x}} &= -3\\\\\textsf{Let}\;v &= \sqrt{x+1}& \implies \dfrac{\text{d}v}{\text{d}{x}} &=\dfrac{1}{2} \cdot (x+1)^{-\frac{1}{2}}\cdot 1=\dfrac{1}{2\sqrt{x+1}}\end{aligned}[/tex]
Apply the product rule:
[tex]\implies f'(x) =u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}[/tex]
[tex]\implies f'(x)=-3x \cdot \dfrac{1}{2\sqrt{x+1}}+\sqrt{x+1}\cdot -3[/tex]
[tex]\implies f'(x)=- \dfrac{3x}{2\sqrt{x+1}}-3\sqrt{x+1}[/tex]
Simplify:
[tex]\implies f'(x)=- \dfrac{3x}{2\sqrt{x+1}}-\dfrac{3\sqrt{x+1} \cdot 2\sqrt{x+1}}{2\sqrt{x+1}}[/tex]
[tex]\implies f'(x)=- \dfrac{3x}{2\sqrt{x+1}}-\dfrac{6(x+1)}{2\sqrt{x+1}}[/tex]
[tex]\implies f'(x)=- \dfrac{3x+6(x+1)}{2\sqrt{x+1}}[/tex]
[tex]\implies f'(x)=- \dfrac{9x+6}{2\sqrt{x+1}}[/tex]
An extremum is a point where a function has a maximum or minimum value.
From inspection of the given graph, the maximum point of the function is (-2/3, 2√3/3).
To determine the value of the derivative at the maximum point, substitute x = -2/3 into the differentiated function.
[tex]\begin{aligned}\implies f'\left(-\dfrac{2}{3}\right)&=- \dfrac{9\left(-\dfrac{2}{3}\right)+6}{2\sqrt{\left(-\dfrac{2}{3}\right)+1}}\\\\&=-\dfrac{0}{2\sqrt{\dfrac{1}{3}}}\\\\&=0 \end{aligned}[/tex]
Therefore, the value of the derivative at (-2/3, 2√3/3) is zero.